Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q12948 (FOXC1_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 143. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (5) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Web links·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Forkhead box protein C1
Alternative name(s):
Forkhead-related protein FKHL7
Forkhead-related transcription factor 3
Short name=FREAC-3
Gene names
Name:FOXC1
Synonyms:FKHL7, FREAC3
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length553 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Binding of FREAC-3 and FREAC-4 to their cognate sites results in bending of the DNA at an angle of 80-90 degrees. Regulates FOXO1 through binding to a conserved element, 5'-GTAAACAAA-3' in its promoter region, implicating FOXC1 as an important regulator of cell viability and resistance to oxidative stress in the eye. Ref.7

Subunit structure

Monomer. Interacts with C1QBP. Ref.8

Subcellular location

Nucleus.

Tissue specificity

Expressed in all tissues and cell lines examined. Ref.5

Involvement in disease

Axenfeld-Rieger syndrome 3 (RIEG3) [MIM:602482]: An autosomal dominant disorder of morphogenesis that results in abnormal development of the anterior segment of the eye, and results in blindness from glaucoma in approximately 50% of affected individuals. Features include posterior corneal embryotoxon, prominent Schwalbe line and iris adhesion to the Schwalbe line, hypertelorism, hypodontia, sensorineural deafness, redundant periumbilical skin, and cardiovascular defects such as patent ductus arteriosus and atrial septal defect. When associated with tooth anomalies, the disorder is known as Rieger syndrome.
Note: The disease is caused by mutations affecting the gene represented in this entry. Ref.24

Iridogoniodysgenesis anomaly (IGDA) [MIM:601631]: Autosomal dominant phenotype characterized by iris hypoplasia, goniodysgenesis, and juvenile glaucoma.
Note: The disease is caused by mutations affecting the gene represented in this entry.

Peters anomaly (PAN) [MIM:604229]: Consists of a central corneal leukoma, absence of the posterior corneal stroma and Descemet membrane, and a variable degree of iris and lenticular attachments to the central aspect of the posterior cornea.
Note: The disease is caused by mutations affecting the gene represented in this entry. Ref.18

Sequence similarities

Contains 1 fork-head DNA-binding domain.

Ontologies

Keywords
   Biological processTranscription
Transcription regulation
   Cellular componentNucleus
   Coding sequence diversityPolymorphism
   DiseaseDeafness
Disease mutation
Peters anomaly
   LigandDNA-binding
   PTMPhosphoprotein
   Technical termComplete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processNotch signaling pathway

