Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q3UV55 (NR1D1_MOUSE) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 93. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (2) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Nuclear receptor subfamily 1 group D member 1
Alternative name(s):
Rev-erbA-alpha
V-erbA-related protein 1
Short name=EAR-1
Gene names
Name:Nr1d1
Synonyms:Ear1
OrganismMus musculus (Mouse) [Reference proteome]
Taxonomic identifier10090 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus

Protein attributes

Sequence length615 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Transcriptional repressor which coordinates circadian rhythm and metabolic pathways in a heme-dependent manner. Integral component of the complex transcription machinery that governs circadian rhythmicity and forms a critical negative limb of the circadian clock by directly repressing the expression of core clock components ARTNL/BMAL1, CLOCK and CRY1. Also regulates genes involved in metabolic functions, including lipid and bile acid metabolism, adipogenesis, gluconeogenesis and the macrophage inflammatory response. Acts as a receptor for heme which stimulates its interaction with the NCOR1/HDAC3 corepressor complex, enhancing transcriptional repression. Recognizes two classes of DNA response elements within the promoter of its target genes and can bind to DNA as either monomers or homodimers, depending on the nature of the response element. Binds as a monomer to a response element composed of the consensus half-site motif 5'-[A/G]GGTCA-3' preceded by an A/T-rich 5' sequence (RevRE), or as a homodimer to a direct repeat of the core motif spaced by two nucleotides (RevDR-2). Acts as a potent competitive repressor of ROR alpha (RORA) function and regulates the levels of its ligand heme by repressing the expression of PPARGC1A, a potent inducer of heme synthesis. Regulates lipid metabolism by repressing the expression of APOC3 and by influencing the activity of sterol response element binding proteins (SREBPs); represses INSIG2 which interferes with the proteolytic activation of SREBPs which in turn govern the rhythmic expression of enzymes with key functions in sterol and fatty acid synthesis. Regulates gluconeogenesis via repression of G6PC and PEPCK and adipocyte differentiation via repression of PPARG. Regulates glucagon release in pancreatic alpha-cells via the AMPK-NAMPT-SIRT1 pathway and the proliferation, glucose-induced insulin secretion and expression of key lipogenic genes in pancreatic-beta cells. Positively regulates bile acid synthesis by increasing hepatic expression of CYP7A1 via repression of NR0B2 and NFIL3 which are negative regulators of CYP7A1. Modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy; controls mitochondrial biogenesis and respiration by interfering with the STK11-PRKAA1/2-SIRT1-PPARGC1A signaling pathway. Represses the expression of SERPINE1/PAI1, an important modulator of cardiovascular disease and the expression of inflammatory cytokines and chemokines in macrophages. Represses gene expression at a distance in macrophages by inhibiting the transcription of enhancer-derived RNAs (eRNAs). Plays a role in the circadian regulation of body temperature and negatively regulates thermogenic transcriptional programs in brown adipose tissue (BAT); imposes a circadian oscillation in BAT activity, increasing body temperature when awake and depressing thermogenesis during sleep. In concert with NR2E3, regulates transcriptional networks critical for photoreceptor development and function. In addition to its activity as a repressor, can also act as a transcriptional activator. In the ovarian granulosa cells acts as a transcriptional activator of STAR which plays a role in steroid biosynthesis. In collaboration with SP1, activates GJA1 transcription in a heme-independent manner. Ref.9 Ref.10 Ref.11 Ref.12 Ref.13 Ref.14 Ref.15 Ref.17 Ref.18 Ref.19 Ref.20 Ref.21 Ref.23 Ref.24 Ref.25 Ref.26 Ref.27

Subunit structure

Binds DNA as a monomer or a homodimer. Interacts with NR2E3 and ZNHIT1. Interacts with C1D and SP1. Interacts with OPHN1 (via C-terminus). Interacts with PER2; the interaction associates PER2 to ARNTL promoter region. Interacts with CRY1. Ref.7 Ref.14 Ref.15 Ref.16 Ref.20

Subcellular location

Nucleus. Cytoplasm. Cell projectiondendrite. Cell projectiondendritic spine. Note: Localizes to the cytoplasm, dendrites and dendritic spine in the presence of OPHN1. Ref.15

