Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q16539 (MK14_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 176. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (7) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Alt products·Sequence annotation·Sequences·References·Web links·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Mitogen-activated protein kinase 14

Short name=MAP kinase 14
Short name=MAPK 14
EC=2.7.11.24
Alternative name(s):
Cytokine suppressive anti-inflammatory drug-binding protein
Short name=CSAID-binding protein
Short name=CSBP
MAP kinase MXI2
MAX-interacting protein 2
Mitogen-activated protein kinase p38 alpha
Short name=MAP kinase p38 alpha
Stress-activated protein kinase 2a
Short name=SAPK2a
Gene names
Name:MAPK14
Synonyms:CSBP, CSBP1, CSBP2, CSPB1, MXI2, SAPK2A
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length360 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3 STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. MAPK14 interacts also with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3. MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9. Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14-mediated phosphorylation of EGFR itself as well as of RAB5A effectors. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates CDC25B and CDC25C which is required for binding to 14-3-3 proteins and leads to initiation of a G2 delay after ultraviolet radiation. Phosphorylates TIAR following DNA damage, releasing TIAR from GADD45A mRNA and preventing mRNA degradation. The p38 MAPKs may also have kinase-independent roles, which are thought to be due to the binding to targets in the absence of phosphorylation. Protein O-Glc-N-acylation catalyzed by the OGT is regulated by MAPK14, and, although OGT does not seem to be phosphorylated by MAPK14, their interaction increases upon MAPK14 activation induced by glucose deprivation. This interaction may regulate OGT activity by recruiting it to specific targets such as neurofilament H, stimulating its O-Glc-N-acylation. Required in mid-fetal development for the growth of embryo-derived blood vessels in the labyrinth layer of the placenta. Also plays an essential role in developmental and stress-induced erythropoiesis, through regulation of EPO gene expression. Isoform MXI2activation is stimulated by mitogens and oxidative stress and only poorly phosphorylates ELK1 and ATF2. Isoform EXIPmay play a role in the early onset of apoptosis. Phosphorylates S100A9 at 'Thr-113'. Ref.18 Ref.19 Ref.20 Ref.22 Ref.23 Ref.24 Ref.25 Ref.26 Ref.30 Ref.31 Ref.34 Ref.39 Ref.40 Ref.42 Ref.49 Ref.50 Ref.51

Catalytic activity

ATP + a protein = ADP + a phosphoprotein.

Cofactor

Magnesium. Ref.25

Enzyme regulation

Activated by cell stresses such as DNA damage, heat shock, osmotic shock, anisomycin and sodium arsenite, as well as pro-inflammatory stimuli such as bacterial lipopolysaccharide (LPS) and interleukin-1. Activation occurs through dual phosphorylation of Thr-180 and Tyr-182 by either of two dual specificity kinases, MAP2K3/MKK3 or MAP2K6/MKK6, and potentially also MAP2K4/MKK4, as well as by TAB1-mediated autophosphorylation. MAPK14 phosphorylated on both Thr-180 and Tyr-182 is 10-20-fold more active than MAPK14 phosphorylated only on Thr-180, whereas MAPK14 phosphorylated on Tyr-182 alone is inactive. whereas Thr-180 is necessary for catalysis, Tyr-182 may be required for auto-activation and substrate recognition. Phosphorylated at Tyr-323 by ZAP70 in an alternative activation pathway in response to TCR signaling in T-cells. This alternative pathway is inhibited by GADD45A. Inhibited by dual specificity phosphatases, such as DUSP1, DUSP10, and DUSP16. Specifically inhibited by the binding of pyridinyl-imidazole compounds, which are cytokine-suppressive anti-inflammatory drugs (CSAID). Isoform Mxi2 is 100-fold less sensitive to these agents than the other isoforms and is not inhibited by DUSP1. Isoform Exip is not activated by MAP2K6. SB203580 is an inhibitor of MAPK14. Ref.5 Ref.15 Ref.17 Ref.19 Ref.21 Ref.25 Ref.28 Ref.29 Ref.32 Ref.36 Ref.37 Ref.40 Ref.61 Ref.62 Ref.63 Ref.65 Ref.67 Ref.68

Subunit structure

Binds to a kinase interaction motif within the protein tyrosine phosphatase, PTPRR By similarity. This interaction retains MAPK14 in the cytoplasm and prevents nuclear accumulation By similarity. Interacts with SPAG9 and GADD45A By similarity. Interacts with CDC25B, CDC25C, DUSP1, DUSP10, DUSP16, NP60, SUPT20H and TAB1. Interacts with casein kinase II subunits CSNK2A1 and CSNK2B. Ref.20 Ref.21 Ref.26 Ref.27 Ref.28 Ref.29 Ref.31 Ref.32 Ref.37 Ref.38 Ref.41 Ref.51

Subcellular location

Cytoplasm. Nucleus Ref.15 Ref.20 Ref.42.

Tissue specificity

Brain, heart, placenta, pancreas and skeletal muscle. Expressed to a lesser extent in lung, liver and kidney.

Domain

The TXY motif contains the threonine and tyrosine residues whose phosphorylation activates the MAP kinases.

Post-translational modification

Dually phosphorylated on Thr-180 and Tyr-182 by the MAP2Ks MAP2K3/MKK3, MAP2K4/MKK4 and MAP2K6/MKK6 in response to inflammatory citokines, environmental stress or growth factors, which activates the enzyme. Dual phosphorylation can also be mediated by TAB1-mediated autophosphorylation. TCR engagement in T-cells also leads to Tyr-323 phosphorylation by ZAP70. Dephosphorylated and inactivated by DUPS1, DUSP10 and DUSP16. Ref.15 Ref.17 Ref.27 Ref.32 Ref.36 Ref.37 Ref.42

Acetylated at Lys-53 and Lys-152 by KAT2B and EP300. Acetylation at Lys-53 increases the affinity for ATP and enhances kinase activity. Lys-53 and Lys-152 are deacetylated by HDAC3. Ref.54

Ubiquitinated. Ubiquitination leads to degradation by the proteasome pathway. Ref.42

Sequence similarities

Belongs to the protein kinase superfamily. CMGC Ser/Thr protein kinase family. MAP kinase subfamily.

Contains 1 protein kinase domain.