Inferred from Biological aspect of Ancestor. Source: RefGenome

artery morphogenesis

Inferred from electronic annotation. Source: Ensembl

blood vessel remodeling

Inferred from electronic annotation. Source: Ensembl

brain development

Inferred from electronic annotation. Source: Ensembl

camera-type eye development

Inferred from electronic annotation. Source: Ensembl

cardiac muscle cell proliferation

Inferred from electronic annotation. Source: Ensembl

collagen fibril organization

Inferred from electronic annotation. Source: Ensembl

embryo development

Inferred from Biological aspect of Ancestor. Source: RefGenome

embryonic heart tube development

Inferred from electronic annotation. Source: Ensembl

eye development

Inferred from direct assay Ref.2. Source: MGI

germ cell migration

Inferred from electronic annotation. Source: Ensembl

glycosaminoglycan metabolic process

Inferred from electronic annotation. Source: Ensembl

heart development

Inferred from direct assay PubMed 10474162. Source: MGI

in utero embryonic development

Inferred from electronic annotation. Source: Ensembl

kidney development

Inferred from electronic annotation. Source: Ensembl

lacrimal gland development

Inferred from electronic annotation. Source: Ensembl

lymph vessel development

Inferred from electronic annotation. Source: Ensembl

negative regulation of apoptotic process

Inferred from Biological aspect of Ancestor. Source: RefGenome

negative regulation of apoptotic process involved in outflow tract morphogenesis

Inferred from electronic annotation. Source: Ensembl

negative regulation of mitotic cell cycle

Inferred from direct assay PubMed 12408963. Source: UniProtKB

negative regulation of transcription from RNA polymerase II promoter

Inferred from Biological aspect of Ancestor. Source: RefGenome

neural crest cell development

Inferred from electronic annotation. Source: Ensembl

odontogenesis of dentin-containing tooth

Inferred from mutant phenotype Ref.18. Source: UniProtKB

ossification

Inferred from electronic annotation. Source: Ensembl

ovarian follicle development

Inferred from electronic annotation. Source: Ensembl

paraxial mesoderm formation

Inferred from electronic annotation. Source: Ensembl

pattern specification process

Inferred from Biological aspect of Ancestor. Source: RefGenome

positive regulation of transcription from RNA polymerase II promoter

Inferred from direct assay PubMed 16449236. Source: BHF-UCL

positive regulation of transcription, DNA-templated

Inferred from direct assay Ref.21. Source: UniProtKB

regulation of blood vessel size

Inferred from electronic annotation. Source: Ensembl

regulation of organ growth

Inferred from Biological aspect of Ancestor. Source: RefGenome

regulation of sequence-specific DNA binding transcription factor activity

Inferred from Biological aspect of Ancestor. Source: RefGenome

regulation of transcription, DNA-templated

Inferred from direct assay PubMed 15684392. Source: UniProtKB

skeletal system development

Inferred from electronic annotation. Source: Ensembl

somitogenesis

Inferred from electronic annotation. Source: Ensembl

tissue development

Inferred from Biological aspect of Ancestor. Source: RefGenome

transcription from RNA polymerase II promoter

Inferred from Biological aspect of Ancestor. Source: GOC

ureteric bud development

Inferred from electronic annotation. Source: Ensembl

vascular endothelial growth factor receptor signaling pathway

Inferred from Biological aspect of Ancestor. Source: RefGenome

ventricular cardiac muscle tissue morphogenesis

Inferred from electronic annotation. Source: Ensembl

   Cellular_componentcytoplasm

Inferred from direct assay. Source: HPA

nuclear heterochromatin

Inferred from direct assay PubMed 15684392. Source: UniProtKB

nucleus

Inferred from direct assay Ref.21PubMed 16449236. Source: UniProtKB

transcription factor complex

Inferred from Biological aspect of Ancestor. Source: RefGenome

   Molecular_functionDNA binding

Inferred from direct assay PubMed 15684392. Source: UniProtKB

DNA binding, bending

Inferred from direct assay Ref.6. Source: UniProtKB

RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity

Inferred from Biological aspect of Ancestor. Source: RefGenome

chromatin DNA binding

Inferred from Biological aspect of Ancestor. Source: RefGenome

double-stranded DNA binding

Inferred from Biological aspect of Ancestor. Source: RefGenome

sequence-specific DNA binding

Inferred from direct assay Ref.21Ref.6. Source: UniProtKB

sequence-specific DNA binding transcription factor activity

Inferred from direct assay Ref.21PubMed 15684392. Source: UniProtKB

transcription factor binding

Inferred from physical interaction PubMed 15684392. Source: UniProtKB

transcription regulatory region DNA binding

Inferred from sequence or structural similarity. Source: BHF-UCL

Complete GO annotation...

Binary interactions

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 553553Forkhead box protein C1
PRO_0000091806

Regions

DNA binding77 – 16892Fork-head Ref.7
Compositional bias28 – 336Poly-Ala
Compositional bias169 – 1735Poly-Arg
Compositional bias194 – 1974Poly-Pro
Compositional bias262 – 27211Poly-Ser
Compositional bias292 – 2976Poly-Pro
Compositional bias375 – 3828Poly-Gly
Compositional bias438 – 4458Poly-Ser
Compositional bias447 – 45610Poly-Gly
Compositional bias486 – 49510Poly-Ala

Amino acid modifications

Modified residue2351Phosphoserine Ref.9 Ref.10
Modified residue2411Phosphoserine Ref.9
Modified residue3201Phosphoserine Ref.9 Ref.13
Modified residue5211Phosphoserine Ref.13

