Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Pyranose dehydrogenase 1

Gene

pdh1

Organism
Leucoagaricus meleagris (Western flat-topped agaric) (Agaricus meleagris)
Status
Reviewed-Annotation score: Annotation score: 5 out of 5-Experimental evidence at protein leveli

Functioni

Catalyzes the single-oxidation or sequential double oxidation reaction of carbohydrates primarily at carbon-2 and/or carbon-3 with the concomitant reduction of the flavin. The enzyme exhibits a broad sugar substrate specificity, oxidizing different aldopyranoses to the corresponding C-1, C-2, C-3 or C-1,2, C-2,3 and C-3,4 (di)dehydro sugars with substrate-specific regioselectivity. Accepts only a narrow range of electron acceptors such as substituted benzoquinones and complexed metal ions and reacts extremely slowly with O2 as acceptor. May play a role in the natural recycling of plant matter by oxidizing all major monosaccharides in lignocellulose and by reducing quinone compounds or reactive radical species generated during lignin depolymerization.3 Publications

Catalytic activityi

Pyranose + acceptor = pyranos-2-ulose + reduced acceptor.3 Publications
Pyranose + acceptor = pyranos-3-ulose + reduced acceptor.3 Publications
Pyranose + acceptor = pyranos-2,3-diulose + reduced acceptor.3 Publications
A pyranoside + acceptor = a pyranosid-3-ulose + reduced acceptor.3 Publications
A pyranoside + acceptor = a pyranosid-3,4-diulose + reduced acceptor.3 Publications

Cofactori

FAD2 PublicationsNote: Binds 1 FAD covalently per subunit.2 Publications

Kineticsi

  1. KM=0.82 mM for D-glucose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  2. KM=6.82 mM for cellobiose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  3. KM=8.61 mM for D-maltose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  4. KM=156 mM for maltotriose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  5. KM=108 mM for D-mannose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  6. KM=1.05 mM for D-galactose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  7. KM=137 mM for L-sorbose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  8. KM=59.7 mM for D-ribose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  9. KM=79.1 mM for D-talose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  10. KM=1.93 mM for D-xylose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  11. KM=0.54 mM for L-arabinose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  12. KM=10.8 mM for xylobiose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  13. KM=153 mM for D-fructose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  14. KM=134 mM for lactose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  15. KM=0.13 mM for ferricenium (at pH 8.5 with D-glucose as substrate)1 Publication
  16. KM=1.82 mM for 1,4-benzoquinone (at pH 3.0 with D-glucose as substrate)1 Publication
  17. KM=0.55 mM for 2-chloro-1,4-benzoquinone (at pH 5.0 with D-glucose as substrate)1 Publication
  18. KM=0.92 mM for 2,5-dichloro-1,4-benzoquinone (at pH 5.0 with D-glucose as substrate)1 Publication
  19. KM=0.18 mM for methyl-1,4-benzoquinone (at pH 8.0 with D-glucose as substrate)1 Publication
  20. KM=0.22 mM for 3,5-di-tert-butyl-benzoquinone (at pH 6.0 with D-glucose as substrate)1 Publication
  21. KM=0.14 mM for 2,6-dichloroindophenol (at pH 4.0 with D-glucose as substrate)1 Publication
  1. Vmax=41.4 µmol/min/mg enzyme for D-glucose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  2. Vmax=34.5 µmol/min/mg enzyme for cellobiose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  3. Vmax=38.9 µmol/min/mg enzyme for D-maltose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  4. Vmax=21.3 µmol/min/mg enzyme for maltotriose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  5. Vmax=26.4 µmol/min/mg enzyme for D-mannose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  6. Vmax=43.7 µmol/min/mg enzyme for D-galactose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  7. Vmax=14.1 µmol/min/mg enzyme for L-sorbose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  8. Vmax=28.2 µmol/min/mg enzyme for D-ribose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  9. Vmax=19.2 µmol/min/mg enzyme for D-talose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  10. Vmax=39.1 µmol/min/mg enzyme for D-xylose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  11. Vmax=33.5 µmol/min/mg enzyme for L-arabinose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  12. Vmax=45.4 µmol/min/mg enzyme for xylobiose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  13. Vmax=14.9 µmol/min/mg enzyme for D-fructose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  14. Vmax=35.6 µmol/min/mg enzyme for lactose (with ferricenium ion (Fc+) as electron acceptor)1 Publication
  15. Vmax=93.9 µmol/min/mg enzyme for ferricenium (at pH 8.5 with D-glucose as substrate)1 Publication
  16. Vmax=68.5 µmol/min/mg enzyme for 1,4-benzoquinone (at pH 3.0 with D-glucose as substrate)1 Publication
  17. Vmax=13.6 µmol/min/mg enzyme for 2-chloro-1,4-benzoquinone (at pH 5.0 with D-glucose as substrate)1 Publication
  18. Vmax=2.78 µmol/min/mg enzyme for 2,5-dichloro-1,4-benzoquinone (at pH 5.0 with D-glucose as substrate)1 Publication
  19. Vmax=2.7 µmol/min/mg enzyme for methyl-1,4-benzoquinone (at pH 8.0 with D-glucose as substrate)1 Publication
  20. Vmax=95.6 µmol/min/mg enzyme for 3,5-di-tert-butyl-benzoquinone (at pH 6.0 with D-glucose as substrate)1 Publication
  21. Vmax=56.3 µmol/min/mg enzyme for 2,6-dichloroindophenol (at pH 4.0 with D-glucose as substrate)1 Publication

pH dependencei

Optimum pH is 9 with ferricenium ion (Fc+) as electron acceptor. The enzyme is stable from pH 4 to pH 10.1 Publication