Ontologies

Keywords
   Biological processApoptosis
Stress response
Transcription
Transcription regulation
   Cellular componentCytoplasm
Nucleus
   Coding sequence diversityAlternative splicing
Polymorphism
   LigandATP-binding
Nucleotide-binding
   Molecular functionKinase
Serine/threonine-protein kinase
Transferase
   PTMAcetylation
Phosphoprotein
Ubl conjugation
   Technical term3D-structure
Complete proteome
Direct protein sequencing
Reference proteome
Gene Ontology (GO)
   Biological_process3'-UTR-mediated mRNA stabilization

Traceable author statement Ref.50. Source: UniProtKB

DNA damage checkpoint

Inferred from electronic annotation. Source: Ensembl

MyD88-dependent toll-like receptor signaling pathway

Traceable author statement. Source: Reactome

MyD88-independent toll-like receptor signaling pathway

Traceable author statement. Source: Reactome

RNA metabolic process

Traceable author statement. Source: Reactome

Ras protein signal transduction

Traceable author statement. Source: Reactome

TRIF-dependent toll-like receptor signaling pathway

Traceable author statement. Source: Reactome

activation of MAPK activity

Traceable author statement. Source: Reactome

angiogenesis

Inferred from electronic annotation. Source: Ensembl

apoptotic process

Inferred from electronic annotation. Source: UniProtKB-KW

blood coagulation

Traceable author statement. Source: Reactome

cartilage condensation

Inferred from electronic annotation. Source: Ensembl

cell morphogenesis

Inferred from electronic annotation. Source: Ensembl

cell surface receptor signaling pathway

Traceable author statement PubMed 10706854. Source: ProtInc

cellular component movement

Traceable author statement PubMed 10912793. Source: ProtInc

cellular response to ionizing radiation

Inferred from mutant phenotype PubMed 20160708. Source: BHF-UCL

cellular response to vascular endothelial growth factor stimulus

Inferred from mutant phenotype PubMed 18440775. Source: BHF-UCL

chemotaxis

Traceable author statement PubMed 10706854. Source: ProtInc

chondrocyte differentiation

Inferred from electronic annotation. Source: Ensembl

fatty acid oxidation

Inferred from electronic annotation. Source: Ensembl

gene expression

Traceable author statement. Source: Reactome

glucose metabolic process

Inferred from electronic annotation. Source: Ensembl

innate immune response

Traceable author statement. Source: Reactome

intracellular signal transduction

Inferred from direct assay Ref.25. Source: UniProtKB

lipopolysaccharide-mediated signaling pathway

Inferred from electronic annotation. Source: Ensembl

mRNA metabolic process

Traceable author statement. Source: Reactome

muscle cell differentiation

Traceable author statement. Source: Reactome

negative regulation of canonical Wnt signaling pathway

Inferred from electronic annotation. Source: Ensembl

neurotrophin TRK receptor signaling pathway

Traceable author statement. Source: Reactome

osteoclast differentiation

Inferred from sequence or structural similarity. Source: BHF-UCL

p38MAPK cascade

Inferred from sequence or structural similarity. Source: UniProtKB

peptidyl-serine phosphorylation

Inferred from sequence or structural similarity. Source: BHF-UCL

platelet activation

Traceable author statement. Source: Reactome

positive regulation of erythrocyte differentiation

Inferred from electronic annotation. Source: Ensembl

positive regulation of muscle cell differentiation

Traceable author statement. Source: Reactome

positive regulation of myoblast differentiation

Inferred from sequence or structural similarity. Source: UniProtKB

positive regulation of myoblast fusion

Inferred from sequence or structural similarity. Source: UniProtKB

positive regulation of myotube differentiation

Inferred from sequence or structural similarity. Source: UniProtKB

positive regulation of protein import into nucleus

Inferred from electronic annotation. Source: Ensembl

positive regulation of reactive oxygen species metabolic process

Inferred from mutant phenotype PubMed 20160708. Source: BHF-UCL

positive regulation of transcription from RNA polymerase II promoter

Inferred from electronic annotation. Source: Ensembl

regulation of sequence-specific DNA binding transcription factor activity

Traceable author statement. Source: Reactome

regulation of transcription from RNA polymerase II promoter

Inferred from sequence or structural similarity. Source: UniProtKB

response to muramyl dipeptide

Inferred from electronic annotation. Source: Ensembl

signal transduction

Traceable author statement PubMed 10706854. Source: ProtInc

signal transduction in response to DNA damage

Inferred from mutant phenotype PubMed 20160708. Source: BHF-UCL

skeletal muscle tissue development

Inferred from electronic annotation. Source: Ensembl

stress-activated MAPK cascade

Traceable author statement. Source: Reactome

stress-induced premature senescence

Inferred from mutant phenotype PubMed 20160708. Source: BHF-UCL

striated muscle cell differentiation

Inferred from electronic annotation. Source: Ensembl

toll-like receptor 10 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor 2 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor 3 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor 4 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor 5 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor 9 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor TLR1:TLR2 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor TLR6:TLR2 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor signaling pathway

Traceable author statement. Source: Reactome

transcription, DNA-templated

Inferred from electronic annotation. Source: UniProtKB-KW

transmembrane receptor protein serine/threonine kinase signaling pathway

Inferred from electronic annotation. Source: Ensembl

vascular endothelial growth factor receptor signaling pathway

Inferred from mutant phenotype PubMed 18440775. Source: BHF-UCL

   Cellular_componentcytoplasm

Inferred from sequence or structural similarity. Source: UniProtKB

cytosol

Traceable author statement. Source: Reactome

mitochondrion

Inferred from electronic annotation. Source: Ensembl

nucleoplasm

Traceable author statement. Source: Reactome

nucleus

Inferred from sequence or structural similarity. Source: UniProtKB

spindle pole

Inferred from electronic annotation. Source: Ensembl

   Molecular_functionATP binding

Inferred from electronic annotation. Source: UniProtKB-KW

MAP kinase activity

Inferred from direct assay Ref.23Ref.50Ref.1. Source: UniProtKB

MAP kinase kinase activity

Traceable author statement PubMed 10706854. Source: ProtInc

NFAT protein binding

Inferred from sequence or structural similarity. Source: BHF-UCL

protein serine/threonine kinase activity

Traceable author statement. Source: Reactome

Complete GO annotation...

Alternative products

This entry describes 4 isoforms produced by alternative splicing. [Align] [Select]
Isoform CSBP2 (identifier: Q16539-1)

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Isoform CSBP1 (identifier: Q16539-2)

The sequence of this isoform differs from the canonical sequence as follows:
     230-254: DQLKLILRLVGTPGAELLKKISSES → NQLQQIMRLTGTPPAYLINRMPSHE
Isoform Mxi2 (identifier: Q16539-3)

The sequence of this isoform differs from the canonical sequence as follows:
     281-360: AVDLLEKMLV...PPLDQEEMES → GKLTIYPHLMDIELVMI
Isoform Exip (identifier: Q16539-4)

Also known as: Exon skip;

The sequence of this isoform differs from the canonical sequence as follows:
     255-307: ARNYIQSLTQ...TAAQALAHAY → LSTCWRRCLY...ISPLKAGTSL
     308-360: Missing.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Initiator methionine11Removed Ref.13
Chain2 – 360359Mitogen-activated protein kinase 14
PRO_0000186291

Regions

Domain24 – 308285Protein kinase
Nucleotide binding30 – 389ATP
Region70 – 712Inhibitor-binding
Region106 – 1105Inhibitor-binding
Region168 – 1692Inhibitor-binding
Motif180 – 1823TXY

Sites

Active site1681Proton acceptor
Binding site351Inhibitor
Binding site531ATP
Binding site531Inhibitor
Binding site711Inhibitor
Binding site1091Inhibitor; via amide nitrogen and carbonyl oxygen
Binding site1541Inhibitor; via carbonyl oxygen
Binding site1681Inhibitor; via amide nitrogen and carbonyl oxygen
Binding site1971Inhibitor
Binding site2521Inhibitor; via amide nitrogen