Natural variations

Natural variant791P → L in Rieger syndrome. Ref.14
VAR_058722
Natural variant791P → R in ARS. Ref.22
VAR_058723
Natural variant791P → T in ARS. Ref.15
VAR_058724
Natural variant821S → T in ARS. Ref.2
VAR_007944
Natural variant861L → F in ARS; does not affect nuclear localization of the protein; reduces DNA binding and significantly reduces transactivation. Ref.19
VAR_058725
Natural variant871I → M in ARS. Ref.2
VAR_007945
Natural variant911I → S in ARS. Ref.16
VAR_058726
Natural variant911I → T in ARS. Ref.20
VAR_058727
Natural variant1121F → S in IGDA and PAN. Ref.1 Ref.18
VAR_007815
Natural variant1151Y → S in ARS. Ref.22
VAR_058728
Natural variant1261I → M in ARS; with glaucoma. Ref.1
VAR_007816
Natural variant1271R → H in ARS. Ref.16
VAR_058729
Natural variant1301L → F in RIEG3; expressed at levels similar to those of wild-type protein; migrates at an apparent reduced molecular weight compared with wild-type; has significantly impaired capacity to localize to the nucleus, binds DNA and transactivates reporter genes. Ref.24
VAR_058730
Natural variant1311S → L in ARS; with glaucoma. Ref.1 Ref.14
VAR_007817
Natural variant1491G → D in ARS. Ref.22
VAR_058731
Natural variant1611M → K in ARS; localized correctly to the nucleus; displays reduced DNA binding ability; disrupts FOXC1's transactivation ability. Ref.3 Ref.17 Ref.21
VAR_018150
Natural variant1611M → V in ARS. Ref.22
VAR_058732
Natural variant1651G → R in ARS; localized correctly to the nucleus; maintains wild-type levels of DNA binding; disrupts FOXC1's transactivation ability. Ref.21
VAR_058733
Natural variant1691R → P in ARS; localized correctly to the nucleus; displays reduced DNA binding ability; disrupts FOXC1's transactivation ability. Ref.21
VAR_058734

Experimental info

Mutagenesis861L → P: Severely disrupts the protein function. Ref.19
Sequence conflict70 – 778QPQPKDMV → RSRSPRHG in AAK13575. Ref.5
Sequence conflict1011L → Q in AAK13575. Ref.5
Sequence conflict1801V → L in AAC72915. Ref.2
Sequence conflict199 – 2024RQPP → ASPR in AAC72915. Ref.2
Sequence conflict4261D → N in AAC18081. Ref.1
Sequence conflict4261D → N in AAP15181. Ref.3

Sequences

Sequence LengthMass (Da)Tools
Q12948 [UniParc].

Last modified April 27, 2001. Version 3.
Checksum: 59C6FB94303ED59A

FASTA55356,789
        10         20         30         40         50         60 
MQARYSVSSP NSLGVVPYLG GEQSYYRAAA AAAGGGYTAM PAPMSVYSHP AHAEQYPGGM 

        70         80         90        100        110        120 
ARAYGPYTPQ PQPKDMVKPP YSYIALITMA IQNAPDKKIT LNGIYQFIMD RFPFYRDNKQ 

       130        140        150        160        170        180 
GWQNSIRHNL SLNECFVKVP RDDKKPGKGS YWTLDPDSYN MFENGSFLRR RRRFKKKDAV 

       190        200        210        220        230        240 
KDKEEKDRLH LKEPPPPGRQ PPPAPPEQAD GNAPGPQPPP VRIQDIKTEN GTCPSPPQPL 

       250        260        270        280        290        300 
SPAAALGSGS AAAVPKIESP DSSSSSLSSG SSPPGSLPSA RPLSLDGADS APPPPAPSAP 

       310        320        330        340        350        360 
PPHHSQGFSV DNIMTSLRGS PQSAAAELSS GLLASAAASS RAGIAPPLAL GAYSPGQSSL 

       370        380        390        400        410        420 
YSSPCSQTSS AGSSGGGGGG AGAAGGAGGA GTYHCNLQAM SLYAAGERGG HLQGAPGGAG 

       430        440        450        460        470        480 
GSAVDDPLPD YSLPPVTSSS SSSLSHGGGG GGGGGGQEAG HHPAAHQGRL TSWYLNQAGG 

       490        500        510        520        530        540 
DLGHLASAAA AAAAAGYPGQ QQNFHSVREM FESQRIGLNN SPVNGNSSCQ MAFPSSQSLY 