Temperature dependencei

Optimum temperature is 63 degrees Celsius with ferricenium ion (Fc+) as electron acceptor.1 Publication

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Active sitei537Proton acceptor1 Publication1
Active sitei5811 Publication1

GO - Molecular functioni

GO - Biological processi

Complete GO annotation...

Keywords - Molecular functioni

Oxidoreductase

Keywords - Biological processi

Carbohydrate metabolism

Keywords - Ligandi

FAD, Flavoprotein

Enzyme and pathway databases

BRENDAi1.1.99.29. 7355.

Protein family/group databases

CAZyiAA3. Auxiliary Activities 3.

Names & Taxonomyi

Protein namesi
Recommended name:
Pyranose dehydrogenase 11 Publication (EC:1.1.99.293 Publications)
Short name:
PDH 11 Publication
Alternative name(s):
Pyranose:quinone oxidoreductase 11 Publication
Gene namesi
Name:pdh11 Publication
OrganismiLeucoagaricus meleagris (Western flat-topped agaric) (Agaricus meleagris)
Taxonomic identifieri201219 [NCBI]
Taxonomic lineageiEukaryotaFungiDikaryaBasidiomycotaAgaricomycotinaAgaricomycetesAgaricomycetidaeAgaricalesAgaricaceaeLeucoagaricus

Subcellular locationi

GO - Cellular componenti

Complete GO annotation...

Keywords - Cellular componenti

Secreted

PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Signal peptidei1 – 251 PublicationAdd BLAST25
ChainiPRO_000043128726 – 602Pyranose dehydrogenase 1Add BLAST577

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Glycosylationi100N-linked (GlcNAc...)1 Publication1
Modified residuei128Tele-8alpha-FAD histidine1 Publication1
Glycosylationi200N-linked (GlcNAc...)PROSITE-ProRule annotation1
Glycosylationi277N-linked (GlcNAc...)PROSITE-ProRule annotation1
Glycosylationi344N-linked (GlcNAc...)1 Publication1

Post-translational modificationi

N-glycosylated.1 Publication

Keywords - PTMi

Glycoprotein

Expressioni

Inductioni

Induced by carbon starvation.1 Publication

Interactioni

Subunit structurei

Monomer.1 Publication

Structurei

Secondary structure

1602
Legend: HelixTurnBeta strandPDB Structure known for this area
Show more details
Feature keyPosition(s)DescriptionActionsGraphical viewLength
Beta strandi27 – 31Combined sources5
Helixi32 – 34Combined sources3
Beta strandi42 – 46Combined sources5
Helixi50 – 59Combined sources10
Beta strandi67 – 70Combined sources4
Helixi80 – 83Combined sources4
Helixi85 – 90Combined sources6
Turni107 – 111Combined sources5
Helixi124 – 127Combined sources4
Helixi138 – 148Combined sources11
Helixi151 – 153Combined sources3
Helixi155 – 165Combined sources11
Beta strandi166 – 168Combined sources3
Helixi183 – 185Combined sources3
Beta strandi188 – 195Combined sources8
Helixi202 – 213Combined sources12
Turni215 – 217Combined sources3
Beta strandi231 – 234Combined sources4
Beta strandi237 – 239Combined sources3
Helixi248 – 251Combined sources4
Turni252 – 255Combined sources4
Beta strandi260 – 263Combined sources4
Beta strandi267 – 272Combined sources6
Beta strandi274 – 280Combined sources7
Beta strandi283 – 289Combined sources7
Beta strandi295 – 298Combined sources4
Beta strandi300 – 305Combined sources6
Helixi308 – 318Combined sources11
Helixi324 – 329Combined sources6
Beta strandi335 – 337Combined sources3
Turni339 – 342Combined sources4
Beta strandi343 – 346Combined sources4
Beta strandi349 – 357Combined sources9
Helixi366 – 376Combined sources11
Helixi380 – 382Combined sources3
Beta strandi389 – 393Combined sources5
Helixi397 – 399Combined sources3
Beta strandi401 – 403Combined sources3
Beta strandi406 – 408Combined sources3
Beta strandi413 – 424Combined sources12
Helixi439 – 441Combined sources3
Beta strandi443 – 453Combined sources11
Beta strandi459 – 462Combined sources4
Beta strandi464 – 466Combined sources3
Beta strandi473 – 475Combined sources3
Helixi482 – 499Combined sources18
Helixi502 – 504Combined sources3
Turni505 – 507Combined sources3
Beta strandi508 – 513Combined sources6
Turni514 – 517Combined sources4
Helixi521 – 531Combined sources11
Beta strandi558 – 560Combined sources3
Beta strandi564 – 568Combined sources5
Helixi571 – 573Combined sources3
Beta strandi574 – 576Combined sources3
Helixi583 – 600Combined sources18

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
4H7UX-ray1.60A1-602[»]
ProteinModelPortaliQ3L245.
SMRiQ3L245.
ModBaseiSearch...
MobiDBiSearch...