Amino acid modifications

Modified residue21N-acetylserine Ref.52
Modified residue21Phosphoserine Ref.52
Modified residue161Phosphothreonine Ref.45
Modified residue531N6-acetyllysine Ref.54
Modified residue1521N6-acetyllysine Ref.54
Modified residue1801Phosphothreonine; by MAP2K3, MAP2K4, MAP2K6 and autocatalysis Ref.15 Ref.46 Ref.48 Ref.52
Modified residue1821Phosphotyrosine; by MAP2K3, MAP2K4, MAP2K6 and autocatalysis Ref.15 Ref.46 Ref.48 Ref.52
Modified residue2631Phosphothreonine Ref.43
Modified residue3231Phosphotyrosine; by ZAP70 Ref.36

Natural variations

Alternative sequence230 – 25425DQLKL…ISSES → NQLQQIMRLTGTPPAYLINR MPSHE in isoform CSBP1.
VSP_004842
Alternative sequence255 – 30753ARNYI…LAHAY → LSTCWRRCLYWTQIRELQRP KPLHMPTLLSTTILMMNQWP ILMISPLKAGTSL in isoform Exip.
VSP_004843
Alternative sequence281 – 36080AVDLL…EEMES → GKLTIYPHLMDIELVMI in isoform Mxi2.
VSP_004844
Alternative sequence308 – 36053Missing in isoform Exip.
VSP_004845
Natural variant511A → V in a gastric adenocarcinoma sample; somatic mutation. Ref.72
VAR_042270
Natural variant3221P → R in a lung adenocarcinoma sample; somatic mutation. Ref.72
VAR_042271
Natural variant3431D → G. Ref.72
Corresponds to variant rs45496794 [ dbSNP | Ensembl ].
VAR_042272

Experimental info

Mutagenesis341A → V: Lowered kinase activity. Ref.16
Mutagenesis531K → R: Loss of kinase activity. Ref.16
Mutagenesis541K → R: Impairs MAP2K6/MKK6-dependent autophosphorylation. Ref.27
Mutagenesis691Y → H: Lowered kinase activity. Ref.33
Mutagenesis1681D → A: Loss of kinase activity. Ref.16
Mutagenesis1751T → A: Loss of kinase activity. Ref.16
Mutagenesis1761D → A: Emulation of the active state. Increase in activity; when associated with S-327 or L-327. Ref.33
Mutagenesis1771D → A: Loss of kinase activity. Ref.33
Mutagenesis1801T → E: Loss of kinase activity. Ref.16
Mutagenesis1821Y → F: Loss of kinase activity. Ref.16
Mutagenesis3201A → T: Lowered kinase activity. Ref.33
Mutagenesis3271F → L: Emulation of the active state. Increase in activity; when associated with A-176. Ref.33
Mutagenesis3271F → S: Emulation of the active state. Increase in activity; when associated with A-176. Ref.33
Mutagenesis3371W → R: Loss of kinase activity. Ref.33
Sequence conflict671R → G in BAF84398. Ref.6

Secondary structure

.......................................................................... 360
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Isoform CSBP2 [UniParc].

Last modified January 23, 2007. Version 3.
Checksum: 286C81D0487618B3

FASTA36041,293
        10         20         30         40         50         60 
MSQERPTFYR QELNKTIWEV PERYQNLSPV GSGAYGSVCA AFDTKTGLRV AVKKLSRPFQ 

        70         80         90        100        110        120 
SIIHAKRTYR ELRLLKHMKH ENVIGLLDVF TPARSLEEFN DVYLVTHLMG ADLNNIVKCQ 

       130        140        150        160        170        180 
KLTDDHVQFL IYQILRGLKY IHSADIIHRD LKPSNLAVNE DCELKILDFG LARHTDDEMT 

       190        200        210        220        230        240 
GYVATRWYRA PEIMLNWMHY NQTVDIWSVG CIMAELLTGR TLFPGTDHID QLKLILRLVG 

       250        260        270        280        290        300 
TPGAELLKKI SSESARNYIQ SLTQMPKMNF ANVFIGANPL AVDLLEKMLV LDSDKRITAA 

       310        320        330        340        350        360 
QALAHAYFAQ YHDPDDEPVA DPYDQSFESR DLLIDEWKSL TYDEVISFVP PPLDQEEMES 

« Hide

Isoform CSBP1 [UniParc].

Checksum: 062EBC3E56683D14
Show »

FASTA36041,493
Isoform Mxi2 [UniParc].

Checksum: C17A753943B49F56
Show »

FASTA29734,092
Isoform Exip (Exon skip) [UniParc].

Checksum: 9297934FF4AC6F94
Show »