       550 
RTSGAFVYDC SKF 

« Hide

References

« Hide 'large scale' references
[1]"The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25."
Nishimura D.Y., Swiderski R.E., Alward W.L.M., Searby C.C., Patil S.R., Bennet S.R., Kanis A.B., Gastier J.M., Stone E.M., Sheffield V.C.
Nat. Genet. 19:140-147(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], VARIANTS SER-112; MET-126 AND LEU-131.
[2]"Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly."
Mears A.J., Jordan T., Mirzayans F., Dubois S., Kume T., Parlee M., Ritch R., Koop B., Kuo W.-L., Collins C., Marshall J., Gould D.B., Pearce W., Carlsson P., Enerbaeck S., Morissette J., Bhattacharya S., Hogan B., Raymond V., Walter M.A.
Am. J. Hum. Genet. 63:1316-1328(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], VARIANTS ARS THR-82 AND MET-87.
[3]"Mutation spectrum of FOXC1 and clinical genetic heterogeneity of Axenfeld-Rieger anomaly in India."
Komatireddy S., Chakrabarti S., Mandal A.K., Reddy A.B.M., Sampath S., Panicker S.G., Balasubramanian D.
Mol. Vis. 9:43-48(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], VARIANT ARS LYS-161.
[4]"The DNA sequence and analysis of human chromosome 6."
Mungall A.J., Palmer S.A., Sims S.K., Edwards C.A., Ashurst J.L., Wilming L., Jones M.C., Horton R., Hunt S.E., Scott C.E., Gilbert J.G.R., Clamp M.E., Bethel G., Milne S., Ainscough R., Almeida J.P., Ambrose K.D., Andrews T.D. expand/collapse author list , Ashwell R.I.S., Babbage A.K., Bagguley C.L., Bailey J., Banerjee R., Barker D.J., Barlow K.F., Bates K., Beare D.M., Beasley H., Beasley O., Bird C.P., Blakey S.E., Bray-Allen S., Brook J., Brown A.J., Brown J.Y., Burford D.C., Burrill W., Burton J., Carder C., Carter N.P., Chapman J.C., Clark S.Y., Clark G., Clee C.M., Clegg S., Cobley V., Collier R.E., Collins J.E., Colman L.K., Corby N.R., Coville G.J., Culley K.M., Dhami P., Davies J., Dunn M., Earthrowl M.E., Ellington A.E., Evans K.A., Faulkner L., Francis M.D., Frankish A., Frankland J., French L., Garner P., Garnett J., Ghori M.J., Gilby L.M., Gillson C.J., Glithero R.J., Grafham D.V., Grant M., Gribble S., Griffiths C., Griffiths M.N.D., Hall R., Halls K.S., Hammond S., Harley J.L., Hart E.A., Heath P.D., Heathcott R., Holmes S.J., Howden P.J., Howe K.L., Howell G.R., Huckle E., Humphray S.J., Humphries M.D., Hunt A.R., Johnson C.M., Joy A.A., Kay M., Keenan S.J., Kimberley A.M., King A., Laird G.K., Langford C., Lawlor S., Leongamornlert D.A., Leversha M., Lloyd C.R., Lloyd D.M., Loveland J.E., Lovell J., Martin S., Mashreghi-Mohammadi M., Maslen G.L., Matthews L., McCann O.T., McLaren S.J., McLay K., McMurray A., Moore M.J.F., Mullikin J.C., Niblett D., Nickerson T., Novik K.L., Oliver K., Overton-Larty E.K., Parker A., Patel R., Pearce A.V., Peck A.I., Phillimore B.J.C.T., Phillips S., Plumb R.W., Porter K.M., Ramsey Y., Ranby S.A., Rice C.M., Ross M.T., Searle S.M., Sehra H.K., Sheridan E., Skuce C.D., Smith S., Smith M., Spraggon L., Squares S.L., Steward C.A., Sycamore N., Tamlyn-Hall G., Tester J., Theaker A.J., Thomas D.W., Thorpe A., Tracey A., Tromans A., Tubby B., Wall M., Wallis J.M., West A.P., White S.S., Whitehead S.L., Whittaker H., Wild A., Willey D.J., Wilmer T.E., Wood J.M., Wray P.W., Wyatt J.C., Young L., Younger R.M., Bentley D.R., Coulson A., Durbin R.M., Hubbard T., Sulston J.E., Dunham I., Rogers J., Beck S.
Nature 425:805-811(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[5]"Drosophila forkhead homologues are expressed in a lineage-restricted manner in human hematopoietic cells."
Hromas R., Moore J., Johnston T., Socha C., Klemsz M.
Blood 81:2854-2859(1993) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 68-177, TISSUE SPECIFICITY.
Tissue: Erythroleukemia.
[6]"Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending."
Pierrou S., Hellqvist M., Samuelsson L., Enerbaeck S., Carlsson P.
EMBO J. 13:5002-5012(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 73-178.
[7]"FOXC1 is required for cell viability and resistance to oxidative stress in the eye through the transcriptional regulation of FOXO1A."
Berry F.B., Skarie J.M., Mirzayans F., Fortin Y., Hudson T.J., Raymond V., Link B.A., Walter M.A.
Hum. Mol. Genet. 17:490-505(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, DNA-BINDING.
[8]"Human p32 is a novel FOXC1-interacting protein that regulates FOXC1 transcriptional activity in ocular cells."
Huang L., Chi J., Berry F.B., Footz T.K., Sharp M.W., Walter M.A.
Invest. Ophthalmol. Vis. Sci. 49:5243-5249(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH C1QBP.
[9]"Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle."
Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R., Greff Z., Keri G., Stemmann O., Mann M.