Tissue specificity

Expressed during adipocyte differentiation (at protein level). Expressed in skeletal muscle, bladder, lumbar spinal cord, pancreatic islets and hypothalamus. Expressed in developing and adult retina. In the adult retina, predominantly expressed in the outer nuclear layer, where rod and cone cells reside, and also localized to the ganglion cell layer. Ref.10 Ref.11 Ref.15 Ref.17 Ref.18 Ref.22 Ref.28

Developmental stage

During development at embryonic day E18.5, expressed in the outer neuroblastic layer of the retina where developing postmitotic photoreceptors and retinal progenitors reside (at protein level). Ref.17

Induction

Expression oscillates diurnally in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as in peripheral tissues. In bladder smooth muscle cells, pancreas and lumbar spinal cord, exhibits night/day variations with a peak time at circadian time (CT) 4-12 and a trough at CT16-24. Ref.8 Ref.20 Ref.22 Ref.28

Domain

Composed of three domains: a modulating N-terminal domain, a DNA-binding domain and a C-terminal ligand-binding domain.

Post-translational modification

Ubiquitinated, leading to its proteasomal degradation. Ref.10 Ref.15

Disruption phenotype

Mice display increased cold tolerance, higher oxygen consumption rates, enhanced brown adipose tissue metabolic capacity, maintenance of higher body temperature throughout the light phase and increased glucose uptake only during the day. They also show retinal abnormalities such as pan-retinal spotting and decreased response to light and decreased bile acid accumulation. Double knockout for NR1D1 and PER2 show a significantly shorter period length compared with wild type or single knockouts for both genes. 50% of double knockouts animals show a stable circadian throughout at least 5 weeks in constant darckness. The other 50% of animals lose their circadian rhythmicity when held in constant darkness for an average of 21 days. Animals have blunted steady-state levels of glycogen in the liver in spite of normal patterns of food consumption. Ref.14 Ref.17 Ref.25

Sequence similarities

Belongs to the nuclear hormone receptor family. NR1 subfamily.

Contains 1 nuclear receptor DNA-binding domain.

Ontologies

Keywords
   Biological processBiological rhythms
Differentiation
Transcription
Transcription regulation
   Cellular componentCell projection
Cytoplasm
Nucleus
   DomainZinc-finger
   LigandDNA-binding
Heme
Iron
Metal-binding
Zinc
   Molecular functionActivator
Receptor
Repressor
   PTMAcetylation
Phosphoprotein
Ubl conjugation
   Technical termComplete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processcell differentiation

Inferred from electronic annotation. Source: UniProtKB-KW

cellular response to lipopolysaccharide

Inferred from electronic annotation. Source: Ensembl

circadian regulation of gene expression

Inferred from mutant phenotype Ref.14. Source: UniProtKB

circadian rhythm

Inferred from expression pattern Ref.8. Source: UniProtKB

circadian temperature homeostasis

Inferred from mutant phenotype Ref.25. Source: UniProtKB

glycogen biosynthetic process

Inferred from mutant phenotype Ref.14. Source: UniProtKB

negative regulation of receptor biosynthetic process

Inferred from electronic annotation. Source: Ensembl

negative regulation of toll-like receptor 4 signaling pathway

Inferred from electronic annotation. Source: Ensembl

negative regulation of transcription from RNA polymerase II promoter

Inferred from electronic annotation. Source: Ensembl

negative regulation of transcription, DNA-templated

Inferred from direct assay Ref.15. Source: UniProtKB

positive regulation of bile acid biosynthetic process

Inferred from mutant phenotype Ref.9Ref.13. Source: UniProtKB

positive regulation of transcription, DNA-templated

Inferred from mutant phenotype Ref.9. Source: UniProtKB

proteasomal protein catabolic process

Inferred from direct assay Ref.10Ref.15. Source: UniProtKB

regulation of cholesterol homeostasis

Inferred from mutant phenotype Ref.13. Source: UniProtKB

regulation of circadian rhythm

Inferred from mutant phenotype Ref.13Ref.14. Source: UniProtKB

regulation of fat cell differentiation

Inferred from mutant phenotype Ref.10. Source: UniProtKB

regulation of gluconeogenesis by regulation of transcription from RNA polymerase II promoter

Inferred from sequence or structural similarity. Source: UniProtKB

regulation of insulin secretion involved in cellular response to glucose stimulus