FASTA30735,453

References

« Hide 'large scale' references
[1]"A protein kinase involved in the regulation of inflammatory cytokine biosynthesis."
Lee J.C., Laydon J.T., McDonnell P.C., Gallagher T.F., Kumar S., Green D., McNulty D., Blumenthal M.J., Heys R.J., Landvatter S.W., Strickler J.E., McLaughlin M.M., Siemens I.R., Fisher S.M., Livi G.P., White J.R., Adams J.L., Young P.R.
Nature 372:739-746(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS CSBP1 AND CSBP2), PARTIAL PROTEIN SEQUENCE.
Tissue: Peripheral blood.
[2]"Molecular cloning of human p38 MAP kinase."
Han J., Richter B., Li Z., Kravchenko V.V., Ulevitch R.J.
Biochim. Biophys. Acta 1265:224-227(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM CSBP2).
Tissue: Liver.
[3]"Mxi2, a mitogen-activated protein kinase that recognizes and phosphorylates Max protein."
Zervos A.S., Faccio L., Gatto J.P., Kyriakis J.M., Brent R.
Proc. Natl. Acad. Sci. U.S.A. 92:10531-10534(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM MXI2).
[4]"Structure and polymorphism of two stress-activated protein kinase genes centromeric of the MHC: SAPK2a and SAPK4."
Herbison C.E., Sayer D.C., Bellgard M., Allcock R.J.N., Christiansen F.T., Price P.
DNA Seq. 10:229-243(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM CSBP2).
Tissue: B-cell.
[5]"Exip, a new alternative splicing variant of p38 alpha, can induce an earlier onset of apoptosis in HeLa cells."
Sudo T., Yagasaki Y., Hama H., Watanabe N., Osada H.
Biochem. Biophys. Res. Commun. 291:838-843(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM EXIP), ENZYME REGULATION.
Tissue: Renal cell carcinoma.
[6]"Complete sequencing and characterization of 21,243 full-length human cDNAs."
Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R., Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H., Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S. expand/collapse author list , Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K., Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A., Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M., Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y., Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M., Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K., Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S., Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J., Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y., Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N., Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S., Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S., Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O., Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H., Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B., Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y., Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T., Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y., Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S., Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T., Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M., Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T., Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K., Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R., Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.
Nat. Genet. 36:40-45(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
[7]"Cloning of human full-length CDSs in BD Creator(TM) system donor vector."
Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S., Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y., Phelan M., Farmer A.
Submitted (MAY-2003) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM CSBP2).
[8]"Cloning of human full open reading frames in Gateway(TM) system entry vector (pDONR201)."
Halleck A., Ebert L., Mkoundinya M., Schick M., Eisenstein S., Neubert P., Kstrang K., Schatten R., Shen B., Henze S., Mar W., Korn B., Zuo D., Hu Y., LaBaer J.
Submitted (JUN-2004) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM CSBP2).
[9]NHLBI resequencing and genotyping service (RS&G)
Submitted (DEC-2007) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
[10]"The DNA sequence and analysis of human chromosome 6."
Mungall A.J., Palmer S.A., Sims S.K., Edwards C.A., Ashurst J.L., Wilming L., Jones M.C., Horton R., Hunt S.E., Scott C.E., Gilbert J.G.R., Clamp M.E., Bethel G., Milne S., Ainscough R., Almeida J.P., Ambrose K.D., Andrews T.D. expand/collapse author list , Ashwell R.I.S., Babbage A.K., Bagguley C.L., Bailey J., Banerjee R., Barker D.J., Barlow K.F., Bates K., Beare D.M., Beasley H., Beasley O., Bird C.P., Blakey S.E., Bray-Allen S., Brook J., Brown A.J., Brown J.Y., Burford D.C., Burrill W., Burton J., Carder C., Carter N.P., Chapman J.C., Clark S.Y., Clark G., Clee C.M., Clegg S., Cobley V., Collier R.E., Collins J.E., Colman L.K., Corby N.R., Coville G.J., Culley K.M., Dhami P., Davies J., Dunn M., Earthrowl M.E., Ellington A.E., Evans K.A., Faulkner L., Francis M.D., Frankish A., Frankland J., French L., Garner P., Garnett J., Ghori M.J., Gilby L.M., Gillson C.J., Glithero R.J., Grafham D.V., Grant M., Gribble S., Griffiths C., Griffiths M.N.D., Hall R., Halls K.S., Hammond S., Harley J.L., Hart E.A., Heath P.D., Heathcott R., Holmes S.J., Howden P.J., Howe K.L., Howell G.R., Huckle E., Humphray S.J., Humphries M.D., Hunt A.R., Johnson C.M., Joy A.A., Kay M., Keenan S.J., Kimberley A.M., King A., Laird G.K., Langford C., Lawlor S., Leongamornlert D.A., Leversha M., Lloyd C.R., Lloyd D.M., Loveland J.E., Lovell J., Martin S., Mashreghi-Mohammadi M., Maslen G.L., Matthews L., McCann O.T., McLaren S.J., McLay K., McMurray A., Moore M.J.F., Mullikin J.C., Niblett D., Nickerson T., Novik K.L., Oliver K., Overton-Larty E.K., Parker A., Patel R., Pearce A.V., Peck A.I., Phillimore B.J.C.T., Phillips S., Plumb R.W., Porter K.M., Ramsey Y., Ranby S.A., Rice C.M., Ross M.T., Searle S.M., Sehra H.K., Sheridan E., Skuce C.D., Smith S., Smith M., Spraggon L., Squares S.L., Steward C.A., Sycamore N., Tamlyn-Hall G., Tester J., Theaker A.J., Thomas D.W., Thorpe A., Tracey A., Tromans A., Tubby B., Wall M., Wallis J.M., West A.P., White S.S., Whitehead S.L., Whittaker H., Wild A., Willey D.J., Wilmer T.E., Wood J.M., Wray P.W., Wyatt J.C., Young L., Younger R.M., Bentley D.R., Coulson A., Durbin R.M., Hubbard T., Sulston J.E., Dunham I., Rogers J., Beck S.
Nature 425:805-811(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[11]Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L., Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R., Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V., Hannenhalli S., Turner R. expand/collapse author list , Yooseph S., Lu F., Nusskern D.R., Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H., Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G., Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W., Venter J.C.
Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[12]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM CSBP2).
Tissue: Placenta.
[13]"Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides."
Gevaert K., Goethals M., Martens L., Van Damme J., Staes A., Thomas G.R., Vandekerckhove J.
Nat. Biotechnol. 21:566-569(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 2-10.
Tissue: Platelet.
[14]"Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27."
Freshney N.W., Rawlinson L., Guesdon F., Jones E., Cowley S., Hsuan J., Saklatvala J.
Cell 78:1039-1049(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 174-186.
[15]"Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine."
Raingeaud J., Gupta S., Rogers J.S., Dickens M., Han J., Ulevitch R.J., Davis R.J.
J. Biol. Chem. 270:7420-7426(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT THR-180 AND TYR-182, ENZYME REGULATION, SUBCELLULAR LOCATION.
[16]"Human mitogen-activated protein kinase CSBP1, but not CSBP2, complements a hog1 deletion in yeast."
Kumar S., McLaughlin M.M., McDonnell P.C., Lee J.C., Livi G.P., Young P.R.
J. Biol. Chem. 270:29043-29046(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: MUTAGENESIS OF ALA-34; LYS-53; ASP-168; THR-175; THR-180 AND TYR-182.
[17]"MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway."