Mol. Cell 31:438-448(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-235; SER-241 AND SER-320, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[10]"A quantitative atlas of mitotic phosphorylation."
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E., Elledge S.J., Gygi S.P.
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-235, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[11]"Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach."
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J., Mohammed S.
Anal. Chem. 81:4493-4501(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[12]"Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions."
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K., Rodionov V., Han D.K.
Sci. Signal. 2:RA46-RA46(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Leukemic T-cell.
[13]"Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis."
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L., Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.
Sci. Signal. 3:RA3-RA3(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-320 AND SER-521, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[14]"A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye."
Nishimura D.Y., Searby C.C., Alward W.L., Walton D., Craig J.E., Mackey D.A., Kawase K., Kanis A.B., Patil S.R., Stone E.M., Sheffield V.C.
Am. J. Hum. Genet. 68:364-372(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANTS RIEGER SYNDROME LEU-79 AND LEU-131.
[15]"A novel (Pro79Thr) mutation in the FKHL7 gene in a Japanese family with Axenfeld-Rieger syndrome."
Suzuki T., Takahashi K., Kuwahara S., Wada Y., Abe T., Tamai M.
Am. J. Ophthalmol. 132:572-575(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT ARS THR-79.
[16]"Screening for mutations of Axenfeld-Rieger syndrome caused by FOXC1 gene in Japanese patients."
Kawase C., Kawase K., Taniguchi T., Sugiyama K., Yamamoto T., Kitazawa Y., Alward W.L., Stone E.M., Nishimura D.Y., Sheffield V.C.
J. Glaucoma 10:477-482(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANTS ARS SER-91 AND HIS-127.
[17]"Novel mutation in FOXC1 wing region causing Axenfeld-Rieger anomaly."
Panicker S.G., Sampath S., Mandal A.K., Reddy A.B.M., Ahmed N., Hasnain S.E.
Invest. Ophthalmol. Vis. Sci. 43:3613-3616(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT ARS LYS-161.
[18]"A family with Axenfeld-Rieger syndrome and Peters Anomaly caused by a point mutation (Phe112Ser) in the FOXC1 gene."
Honkanen R.A., Nishimura D.Y., Swiderski R.E., Bennett S.R., Hong S., Kwon Y.H., Stone E.M., Sheffield V.C., Alward W.L.M.
Am. J. Ophthalmol. 135:368-375(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT PAN SER-112.
[19]"Identification and analysis of a novel mutation in the FOXC1 forkhead domain."
Saleem R.A., Murphy T.C., Liebmann J.M., Walter M.A.
Invest. Ophthalmol. Vis. Sci. 44:4608-4612(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT ARS PHE-86, MUTAGENESIS OF LEU-86, CHARACTERIZATION OF VARIANT ARS PHE-86.
[20]"Axenfeld-Rieger anomaly: a novel mutation in the forkhead box C1 (FOXC1) gene in a 4-generation family."
Mortemousque B., Amati-Bonneau P., Couture F., Graffan R., Dubois S., Colin J., Bonneau D., Morissette J., Lacombe D., Raymond V.
Arch. Ophthalmol. 122:1527-1533(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT ARS THR-91.
[21]"The wing 2 region of the FOXC1 forkhead domain is necessary for normal DNA-binding and transactivation functions."
Murphy T.C., Saleem R.A., Footz T., Ritch R., McGillivray B., Walter M.A.
Invest. Ophthalmol. Vis. Sci. 45:2531-2538(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANTS ARS ARG-165 AND PRO-169, CHARACTERIZATION OF VARIANTS ARS LYS-161; ARG-165 AND PRO-169.
[22]"Novel mutations of FOXC1 and PITX2 in patients with Axenfeld-Rieger malformations."
Weisschuh N., Dressler P., Schuettauf F., Wolf C., Wissinger B., Gramer E.
Invest. Ophthalmol. Vis. Sci. 47:3846-3852(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANTS ARS ARG-79; SER-115; ASP-149 AND VAL-161.
[23]Erratum
Weisschuh N., Dressler P., Schuettauf F., Wolf C., Wissinger B., Gramer E.
Invest. Ophthalmol. Vis. Sci. 47:5162-5162(2006)
[24]"Analyses of a novel L130F missense mutation in FOXC1."
Ito Y.A., Footz T.K., Murphy T.C., Courtens W., Walter M.A.
Arch. Ophthalmol. 125:128-135(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT RIEG3 PHE-130, CHARACTERIZATION OF VARIANT RIEG3 PHE-130.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
AF048693 Genomic DNA. Translation: AAC18081.1.
AF078096 Genomic DNA. Translation: AAC72915.1.
AY228704 Genomic DNA. Translation: AAP15181.1.
AL034344 Genomic DNA. Translation: CAB81658.1.
L12143 mRNA. Translation: AAK13575.1.
U13221 mRNA. Translation: AAA92038.1.
PIRS51626.
RefSeqNP_001444.2. NM_001453.2.
UniGeneHs.348883.