Inferred from mutant phenotype Ref.18. Source: UniProtKB

regulation of lipid metabolic process

Inferred from mutant phenotype Ref.13Ref.18. Source: UniProtKB

regulation of transcription, DNA-templated

Inferred from direct assay PubMed 7838158. Source: MGI

regulation of type B pancreatic cell proliferation

Inferred from mutant phenotype Ref.18. Source: UniProtKB

response to leptin

Inferred from direct assay Ref.18. Source: UniProtKB

transcription, DNA-templated

Inferred from electronic annotation. Source: UniProtKB-KW

   Cellular_componentcytoplasm

Inferred from direct assay Ref.15. Source: UniProtKB

dendrite

Inferred from direct assay Ref.15. Source: UniProtKB

dendritic spine

Inferred from direct assay Ref.15. Source: UniProtKB

nuclear chromatin

Inferred from electronic annotation. Source: Ensembl

nucleoplasm

Traceable author statement. Source: Reactome

nucleus

Inferred from direct assay Ref.15. Source: UniProtKB

   Molecular_functionDNA binding

Inferred from direct assay PubMed 7838158. Source: MGI

core promoter sequence-specific DNA binding

Inferred from direct assay Ref.9. Source: UniProtKB

heme binding

Inferred from electronic annotation. Source: Ensembl

protein binding

Inferred from physical interaction Ref.14Ref.15. Source: UniProtKB

sequence-specific DNA binding transcription factor activity

Inferred from direct assay PubMed 12150932PubMed 7838158. Source: MGI

steroid hormone receptor activity

Inferred from electronic annotation. Source: InterPro

transcription corepressor binding

Inferred from sequence or structural similarity. Source: UniProtKB

zinc ion binding

Inferred from electronic annotation. Source: InterPro

Complete GO annotation...

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 615615Nuclear receptor subfamily 1 group D member 1
PRO_0000311182

Regions

DNA binding130 – 20677Nuclear receptor
Zinc finger133 – 15321NR C4-type
Zinc finger170 – 19425NR C4-type
Region1 – 129129Modulating
Region49 – 285237Crucial for activation of GJA1
Region207 – 28579Hinge
Region286 – 615330Ligand-binding
Compositional bias79 – 9416Poly-Ser

Sites

Binding site4191Heme By similarity
Binding site6031Heme By similarity

Amino acid modifications

Modified residue551Phosphoserine; by GSK3-beta By similarity
Modified residue591Phosphoserine; by GSK3-beta By similarity
Modified residue1921N6-acetyllysine; by KAT5 By similarity
Modified residue1931N6-acetyllysine; by KAT5 By similarity

Experimental info

Mutagenesis4561K → A: Reduces interaction with PER2 by 60%. Ref.14
Sequence conflict361S → R in CAA59997. Ref.5
Sequence conflict401S → R in CAA59997. Ref.5
Sequence conflict841A → T in BAE27164. Ref.1
Sequence conflict841A → T in AAH08989. Ref.3
Sequence conflict4401F → L in BAE27164. Ref.1

Sequences

Sequence LengthMass (Da)Tools
Q3UV55 [UniParc].

Last modified October 11, 2005. Version 1.
Checksum: FFEC491B616BB326

FASTA61566,802
        10         20         30         40         50         60 
MTTLDSNNNT GGVITYIGSS GSSPSRTSPE SLYSDSSNGS FQSLTQGCPT YFPPSPTGSL 

        70         80         90        100        110        120 
TQDPARSFGS APPSLSDDSS PSSASSSSSS SSSSFYNGSP PGSLQVAMED SSRVSPSKGT 

       130        140        150        160        170        180 
SNITKLNGMV LLCKVCGDVA SGFHYGVHAC EGCKGFFRRS IQQNIQYKRC LKNENCSIVR 

       190        200        210        220        230        240 
INRNRCQQCR FKKCLSVGMS RDAVRFGRIP KREKQRMLAE MQSAMNLANN QLSSLCPLET 

       250        260        270        280        290        300 
SPTPHPTSGS MGPSPPPAPA PTPLVGFSQF PQQLTPPRSP SPEPTMEDVI SQVARAHREI 

       310        320        330        340        350        360 
FTYAHDKLGT SPGNFNANHA SGSPSATTPH RWESQGCPSA PNDNNLLAAQ RHNEALNGLR 

       370        380        390        400        410        420 
QGPSSYPPTW PSGPTHHSCH QPNSNGHRLC PTHVYSAPEG EAPANSLRQG NTKNVLLACP 