Raingeaud J., Whitmarsh A.J., Barrett T., Derijard B., Davis R.J.
Mol. Cell. Biol. 16:1247-1255(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION BY MAP2K3/MKK3 AND MAP2K6/MKK6, ENZYME REGULATION.
[18]"Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB."
Deak M., Clifton A.D., Lucocq J.M., Alessi D.R.
EMBO J. 17:4426-4441(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN ACTIVATION OF RPS6KA5/MSK1.
[19]"Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6."
Enslen H., Raingeaud J., Davis R.J.
J. Biol. Chem. 273:1741-1748(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF ATF2; ELK1 AND MBP, ENZYME REGULATION.
[20]"RSK-B, a novel ribosomal S6 kinase family member, is a CREB kinase under dominant control of p38alpha mitogen-activated protein kinase (p38alphaMAPK)."
Pierrat B., Correia J.D.S., Mary J.L., Tomas-Zuber M., Lesslauer W.
J. Biol. Chem. 273:29661-29671(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RPS6KA4, FUNCTION IN PHOSPHORYLATION OF RPS6KA4, SUBCELLULAR LOCATION.
[21]"Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5."
Tanoue T., Moriguchi T., Nishida E.
J. Biol. Chem. 274:19949-19956(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DUSP10, ENZYME REGULATION.
[22]"Regulation of the MEF2 family of transcription factors by p38."
Zhao M., New L., Kravchenko V.V., Kato Y., Gram H., di Padova F., Olson E.N., Ulevitch R.J., Han J.-D.
Mol. Cell. Biol. 19:21-30(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF MEF2A.
[23]"Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors."
Yang S.-H., Galanis A., Sharrocks A.D.
Mol. Cell. Biol. 19:4028-4038(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF MEF2A AND MEF2C.
[24]"Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis."
Tamura K., Sudo T., Senftleben U., Dadak A.M., Johnson R., Karin M.
Cell 102:221-231(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
Tissue: Hepatoma.
[25]"Distinct carboxy-termini confer divergent characteristics to the mitogen-activated protein kinase p38alpha and its splice isoform Mxi2."
Sanz V., Arozarena I., Crespo P.
FEBS Lett. 474:169-174(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (ISOFORM MXI2), COFACTOR, ENZYME REGULATION.
[26]"Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase."
Sayed M., Kim S.O., Salh B.S., Issinger O.G., Pelech S.L.
J. Biol. Chem. 275:16569-16573(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CSNK2A1 AND CSNK2B, FUNCTION IN ACTIVATION OF CASEIN KINASE II.
[27]"Differential activation of p38 mitogen-activated protein kinase isoforms depending on signal strength."
Alonso G., Ambrosino C., Jones M., Nebreda A.R.
J. Biol. Chem. 275:40641-40648(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH MA2PK6/MKK6, PHOSPHORYLATION BY MAP2K6/MKK6, AUTOPHOSPHORYLATION, MUTAGENESIS OF LYS-54.
[28]"Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1."
Slack D.N., Seternes O.M., Gabrielsen M., Keyse S.M.
J. Biol. Chem. 276:16491-16500(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DUSP1, ENZYME REGULATION.
[29]"A Novel MAPK phosphatase MKP-7 acts preferentially on JNK/SAPK and p38 alpha and beta MAPKs."
Tanoue T., Yamamoto T., Maeda R., Nishida E.
J. Biol. Chem. 276:26629-26639(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DUSP16, ENZYME REGULATION.
[30]"The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells."
Scheper G.C., Morrice N.A., Kleijn M., Proud C.G.
Mol. Cell. Biol. 21:743-754(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS MKNK2 KINASE.
[31]"Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase."
Bulavin D.V., Higashimoto Y., Popoff I.J., Gaarde W.A., Basrur V., Potapova O., Appella E., Fornace A.J. Jr.
Nature 411:102-107(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CDC25B AND CDC25C, FUNCTION IN PHOSPHORYLATION OF CDC25B AND CDC25C.
[32]"MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha."
Ge B., Gram H., Di Padova F., Huang B., New L., Ulevitch R.J., Luo Y., Han J.
Science 295:1291-1294(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TAB1, AUTOPHOSPHORYLATION, ENZYME REGULATION.
[33]"Active mutants of the human p38alpha mitogen-activated protein kinase."
Diskin R., Askari N., Capone R., Engelberg D., Livnah O.
J. Biol. Chem. 279:47040-47049(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: MUTAGENESIS OF TYR-69; ASP-176; ASP-177; ALA-320; PHE-327 AND TRP-337.
[34]"Myeloid-related protein-14 is a p38 MAPK substrate in human neutrophils."
Lominadze G., Rane M.J., Merchant M., Cai J., Ward R.A., McLeish K.R.
J. Immunol. 174:7257-7267(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF S100A9.
[35]"Immunoaffinity profiling of tyrosine phosphorylation in cancer cells."
Rush J., Moritz A., Lee K.A., Guo A., Goss V.L., Spek E.J., Zhang H., Zha X.-M., Polakiewicz R.D., Comb M.J.
Nat. Biotechnol. 23:94-101(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[36]"Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases."
Salvador J.M., Mittelstadt P.R., Guszczynski T., Copeland T.D., Yamaguchi H., Appella E., Fornace A.J. Jr., Ashwell J.D.
Nat. Immunol. 6:390-395(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT TYR-323, ENZYME REGULATION.
[37]"The autoimmune suppressor Gadd45alpha inhibits the T cell alternative p38 activation pathway."
Salvador J.M., Mittelstadt P.R., Belova G.I., Fornace A.J. Jr., Ashwell J.D.
Nat. Immunol. 6:396-402(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TAB1, AUTOPHOSPHORYLATION, ENZYME REGULATION.
[38]"p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation."
Zohn I.E., Li Y., Skolnik E.Y., Anderson K.V., Han J., Niswander L.
Cell 125:957-969(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SUPT20H.
[39]"p38 MAP kinase mediates stress-induced internalization of EGFR: implications for cancer chemotherapy."
Zwang Y., Yarden Y.
EMBO J. 25:4195-4206(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN STRESS-INDUCED INTERNALIZATION OF EGFR.
[40]"Regulation of the ring finger E3 ligase Siah2 by p38 MAPK."
Khurana A., Nakayama K., Williams S., Davis R.J., Mustelin T., Ronai Z.
J. Biol. Chem. 281:35316-35326(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF SIAH2, ENZYME REGULATION.
[41]"Nuclear protein NP60 regulates p38 MAPK activity."
Fu J., Yang Z., Wei J., Han J., Gu J.
J. Cell Sci. 119:115-123(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH NP60.
[42]"p38alpha antagonizes p38gamma activity through c-Jun-dependent ubiquitin-proteasome pathways in regulating Ras transformation and stress response."
Qi X., Pohl N.M., Loesch M., Hou S., Li R., Qin J.Z., Cuenda A., Chen G.
J. Biol. Chem. 282:31398-31408(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, PHOSPHORYLATION, SUBCELLULAR LOCATION, UBIQUITINATION.
[43]"ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage."
Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R. III, Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N., Lerenthal Y., Shiloh Y., Gygi S.P., Elledge S.J.
Science 316:1160-1166(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-263, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Embryonic kidney.
[44]"Phosphoproteome of resting human platelets."
Zahedi R.P., Lewandrowski U., Wiesner J., Wortelkamp S., Moebius J., Schuetz C., Walter U., Gambaryan S., Sickmann A.
J. Proteome Res. 7:526-534(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Platelet.
[45]"Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle."
Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R., Greff Z., Keri G., Stemmann O., Mann M.
Mol. Cell 31:438-448(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-16, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[46]"A quantitative atlas of mitotic phosphorylation."
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E., Elledge S.J., Gygi S.P.
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-180 AND TYR-182, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[47]"Large-scale proteomics analysis of the human kinome."
Oppermann F.S., Gnad F., Olsen J.V., Hornberger R., Greff Z., Keri G., Mann M., Daub H.
Mol. Cell. Proteomics 8:1751-1764(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[48]"Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions."