3D structure databases

ProteinModelPortalQ12948.
SMRQ12948. Positions 76-168.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid108585. 5 interactions.
IntActQ12948. 5 interactions.
STRING9606.ENSP00000370256.

PTM databases

PhosphoSiteQ12948.

Polymorphism databases

DMDM13638267.

Proteomic databases

PaxDbQ12948.
PRIDEQ12948.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000380874; ENSP00000370256; ENSG00000054598.
GeneID2296.
KEGGhsa:2296.
UCSCuc003mtp.3. human.

Organism-specific databases

CTD2296.
GeneCardsGC06P001610.
H-InvDBHIX0032962.
HGNCHGNC:3800. FOXC1.
HPAHPA040670.
MIM601090. gene.
601631. phenotype.
602482. phenotype.
604229. phenotype.
neXtProtNX_Q12948.
Orphanet98978. Axenfeld anomaly.
782. Axenfeld-Rieger syndrome.
708. Peters anomaly.
91483. Rieger anomaly.
PharmGKBPA28217.
GenAtlasSearch...

Phylogenomic databases

eggNOGCOG5025.
HOVERGENHBG051640.
InParanoidQ12948.
KOK09396.
OMAYSSPCSQ.
OrthoDBEOG7C8GHD.
PhylomeDBQ12948.
TreeFamTF316127.

Enzyme and pathway databases

SignaLinkQ12948.

Gene expression databases

ArrayExpressQ12948.
BgeeQ12948.
CleanExHS_FOXC1.
GenevestigatorQ12948.

Family and domain databases

Gene3D1.10.10.10. 1 hit.
InterProIPR001766. TF_fork_head.
IPR018122. TF_fork_head_CS.
IPR011991. WHTH_DNA-bd_dom.
[Graphical view]
PfamPF00250. Fork_head. 1 hit.
[Graphical view]
PRINTSPR00053. FORKHEAD.
SMARTSM00339. FH. 1 hit.
[Graphical view]
PROSITEPS00657. FORK_HEAD_1. 1 hit.
PS00658. FORK_HEAD_2. 1 hit.
PS50039. FORK_HEAD_3. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

GeneWikiForkhead_box_C1.
GenomeRNAi2296.
NextBio9319.
PROQ12948.
SOURCESearch...

Entry information

Entry nameFOXC1_HUMAN
AccessionPrimary (citable) accession number: Q12948
Secondary accession number(s): Q86UP7 expand/collapse secondary AC list , Q9BYM1, Q9NUE5, Q9UDD0, Q9UP06
Entry history
Integrated into UniProtKB/Swiss-Prot: November 1, 1997
Last sequence update: April 27, 2001
Last modified: April 16, 2014
This is version 143 of the entry and version 3 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 6

Human chromosome 6: entries, gene names and cross-references to MIM