       430        440        450        460        470        480 
MNMYPHGRSG RTVQEIWEDF SMSFTPAVRE VVEFAKHIPG FRDLSQHDQV TLLKAGTFEV 

       490        500        510        520        530        540 
LMVRFASLFN VKDQTVMFLS RTTYSLQELG AMGMGDLLNA MFDFSEKLNS LALTEEELGL 

       550        560        570        580        590        600 
FTAVVLVSAD RSGMENSASV EQLQETLLRA LRALVLKNRP SETSRFTKLL LKLPDLRTLN 

       610 
NMHSEKLLSF RVDAQ 

« Hide

References

« Hide 'large scale' references
[1]"The transcriptional landscape of the mammalian genome."
Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J. expand/collapse author list , Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N., Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.
Science 309:1559-1563(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Strain: C57BL/6J, DBA/2 and NOD.
Tissue: Bone and Cerebellum.
[2]"Lineage-specific biology revealed by a finished genome assembly of the mouse."
Church D.M., Goodstadt L., Hillier L.W., Zody M.C., Goldstein S., She X., Bult C.J., Agarwala R., Cherry J.L., DiCuccio M., Hlavina W., Kapustin Y., Meric P., Maglott D., Birtle Z., Marques A.C., Graves T., Zhou S. expand/collapse author list , Teague B., Potamousis K., Churas C., Place M., Herschleb J., Runnheim R., Forrest D., Amos-Landgraf J., Schwartz D.C., Cheng Z., Lindblad-Toh K., Eichler E.E., Ponting C.P.
PLoS Biol. 7:E1000112-E1000112(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: C57BL/6J.
[3]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Strain: FVB/N.
Tissue: Mammary tumor.
[4]Sadek M.M., Chen Y., Elbrecht A.
Submitted (AUG-2000) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 1-186.
Strain: BALB/c.
Tissue: Liver.
[5]Chomez P., Vennstrom B.
Submitted (APR-1995) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 1-55.
Strain: BALB/c.
Tissue: Skeletal muscle.
[6]"The orphan receptor Rev-erbalpha gene is a target of the circadian clock pacemaker."
Triqueneaux G., Thenot S., Kakizawa T., Antoch M.P., Safi R., Takahashi J.S., Delaunay F., Laudet V.
J. Mol. Endocrinol. 33:585-608(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-40.
Strain: C57BL/6N.
[7]"Cloning and characterization of a corepressor and potential component of the nuclear hormone receptor repression complex."
Zamir I., Dawson J., Lavinsky R.M., Glass C.K., Rosenfeld M.G., Lazar M.A.
Proc. Natl. Acad. Sci. U.S.A. 94:14400-14405(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH C1D.
[8]"Histone acetyltransferase-dependent chromatin remodeling and the vascular clock."
Curtis A.M., Seo S.B., Westgate E.J., Rudic R.D., Smyth E.M., Chakravarti D., FitzGerald G.A., McNamara P.
J. Biol. Chem. 279:7091-7097(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: INDUCTION.
[9]"Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha."
Duez H., van der Veen J.N., Duhem C., Pourcet B., Touvier T., Fontaine C., Derudas B., Bauge E., Havinga R., Bloks V.W., Wolters H., van der Sluijs F.H., Vennstrom B., Kuipers F., Staels B.
Gastroenterology 135:689-698(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[10]"Bifunctional role of Rev-erbalpha in adipocyte differentiation."
Wang J., Lazar M.A.
Mol. Cell. Biol. 28:2213-2220(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, TISSUE SPECIFICITY, PROTEASOMAL DEGRADATION.
[11]"Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms."
Liu A.C., Tran H.G., Zhang E.E., Priest A.A., Welsh D.K., Kay S.A.
PLoS Genet. 4:E1000023-E1000023(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, TISSUE SPECIFICITY.
[12]"Negative feedback maintenance of heme homeostasis by its receptor, Rev-erbalpha."
Wu N., Yin L., Hanniman E.A., Joshi S., Lazar M.A.
Genes Dev. 23:2201-2209(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[13]"REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis."
Le Martelot G., Claudel T., Gatfield D., Schaad O., Kornmann B., Lo Sasso G., Moschetta A., Schibler U.
PLoS Biol. 7:E1000181-E1000181(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[14]"The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors."
Schmutz I., Ripperger J.A., Baeriswyl-Aebischer S., Albrecht U.
Genes Dev. 24:345-357(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN CIRCADIAN RHYTHMS, INTERACTION WITH PER2, DISRUPTION PHENOTYPE, MUTAGENESIS OF LYS-456.
[15]"A circadian clock in hippocampus is regulated by interaction between oligophrenin-1 and Rev-erbalpha."
Valnegri P., Khelfaoui M., Dorseuil O., Bassani S., Lagneaux C., Gianfelice A., Benfante R., Chelly J., Billuart P., Sala C., Passafaro M.
Nat. Neurosci. 14:1293-1301(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, INTERACTION WITH OPHN1, PROTEASOMAL DEGRADATION, TISSUE SPECIFICITY.