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K., Rodionov V., Han D.K.
Sci. Signal. 2:RA46-RA46(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-180 AND TYR-182, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Leukemic T-cell.
[49]"Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP."
Webber J.L., Tooze S.A.
EMBO J. 29:27-40(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN INHIBITION OF AUTOPHAGY.
[50]"DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization."
Reinhardt H.C., Hasskamp P., Schmedding I., Morandell S., van Vugt M.A., Wang X., Linding R., Ong S.E., Weaver D., Carr S.A., Yaffe M.B.
Mol. Cell 40:34-49(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF TIAR.
[51]"Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation."
Xu P., Derynck R.
Mol. Cell 37:551-566(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH ADAM17, FUNCTION IN PHOSPHORYLATION OF ADAM17.
[52]"Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis."
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L., Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.
Sci. Signal. 3:RA3-RA3(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT SER-2, PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-2; THR-180 AND TYR-182, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[53]"Initial characterization of the human central proteome."
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17-17(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[54]"Acetylation of a conserved lysine residue in the ATP binding pocket of p38 augments its kinase activity during hypertrophy of cardiomyocytes."
Pillai V.B., Sundaresan N.R., Samant S.A., Wolfgeher D., Trivedi C.M., Gupta M.P.
Mol. Cell. Biol. 31:2349-2363(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION AT LYS-53 AND LYS-152 BY KAT2B/PCAF AND EP300, DEACETYLATION BY HDAC3.
[55]"In the cellular garden of forking paths: how p38 MAPKs signal for downstream assistance."
Shi Y., Gaestel M.
Biol. Chem. 383:1519-1536(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON FUNCTION.
[56]"Mechanisms and functions of p38 MAPK signalling."
Cuadrado A., Nebreda A.R.
Biochem. J. 429:403-417(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON ENZYME REGULATION, REVIEW ON FUNCTION.
[57]"Crystal structure of p38 mitogen-activated protein kinase."
Wilson K.P., Fitzgibbon M.J., Caron P.R., Griffith J.P., Chen W., McCaffrey P.G., Chambers S.P., Su M.S.-S.
J. Biol. Chem. 271:27696-27700(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS).
[58]"A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket."
Tong L., Pav S., White D.M., Rogers S., Crane K.M., Cywin C.L., Brown M.L., Pargellis C.A.
Nat. Struct. Biol. 4:311-316(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS).
[59]"Structural basis of inhibitor selectivity in MAP kinases."
Wang Z., Canagarajah B.J., Boehm J.C., Kassisa S., Cobb M.H., Young P.R., Abdel-Meguid S., Adams J.L., Goldsmith E.J.
Structure 6:1117-1128(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.5 ANGSTROMS).
[60]"Binding mode of the 4-anilinoquinazoline class of protein kinase inhibitor: X-ray crystallographic studies of 4-anilinoquinazolines bound to cyclin-dependent kinase 2 and p38 kinase."
Shewchuk L., Hassell A., Wisely B., Rocque W., Holmes W., Veal J., Kuyper L.F.
J. Med. Chem. 43:133-138(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.60 ANGSTROMS).
[61]"Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site."
Pargellis C., Tong L., Churchill L., Cirillo P.F., Gilmore T., Graham A.G., Grob P.M., Hickey E.R., Moss N., Pav S., Regan J.
Nat. Struct. Biol. 9:268-272(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.50 ANGSTROMS), ENZYME REGULATION.
[62]"Design and synthesis of potent, orally bioavailable dihydroquinazolinone inhibitors of p38 MAP kinase."
Stelmach J.E., Liu L., Patel S.B., Pivnichny J.V., Scapin G., Singh S., Hop C.E., Wang Z., Strauss J.R., Cameron P.M., Nichols E.A., O'Keefe S.J., O'Neill E.A., Schmatz D.M., Schwartz C.D., Thompson C.M., Zaller D.M., Doherty J.B.
Bioorg. Med. Chem. Lett. 13:277-280(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.40 ANGSTROMS), ENZYME REGULATION.
[63]"Design and synthesis of 4-azaindoles as inhibitors of p38 MAP kinase."
Trejo A., Arzeno H., Browner M., Chanda S., Cheng S., Comer D.D., Dalrymple S.A., Dunten P., Lafargue J., Lovejoy B., Freire-Moar J., Lim J., Mcintosh J., Miller J., Papp E., Reuter D., Roberts R., Sanpablo F. expand/collapse author list , Saunders J., Song K., Villasenor A., Warren S.D., Welch M., Weller P., Whiteley P.E., Zeng L., Goldstein D.M.
J. Med. Chem. 46:4702-4713(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.10 ANGSTROMS), ENZYME REGULATION.
[64]"Structural basis for p38alpha MAP kinase quinazolinone and pyridol-pyrimidine inhibitor specificity."
Fitzgerald C.E., Patel S.B., Becker J.W., Cameron P.M., Zaller D., Pikounis V.B., O'Keefe S.J., Scapin G.
Nat. Struct. Biol. 10:764-769(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.10 ANGSTROMS) IN COMPLEX WITH INHIBITOR.
[65]"Lattice stabilization and enhanced diffraction in human p38 alpha crystals by protein engineering."
Patel S.B., Cameron P.M., Frantz-Wattley B., O'Neill E., Becker J.W., Scapin G.
Biochim. Biophys. Acta 1696:67-73(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.00 ANGSTROMS), ENZYME REGULATION.
[66]"Prevention of MKK6-dependent activation by binding to p38alpha MAP kinase."
Sullivan J.E., Holdgate G.A., Campbell D., Timms D., Gerhardt S., Breed J., Breeze A.L., Bermingham A., Pauptit R.A., Norman R.A., Embrey K.J., Read J., VanScyoc W.S., Ward W.H.
Biochemistry 44:16475-16490(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.10 ANGSTROMS) OF 2-359 IN COMPLEX WITH INHIBITOR.
[67]"Design and synthesis of potent pyridazine inhibitors of p38 MAP kinase."
Tamayo N., Liao L., Goldberg M., Powers D., Tudor Y.Y., Yu V., Wong L.M., Henkle B., Middleton S., Syed R., Harvey T., Jang G., Hungate R., Dominguez C.
Bioorg. Med. Chem. Lett. 15:2409-2413(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.00 ANGSTROMS) OF 2-359, ENZYME REGULATION.
[68]"Two classes of p38alpha MAP kinase inhibitors having a common diphenylether core but exhibiting divergent binding modes."
Michelotti E.L., Moffett K.K., Nguyen D., Kelly M.J., Shetty R., Chai X., Northrop K., Namboodiri V., Campbell B., Flynn G.A., Fujimoto T., Hollinger F.P., Bukhtiyarova M., Springman E.B., Karpusas M.
Bioorg. Med. Chem. Lett. 15:5274-5279(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.00 ANGSTROMS), ENZYME REGULATION.
[69]"Fragment-based lead discovery using X-ray crystallography."
Hartshorn M.J., Murray C.W., Cleasby A., Frederickson M., Tickle I.J., Jhoti H.
J. Med. Chem. 48:403-413(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.16 ANGSTROMS) OF 2-359 IN COMPLEX WITH INHIBITOR.
[70]"Crystal structure of the p38 alpha-MAPKAP kinase 2 heterodimer."
ter Haar E., Prabhakar P., Liu X., Lepre C.
J. Biol. Chem. 282:9733-9739(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (4.0 ANGSTROMS) OF 2-359 IN COMPLEX WITH MAPKAPK2.
[71]Erratum
ter Haar E., Prabhakar P., Liu X., Lepre C.
J. Biol. Chem. 282:14684-14684(2007)
[72]"Patterns of somatic mutation in human cancer genomes."
Greenman C., Stephens P., Smith R., Dalgliesh G.L., Hunter C., Bignell G., Davies H., Teague J., Butler A., Stevens C., Edkins S., O'Meara S., Vastrik I., Schmidt E.E., Avis T., Barthorpe S., Bhamra G., Buck G. expand/collapse author list , Choudhury B., Clements J., Cole J., Dicks E., Forbes S., Gray K., Halliday K., Harrison R., Hills K., Hinton J., Jenkinson A., Jones D., Menzies A., Mironenko T., Perry J., Raine K., Richardson D., Shepherd R., Small A., Tofts C., Varian J., Webb T., West S., Widaa S., Yates A., Cahill D.P., Louis D.N., Goldstraw P., Nicholson A.G., Brasseur F., Looijenga L., Weber B.L., Chiew Y.-E., DeFazio A., Greaves M.F., Green A.R., Campbell P., Birney E., Easton D.F., Chenevix-Trench G., Tan M.-H., Khoo S.K., Teh B.T., Yuen S.T., Leung S.Y., Wooster R., Futreal P.A., Stratton M.R.
Nature 446:153-158(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANTS [LARGE SCALE ANALYSIS] VAL-51; ARG-322 AND GLY-343.
+Additional computationally mapped references.