Family & Domainsi

Sequence similaritiesi

Belongs to the GMC oxidoreductase family.Curated

Keywords - Domaini

Signal

Family and domain databases

Gene3Di3.50.50.60. 3 hits.
InterProiIPR023753. FAD/NAD-binding_dom.
IPR012132. GMC_OxRdtase.
IPR000172. GMC_OxRdtase_N.
IPR007867. GMC_OxRtase_C.
[Graphical view]
PfamiPF05199. GMC_oxred_C. 1 hit.
PF00732. GMC_oxred_N. 1 hit.
[Graphical view]
PIRSFiPIRSF000137. Alcohol_oxidase. 1 hit.
SUPFAMiSSF51905. SSF51905. 2 hits.

Sequencei

Sequence statusi: Complete.

Sequence processingi: The displayed sequence is further processed into a mature form.

Q3L245-1 [UniParc]FASTAAdd to basket

« Hide

        10         20         30         40         50
MLPRVTKLNS RLLSLALLGI QIARGAITYQ HPDDLPSGVD YDFIVAGGGT
60 70 80 90 100
AGLVVASRLS ENSNWKVLVI EAGPSNKDAF VTRVPGLAST LGAGSPIDWN
110 120 130 140 150
YTTIPQDGLD GRSLDYPRAK ILGGCSTHNG MVYTRGSKDD WNSWAGIIGD
160 170 180 190 200
QGLGWDSILP AIKKAEKFTQ DFTDQSVKGH IDPSVHGFDG KLSVSAAYSN
210 220 230 240 250
ISFNDLLFET TKELNAEFPF KLDMNDGKPI GLGWTQYTID NHAERSSSAT
260 270 280 290 300
SYLESTGDNV HVLVNTLVTR VLSASGNGTD FRKVEFAVDA NSPKKQLEAK
310 320 330 340 350
KEVIVAGGVI ASPQILMNSG IGERKVLQAV GIDTLIDNPS VGKNLSDQGA
360 370 380 390 400
TSVMFDTTLP STDFDVDAAL TEWTNSHTGP LARGARLNHL TFVRLPDDKL
410 420 430 440 450
NGQDPSSGKN SPHIEFQFAQ ITPQVPTLGV PKQAPLPAAN SYRLLLQLAV
460 470 480 490 500
VNLYSISRGS ISLSDNNPFT YPLIDLNMFK EDIDIAILRE GIRSAGRMFS
510 520 530 540 550
SKAFKNSVNK FVYPPADATS DEDLDAFLRS STFSYVHGVG TLSMSPKGAS
560 570 580 590 600
WGVVNPDFKV KGTSGLRVVD ASVIPHAPAA HTQLPVYAFA EYASALIAKS

YN
Length:602
Mass (Da):64,684
Last modified:November 8, 2005 - v1
Checksum:iEC7A73CABCA75DBE
GO

Mass spectrometryi

Molecular mass is 66547 Da from positions 26 - 602. Determined by MALDI. Mass of the N-glycosylated protein.1 Publication

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AY753306 Genomic DNA. Translation: AAW82996.1.
AY753307 mRNA. Translation: AAW82997.1.

Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AY753306 Genomic DNA. Translation: AAW82996.1.
AY753307 mRNA. Translation: AAW82997.1.

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
4H7UX-ray1.60A1-602[»]
ProteinModelPortaliQ3L245.
SMRiQ3L245.
ModBaseiSearch...
MobiDBiSearch...

Protein family/group databases

CAZyiAA3. Auxiliary Activities 3.

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Enzyme and pathway databases

BRENDAi1.1.99.29. 7355.

Family and domain databases

Gene3Di3.50.50.60. 3 hits.
InterProiIPR023753. FAD/NAD-binding_dom.
IPR012132. GMC_OxRdtase.
IPR000172. GMC_OxRdtase_N.
IPR007867. GMC_OxRtase_C.
[Graphical view]
PfamiPF05199. GMC_oxred_C. 1 hit.
PF00732. GMC_oxred_N. 1 hit.
[Graphical view]
PIRSFiPIRSF000137. Alcohol_oxidase. 1 hit.
SUPFAMiSSF51905. SSF51905. 2 hits.
ProtoNetiSearch...

Entry informationi

Entry nameiPDH1_LEUMG
AccessioniPrimary (citable) accession number: Q3L245
Entry historyi
Integrated into UniProtKB/Swiss-Prot: November 26, 2014
Last sequence update: November 8, 2005
Last modified: November 2, 2016
This is version 50 of the entry and version 1 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

Miscellaneousi

Keywords - Technical termi

3D-structure, Direct protein sequencing

Documents

  1. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  2. SIMILARITY comments
    Index of protein domains and families

Similar proteinsi

Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into one UniRef entry.
90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.