[16]"Cryptochromes mediate rhythmic repression of the glucocorticoid receptor."
Lamia K.A., Papp S.J., Yu R.T., Barish G.D., Uhlenhaut N.H., Jonker J.W., Downes M., Evans R.M.
Nature 480:552-556(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH PER2.
[17]"Nuclear receptor Rev-erb alpha (Nr1d1) functions in concert with Nr2e3 to regulate transcriptional networks in the retina."
Mollema N.J., Yuan Y., Jelcick A.S., Sachs A.J., von Alpen D., Schorderet D., Escher P., Haider N.B.
PLoS ONE 6:E17494-E17494(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, TISSUE SPECIFICITY, DEVELOPMENTAL STAGE, DISRUPTION PHENOTYPE.
[18]"The clock gene Rev-erbalpha regulates pancreatic beta-cell function: modulation by leptin and high-fat diet."
Vieira E., Marroqui L., Batista T.M., Caballero-Garrido E., Carneiro E.M., Boschero A.C., Nadal A., Quesada I.
Endocrinology 153:592-601(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, TISSUE SPECIFICITY.
[19]"Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function."
Bugge A., Feng D., Everett L.J., Briggs E.R., Mullican S.E., Wang F., Jager J., Lazar M.A.
Genes Dev. 26:657-667(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[20]"Involvement of urinary bladder Connexin43 and the circadian clock in coordination of diurnal micturition rhythm."
Negoro H., Kanematsu A., Doi M., Suadicani S.O., Matsuo M., Imamura M., Okinami T., Nishikawa N., Oura T., Matsui S., Seo K., Tainaka M., Urabe S., Kiyokage E., Todo T., Okamura H., Tabata Y., Ogawa O.
Nat. Commun. 3:809-809(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH SP1, INDUCTION.
[21]"The nuclear receptor REV-ERBalpha mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines."
Gibbs J.E., Blaikley J., Beesley S., Matthews L., Simpson K.D., Boyce S.H., Farrow S.N., Else K.J., Singh D., Ray D.W., Loudon A.S.
Proc. Natl. Acad. Sci. U.S.A. 109:582-587(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[22]"High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice."
Barclay J.L., Shostak A., Leliavski A., Tsang A.H., Johren O., Muller-Fielitz H., Landgraf D., Naujokat N., van der Horst G.T., Oster H.
Am. J. Physiol. 304:E1053-E1063(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: TISSUE SPECIFICITY, INDUCTION.
[23]"Role of Rev-erbalpha domains for transactivation of the connexin43 promoter with Sp1."
Negoro H., Okinami T., Kanematsu A., Imamura M., Tabata Y., Ogawa O.
FEBS Lett. 587:98-103(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[24]"Rev-erb-alpha modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy."
Woldt E., Sebti Y., Solt L.A., Duhem C., Lancel S., Eeckhoute J., Hesselink M.K., Paquet C., Delhaye S., Shin Y., Kamenecka T.M., Schaart G., Lefebvre P., Neviere R., Burris T.P., Schrauwen P., Staels B., Duez H.
Nat. Med. 19:1039-1046(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[25]"The nuclear receptor Rev-erbalpha controls circadian thermogenic plasticity."
Gerhart-Hines Z., Feng D., Emmett M.J., Everett L.J., Loro E., Briggs E.R., Bugge A., Hou C., Ferrara C., Seale P., Pryma D.A., Khurana T.S., Lazar M.A.
Nature 503:410-413(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, DISRUPTION PHENOTYPE.
[26]"Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription."
Lam M.T., Cho H., Lesch H.P., Gosselin D., Heinz S., Tanaka-Oishi Y., Benner C., Kaikkonen M.U., Kim A.S., Kosaka M., Lee C.Y., Watt A., Grossman T.R., Rosenfeld M.G., Evans R.M., Glass C.K.
Nature 498:511-515(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[27]"Involvement of the clock gene Rev-erb alpha in the regulation of glucagon secretion in pancreatic alpha-cells."
Vieira E., Marroqui L., Figueroa A.L., Merino B., Fernandez-Ruiz R., Nadal A., Burris T.P., Gomis R., Quesada I.
PLoS ONE 8:E69939-E69939(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[28]"Presence of multiple peripheral circadian oscillators in the tissues controlling voiding function in mice."
Noh J.Y., Han D.H., Kim M.H., Ko I.G., Kim S.E., Park N., Kyoung Choe H., Kim K.H., Kim K., Kim C.J., Cho S.
Exp. Mol. Med. 46:E81-E81(2014) [PubMed] [Europe PMC] [Abstract]
Cited for: INDUCTION, TISSUE SPECIFICITY.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
AK137398 mRNA. Translation: BAE23342.1.
AK137582 mRNA. Translation: BAE23418.1.
AK146430 mRNA. Translation: BAE27164.1.
AK154931 mRNA. Translation: BAE32932.1.
AK155597 mRNA. Translation: BAE33339.1.
AL590963 Genomic DNA. Translation: CAM46187.1.
BC008989 mRNA. Translation: AAH08989.1.
AF291821 mRNA. Translation: AAG01345.1.
X86010 mRNA. Translation: CAA59997.1.
AY336125 Genomic DNA. Translation: AAS48348.1.
CCDSCCDS25363.1.
PIRS52813.
RefSeqNP_663409.2. NM_145434.4.
UniGeneMm.390397.