Web resources

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
L35263 mRNA. Translation: AAA57455.1.
L35264 mRNA. Translation: AAA57456.1.
L35253 mRNA. Translation: AAA74301.1.
U19775 mRNA. Translation: AAC50329.1.
AF100544 mRNA. Translation: AAF36770.1.
AB074150 mRNA. Translation: BAB85654.1.
AK291709 mRNA. Translation: BAF84398.1.
BT006933 mRNA. Translation: AAP35579.1.
CR536505 mRNA. Translation: CAG38743.1.
EU332860 Genomic DNA. Translation: ABY87549.1.
Z95152 Genomic DNA. No translation available.
CH471081 Genomic DNA. Translation: EAX03869.1.
BC000092 mRNA. Translation: AAH00092.1.
BC031574 mRNA. Translation: AAH31574.1.
PIRS53536.
RefSeqNP_001306.1. NM_001315.2.
NP_620581.1. NM_139012.2.
NP_620582.1. NM_139013.2.
NP_620583.1. NM_139014.2.
UniGeneHs.485233.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1A9UX-ray2.50A1-360[»]
1BL6X-ray2.50A1-360[»]
1BL7X-ray2.50A1-360[»]
1BMKX-ray2.40A1-360[»]
1DI9X-ray2.60A1-360[»]
1IANX-ray2.00A2-360[»]
1KV1X-ray2.50A1-360[»]
1KV2X-ray2.80A1-360[»]
1M7QX-ray2.40A1-360[»]
1OUKX-ray2.50A1-360[»]
1OUYX-ray2.50A1-360[»]
1OVEX-ray2.10A1-360[»]
1OZ1X-ray2.10A1-360[»]
1R39X-ray2.30A1-360[»]
1R3CX-ray2.00A1-360[»]
1W7HX-ray2.21A2-359[»]
1W82X-ray2.20A2-359[»]
1W83X-ray2.50A2-359[»]
1W84X-ray2.20A2-359[»]
1WBNX-ray2.40A2-359[»]
1WBOX-ray2.16A2-359[»]
1WBSX-ray1.80A2-359[»]
1WBTX-ray2.00A2-359[»]
1WBVX-ray2.00A2-359[»]
1WBWX-ray2.41A2-359[»]
1WFCX-ray2.30A1-360[»]
1YQJX-ray2.00A2-359[»]
1ZYJX-ray2.00A1-360[»]
1ZZ2X-ray2.00A1-360[»]
1ZZLX-ray2.00A4-353[»]
2BAJX-ray2.25A2-359[»]
2BAKX-ray2.20A2-359[»]
2BALX-ray2.10A2-359[»]
2BAQX-ray2.80A2-359[»]
2FSLX-ray1.70X2-359[»]
2FSMX-ray1.86X2-359[»]
2FSOX-ray1.83X2-359[»]
2FSTX-ray1.45X2-359[»]
2GFSX-ray1.75A2-359[»]
2I0HX-ray2.00A1-360[»]
2LGCNMR-A1-354[»]
2NPQX-ray1.80A2-359[»]
2OKRX-ray2.00A/D2-359[»]
2ONLX-ray4.00A/B2-359[»]
2QD9X-ray1.70A2-360[»]
2RG5X-ray2.40A2-360[»]
2RG6X-ray1.72A2-360[»]
2Y8OX-ray1.95A1-360[»]
2YISX-ray2.00A2-360[»]
2YIWX-ray2.00A2-360[»]
2YIXX-ray2.30A4-354[»]
2ZAZX-ray1.80A1-360[»]
2ZB0X-ray2.10A1-360[»]
2ZB1X-ray2.50A1-360[»]
3BV2X-ray2.40A2-360[»]
3BV3X-ray2.59A2-360[»]
3BX5X-ray2.40A2-360[»]
3C5UX-ray2.80A2-360[»]
3CTQX-ray1.95A5-352[»]
3D7ZX-ray2.10A1-360[»]
3D83X-ray1.90A1-360[»]
3DS6X-ray2.90A/B/C/D1-360[»]
3DT1X-ray2.80A1-360[»]
3E92X-ray2.00A1-360[»]
3E93X-ray2.00A1-360[»]
3FC1X-ray2.40X1-360[»]
3FI4X-ray2.20A1-360[»]
3FKLX-ray2.00A1-360[»]
3FKNX-ray2.00A1-360[»]
3FKOX-ray2.00A1-360[»]
3FL4X-ray1.80A1-360[»]
3FLNX-ray1.90C1-360[»]
3FLQX-ray1.90A1-360[»]
3FLSX-ray2.30A1-360[»]
3FLWX-ray2.10A1-360[»]
3FLYX-ray1.80A1-360[»]
3FLZX-ray2.23A1-360[»]
3FMHX-ray1.90A1-360[»]
3FMJX-ray2.00A1-360[»]
3FMKX-ray1.70A1-360[»]
3FMLX-ray2.10A1-360[»]
3FMMX-ray2.00A1-360[»]
3FMNX-ray1.90A1-360[»]
3FSFX-ray2.10A1-360[»]
3FSKX-ray2.00A1-360[»]
3GC7X-ray1.80A1-360[»]
3GCPX-ray2.25A2-360[»]
3GCQX-ray2.00A2-360[»]
3GCSX-ray2.10A2-360[»]
3GCUX-ray2.10A/B2-360[»]
3GCVX-ray2.30A2-360[»]
3GFEX-ray2.10A1-360[»]
3GI3X-ray2.40A1-360[»]
3HA8X-ray2.48A1-360[»]
3HECX-ray2.50A5-352[»]
3HEGX-ray2.20A5-352[»]
3HL7X-ray1.88A1-360[»]
3HLLX-ray1.95A1-360[»]
3HP2X-ray2.15A1-360[»]
3HP5X-ray2.30A1-360[»]
3HRBX-ray2.20A2-360[»]
3HUBX-ray2.25A2-360[»]
3HUCX-ray1.80A2-360[»]
3HV3X-ray2.00A2-360[»]
3HV4X-ray2.60A/B2-360[»]
3HV5X-ray2.25A/B2-360[»]
3HV6X-ray1.95A2-360[»]
3HV7X-ray2.40A2-360[»]
3HVCX-ray2.10A1-360[»]
3IPHX-ray2.10A1-360[»]
3ITZX-ray2.25A1-360[»]
3IW5X-ray2.50A2-360[»]
3IW6X-ray2.10A2-360[»]
3IW7X-ray2.40A2-360[»]
3IW8X-ray2.00A2-360[»]
3K3IX-ray1.70A5-352[»]
3K3JX-ray2.00A1-360[»]
3KF7X-ray2.00A1-360[»]
3KQ7X-ray1.80A1-360[»]
3L8SX-ray2.35A2-360[»]
3L8XX-ray2.15A2-360[»]
3LFAX-ray2.10A2-360[»]
3LFBX-ray2.60A2-360[»]
3LFCX-ray2.80A2-360[»]
3LFDX-ray3.40A2-360[»]
3LFEX-ray2.30A2-360[»]
3LFFX-ray1.50A2-360[»]
3LHJX-ray3.31A1-360[»]
3MGYX-ray2.10A1-360[»]
3MH0X-ray2.00A1-360[»]
3MH1X-ray2.20A1-360[»]
3MH2X-ray2.30A1-360[»]
3MH3X-ray2.20A1-360[»]
3MPAX-ray2.10A1-360[»]
3MPTX-ray1.89A1-360[»]
3MVLX-ray2.80A/B2-360[»]
3MVMX-ray2.00A/B2-360[»]
3MW1X-ray2.80A2-360[»]
3NEWX-ray2.51A1-360[»]
3NNUX-ray2.40A1-354[»]
3NNVX-ray2.10A1-354[»]
3NNWX-ray1.89A1-354[»]
3NNXX-ray2.28A1-354[»]
3NWWX-ray2.09A2-360[»]
3O8PX-ray2.10A1-360[»]
3O8TX-ray2.00A1-360[»]
3O8UX-ray2.10A1-360[»]
3OBGX-ray2.80A1-360[»]
3OBJX-ray2.40A1-360[»]
3OC1X-ray2.59A1-360[»]
3OCGX-ray2.21A2-360[»]
3OD6X-ray2.68X1-360[»]
3ODYX-ray2.20X1-360[»]
3ODZX-ray2.30X1-360[»]
3OEFX-ray1.60X1-360[»]
3PG3X-ray2.00A2-360[»]
3QUDX-ray2.00A2-360[»]
3QUEX-ray2.70A2-360[»]
3RINX-ray2.20A1-360[»]
3ROCX-ray1.70A1-360[»]
3S3IX-ray1.80A4-352[»]
3S4QX-ray2.27A2-360[»]
3U8WX-ray2.15A1-360[»]
3UVPX-ray2.40A2-360[»]
3UVQX-ray2.20A2-360[»]
3UVRX-ray2.10A2-360[»]
3ZS5X-ray1.60A2-360[»]
3ZSGX-ray1.89A2-360[»]
3ZSHX-ray2.05A2-360[»]
3ZSIX-ray2.40A2-360[»]
3ZYAX-ray1.90A1-360[»]
4A9YX-ray2.20A2-360[»]
4AA0X-ray1.80A2-360[»]
4AA4X-ray2.30A2-360[»]
4AA5X-ray2.38A2-360[»]
4AACX-ray2.50A2-360[»]
4DLIX-ray1.91A2-360[»]
4DLJX-ray2.60A2-360[»]
4E5AX-ray1.87X1-360[»]
4E5BX-ray2.00A1-360[»]
4E6AX-ray2.09A1-360[»]
4E6CX-ray2.39A1-360[»]
4E8AX-ray2.70A1-360[»]
4EH2X-ray2.00A2-360[»]
4EH3X-ray2.40A2-360[»]
4EH4X-ray2.50A2-360[»]
4EH5X-ray2.00A2-360[»]
4EH6X-ray2.10A2-360[»]
4EH7X-ray2.10A2-360[»]
4EH8X-ray2.20A2-360[»]
4EH9X-ray2.10A2-360[»]
4EHVX-ray1.60A2-360[»]
4EWQX-ray2.10A2-360[»]
4F9WX-ray2.00A2-360[»]
4F9YX-ray1.85A2-360[»]
4FA2X-ray2.00A2-360[»]
4GEOX-ray1.66A2-360[»]
4KINX-ray1.97A/B/C/D2-360[»]
4KIPX-ray2.27A/B2-360[»]
4KIQX-ray2.50A/B/C/D2-360[»]
4L8MX-ray2.10A2-360[»]
ProteinModelPortalQ16539.
SMRQ16539. Positions 4-354.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid107819. 219 interactions.
DIPDIP-30987N.
IntActQ16539. 95 interactions.
MINTMINT-126546.
STRING9606.ENSP00000229794.

Chemistry

BindingDBQ16539.
ChEMBLCHEMBL2094115.
GuidetoPHARMACOLOGY1499.

PTM databases

PhosphoSiteQ16539.

2D gel databases

OGPQ16539.

Proteomic databases

PaxDbQ16539.
PRIDEQ16539.

Protocols and materials databases

DNASU1432.
StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000229794; ENSP00000229794; ENSG00000112062. [Q16539-1]
ENST00000229795; ENSP00000229795; ENSG00000112062. [Q16539-2]
ENST00000310795; ENSP00000308669; ENSG00000112062. [Q16539-4]
GeneID1432.
KEGGhsa:1432.
UCSCuc003olo.3. human. [Q16539-3]
uc003olp.3. human. [Q16539-2]
uc003olq.3. human. [Q16539-1]
uc003olr.3. human. [Q16539-4]

Organism-specific databases

CTD1432.
GeneCardsGC06P035995.
HGNCHGNC:6876. MAPK14.
HPACAB010285.
CAB040578.
MIM600289. gene.
neXtProtNX_Q16539.
PharmGKBPA30621.
GenAtlasSearch...

Phylogenomic databases

eggNOGCOG0515.
HOVERGENHBG014652.
KOK04441.
OMAQALAHGY.
OrthoDBEOG7PCJGV.
PhylomeDBQ16539.
TreeFamTF105100.

Enzyme and pathway databases

ReactomeREACT_111045. Developmental Biology.
REACT_111102. Signal Transduction.
REACT_111155. Cell-Cell communication.
REACT_120956. Cellular responses to stress.
REACT_21257. Metabolism of RNA.
REACT_604. Hemostasis.
REACT_6782. TRAF6 Mediated Induction of proinflammatory cytokines.
REACT_6900. Immune System.
REACT_71. Gene Expression.
SignaLinkQ16539.

Gene expression databases

ArrayExpressQ16539.
BgeeQ16539.
CleanExHS_MAPK14.
GenevestigatorQ16539.

Family and domain databases

InterProIPR011009. Kinase-like_dom.
IPR003527. MAP_kinase_CS.
IPR008352. MAPK_p38.
IPR000719. Prot_kinase_dom.
IPR017441. Protein_kinase_ATP_BS.
IPR002290. Ser/Thr_dual-sp_kinase_dom.
[Graphical view]
PfamPF00069. Pkinase. 1 hit.
[Graphical view]
PRINTSPR01773. P38MAPKINASE.
SMARTSM00220. S_TKc. 1 hit.
[Graphical view]
SUPFAMSSF56112. SSF56112. 1 hit.
PROSITEPS01351. MAPK. 1 hit.
PS00107. PROTEIN_KINASE_ATP. 1 hit.
PS50011. PROTEIN_KINASE_DOM. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

ChiTaRSMAPK14. human.
EvolutionaryTraceQ16539.
GeneWikiMAPK14.
GenomeRNAi1432.
NextBio5841.
PROQ16539.
SOURCESearch...

Entry information

Entry nameMK14_HUMAN
AccessionPrimary (citable) accession number: Q16539
Secondary accession number(s): A6ZJ92 expand/collapse secondary AC list , A8K6P4, B0LPH0, O60776, Q13083, Q14084, Q8TDX0
Entry history
Integrated into UniProtKB/Swiss-Prot: November 1, 1997
Last sequence update: January 23, 2007
Last modified: April 16, 2014
This is version 176 of the entry and version 3 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

Human and mouse protein kinases

Human and mouse protein kinases: classification and index

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 6

Human chromosome 6: entries, gene names and cross-references to MIM