3D structure databases

ProteinModelPortalQ3UV55.
SMRQ3UV55. Positions 128-614.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid229856. 1 interaction.
DIPDIP-59440N.

PTM databases

PhosphoSiteQ3UV55.

Proteomic databases

PaxDbQ3UV55.
PRIDEQ3UV55.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENSMUST00000064941; ENSMUSP00000069505; ENSMUSG00000020889.
GeneID217166.
KEGGmmu:217166.
UCSCuc007lhh.1. mouse.

Organism-specific databases

CTD9572.
MGIMGI:2444210. Nr1d1.

Phylogenomic databases

eggNOGNOG324222.
GeneTreeENSGT00740000114909.
HOGENOMHOG000261691.
HOVERGENHBG106790.
InParanoidQ3UV55.
KOK03728.
OMAGTSPGNF.
OrthoDBEOG776SQ0.
PhylomeDBQ3UV55.
TreeFamTF328382.

Enzyme and pathway databases

ReactomeREACT_200794. Mus musculus biological processes.

Gene expression databases

BgeeQ3UV55.
CleanExMM_NR1D1.
GenevestigatorQ3UV55.

Family and domain databases

Gene3D1.10.565.10. 2 hits.
3.30.50.10. 1 hit.
InterProIPR008946. Nucl_hormone_rcpt_ligand-bd.
IPR000536. Nucl_hrmn_rcpt_lig-bd_core.
IPR001723. Str_hrmn_rcpt.
IPR001628. Znf_hrmn_rcpt.
IPR013088. Znf_NHR/GATA.
[Graphical view]
PfamPF00104. Hormone_recep. 1 hit.
PF00105. zf-C4. 1 hit.
[Graphical view]
PRINTSPR00398. STRDHORMONER.
PR00047. STROIDFINGER.
SMARTSM00430. HOLI. 1 hit.
SM00399. ZnF_C4. 1 hit.
[Graphical view]
SUPFAMSSF48508. SSF48508. 1 hit.
PROSITEPS00031. NUCLEAR_REC_DBD_1. 1 hit.
PS51030. NUCLEAR_REC_DBD_2. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

NextBio375617.
PROQ3UV55.
SOURCESearch...

Entry information

Entry nameNR1D1_MOUSE
AccessionPrimary (citable) accession number: Q3UV55
Secondary accession number(s): Q3UJJ1 expand/collapse secondary AC list , Q62171, Q6EEZ6, Q922A5, Q9ESY4
Entry history
Integrated into UniProtKB/Swiss-Prot: November 13, 2007
Last sequence update: October 11, 2005
Last modified: July 9, 2014
This is version 93 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Relevant documents

SIMILARITY comments

Index of protein domains and families

MGD cross-references

Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot