Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Norsolorinic acid synthase

Gene

aflC

Organism
Aspergillus parasiticus (strain ATCC 56775 / NRRL 5862 / SRRC 143 / SU-1)
Status
Reviewed-Annotation score: Annotation score: 5 out of 5-Experimental evidence at protein leveli

Functioni

Norsolorinic acid synthase; part of the gene cluster that mediates the biosynthesis of aflatoxins, a group of polyketide-derived furanocoumarins, and part of the most toxic and carcinogenic compounds among the known mycotoxins (PubMed:7592391, PubMed:15094053, PubMed:7565588, PubMed:15006741). The four major aflatoxins produced by A.parasiticus are aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2) (PubMed:15006741). The first step of the pathway is the conversion of acetate to norsolorinic acid (NOR) and requires the fatty acid synthase subunits aflA and aflB, as well as the PKS aflC (PubMed:15006741). AflC combines a hexanoyl starter unit and 7 malonyl-CoA extender units to synthesize the precursor NOR (PubMed:17086560, PubMed:18403714). The hexanoyl starter unit is provided to the acyl-carrier protein (ACP) domain by the fungal fatty acid synthase aflA/aflB (PubMed:16256699). The second step is the conversion of NOR to averantin (AVN) and requires the norsolorinic acid ketoreductase aflD, which catalyzes the dehydration of norsolorinic acid to form (1'S)-averantin (PubMed:10584035). The norsolorinic acid reductases aflE and aflF may also play a role in the conversion of NOR to AVN (PubMed:15006741). The cytochrome P450 monooxygenase aflG then catalyzes the hydroxylation of AVN to 5'hydroxyaverantin (HAVN) (PubMed:8368836). The next step is performed by the 5'-hydroxyaverantin dehydrogenase aflH that transforms HAVN to 5'-oxoaverantin (OAVN) which is further converted to averufin (AVF) by aflK that plays a dual role in the pathway, as a 5'-oxoaverantin cyclase that mediates conversion of 5'-oxoaverantin, as well as a versicolorin B synthase in a later step in the pathway (PubMed:15006741, PubMed:11055914, PubMed:15932995). The averufin oxidase aflI catalyzes the conversion of AVF to versiconal hemiacetal acetate (VHA) (PubMed:15006741). VHA is then the substrate for the versiconal hemiacetal acetate esterase aflJ to yield versiconal (VAL) (PubMed:15006741). Versicolorin B synthase aflK then converts VAL to versicolorin B (VERB) by closing the bisfuran ring of aflatoxin which is required for DNA-binding, thus giving to aflatoxin its activity as a mutagen (PubMed:15006741, PubMed:8368837, PubMed:15932995). Then, the activity of the versicolorin B desaturase aflL leads to versicolorin A (VERA) (PubMed:15006741, PubMed:8368837). A branch point starts from VERB since it can also be converted to dihydrodemethylsterigmatocystin (DMDHST), probably also by aflL, VERA being a precursor for aflatoxins B1 and G1, and DMDHST for aflatoxins B2 and G2 (PubMed:15006741). Next, the versicolorin reductase aflM and the cytochrome P450 monooxygenase aflN are involved in conversion of VERA to demethylsterigmatocystin (DMST) (PubMed:15006741, PubMed:1339261, PubMed:15771506). AflX and aflY seem also involved in this step, through probable aflX-mediated epoxide ring-opening step following versicolorin A oxidation and aflY-mediated Baeyer-Villiger oxidation required for the formation of the xanthone ring (PubMed:16332900, PubMed:16461654). The methyltransferase aflO then leads to the modification of DMST to sterigmatocystin (ST), and of DMDHST to dihydrosterigmatocystin (DHST) (PubMed:10543813). Both ST and DHST are then substrates of the O-methyltransferase aflP to yield O-methylsterigmatocystin (OMST) and dihydro-O-methylsterigmatocystin (DHOMST), respectively (PubMed:8434913). Finally OMST is converted to aflatoxins B1 and G1, and DHOMST to aflatoxins B2 and G2, via the action of several enzymes including O-methylsterigmatocystin oxidoreductase aflQ, the cytodhrome P450 monooxygenase aflU, but also the NADH-dependent flavin oxidoreductase nadA which is specifically required for the synthesis of AFG1 (PubMed:15006741, PubMed:11996570, PubMed:15528514, PubMed:18486503).2 Publications20 Publications

Catalytic activityi

7 malonyl-CoA + hexanoyl-[acyl-carrier protein] = 7 CoA + norsolorinate anthrone + [acyl-carrier protein] + 7 CO2 + 2 H2O.1 Publication

Cofactori

pantetheine 4'-phosphate1 PublicationNote: Binds 1 phosphopantetheine covalently.1 Publication

Pathwayi: aflatoxin biosynthesis

This protein is involved in the pathway aflatoxin biosynthesis, which is part of Mycotoxin biosynthesis.1 Publication1 Publication
View all proteins of this organism that are known to be involved in the pathway aflatoxin biosynthesis and in Mycotoxin biosynthesis.

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Active sitei543For beta-ketoacyl synthase activityBy similarity1
Active sitei993For acyl/malonyl transferase activityBy similarity1
Active sitei1937For thioesterase activity1 Publication1

GO - Molecular functioni

GO - Biological processi

Complete GO annotation...

Keywords - Molecular functioni

Acyltransferase, Transferase

Enzyme and pathway databases

BRENDAi2.3.1.221. 523.
UniPathwayiUPA00287.

Protein family/group databases

ESTHERiaspor-PKSL1. Thioesterase.

Names & Taxonomyi

Protein namesi
Recommended name:
Norsolorinic acid synthase1 Publication (EC:2.3.1.2212 Publications)
Short name:
NSAS1 Publication
Alternative name(s):
Aflatoxin biosynthesis polyketide synthaseCurated
Aflatoxin biosynthesis protein C1 Publication
Polyketide synthase A1 Publication
Gene namesi
Name:aflC1 Publication
Synonyms:pksA1 Publication, pksL11 Publication
ORF Names:P875_00052995
OrganismiAspergillus parasiticus (strain ATCC 56775 / NRRL 5862 / SRRC 143 / SU-1)
Taxonomic identifieri1403190 [NCBI]
Taxonomic lineageiEukaryotaFungiDikaryaAscomycotaPezizomycotinaEurotiomycetesEurotiomycetidaeEurotialesAspergillaceaeAspergillus
Proteomesi
  • UP000033540 Componenti: Unassembled WGS sequence

Pathology & Biotechi

Disruption phenotypei

Impairs the production of norsolorinic acid, as well as of the four major forms of aflatoxin: AFB1, AFB2, AFG1 and AFG2 (PubMed:7592391, PubMed:7565588).2 Publications

Mutagenesis

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Mutagenesisi1345H → A: Abolishes catalytic activity. 1 Publication1
Mutagenesisi1491G → L: Abolishes catalytic activity. 1 Publication1
Mutagenesisi1543D → A: Abolishes catalytic activity. 1 Publication1
Mutagenesisi1546T → A: 40% decrease in catalytic activity. 1 Publication1
Mutagenesisi1547Q → A: Abolishes catalytic activity. 1 Publication1
Mutagenesisi1554N → A: Abolishes catalytic activity. 1 Publication1
Mutagenesisi1937S → A: Abolishes hydrolytic activity. 1 Publication1
Mutagenesisi1964D → N: Abolishes hydrolytic activity. 1 Publication1
Mutagenesisi2070D → N: Slight reduction in hydrolytic activity. 1 Publication1
Mutagenesisi2088H → F: Abolishes hydrolytic activity. 1 Publication1

PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
ChainiPRO_00001803031 – 2109Norsolorinic acid synthaseAdd BLAST2109

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Modified residuei1746O-(pantetheine 4'-phosphoryl)serinePROSITE-ProRule annotation1 Publication1

Keywords - PTMi

Phosphopantetheine, Phosphoprotein

Proteomic databases

PRIDEiQ12053.

Expressioni

Inductioni

Actively expressed at 27 degrees Celsius but not at all at a temperature higher than 35 degrees Celsius (PubMed:7592391). Expression is repressed by curcumin (PubMed:23113196).2 Publications

Interactioni

Protein-protein interaction databases

DIPiDIP-59286N.

Structurei

Secondary structure

12109
Legend: HelixTurnBeta strandPDB Structure known for this area
Show more details
Feature keyPosition(s)DescriptionActionsGraphical viewLength
Beta strandi1314 – 1321Combined sources8
Beta strandi1324 – 1332Combined sources9
Turni1336 – 1338Combined sources3
Helixi1339 – 1342Combined sources4
Beta strandi1345 – 1347Combined sources3
Beta strandi1350 – 1352Combined sources3
Helixi1355 – 1372Combined sources18
Beta strandi1386 – 1394Combined sources9
Beta strandi1407 – 1415Combined sources9
Helixi1421 – 1423Combined sources3
Beta strandi1426 – 1434Combined sources9
Beta strandi1442 – 1452Combined sources11
Helixi1455 – 1462Combined sources8
Helixi1464 – 1479Combined sources16
Beta strandi1483 – 1487Combined sources5
Helixi1488 – 1495Combined sources8
Turni1496 – 1498Combined sources3
Helixi1503 – 1505Combined sources3
Beta strandi1508 – 1514Combined sources7
Helixi1515 – 1517Combined sources3
Beta strandi1519 – 1525Combined sources7
Helixi1526 – 1528Combined sources3
Helixi1539 – 1554Combined sources16
Turni1561 – 1563Combined sources3
Beta strandi1564 – 1576Combined sources13
Beta strandi1585 – 1591Combined sources7
Beta strandi1600 – 1609Combined sources10
Beta strandi1612 – 1626Combined sources15
Helixi1627 – 1635Combined sources9
Helixi1712 – 1726Combined sources15
Helixi1730 – 1732Combined sources3
Helixi1739 – 1742Combined sources4
Helixi1746 – 1758Combined sources13
Turni1770 – 1772Combined sources3
Helixi1777 – 1785Combined sources9
Beta strandi1853 – 1859Combined sources7
Turni1861 – 1863Combined sources3
Beta strandi1864 – 1871Combined sources8
Helixi1878 – 1881Combined sources4
Beta strandi1888 – 1897Combined sources10
Turni1899 – 1902Combined sources4
Helixi1904 – 1906Combined sources3
Helixi1911 – 1925Combined sources15
Beta strandi1931 – 1936Combined sources6
Helixi1938 – 1952Combined sources15
Beta strandi1957 – 1964Combined sources8
Helixi1976 – 1984Combined sources9
Turni1985 – 1990Combined sources6
Beta strandi1991 – 1994Combined sources4
Beta strandi1996 – 1998Combined sources3
Helixi2006 – 2016Combined sources11
Turni2017 – 2019Combined sources3
Beta strandi2032 – 2040Combined sources9
Turni2045 – 2047Combined sources3
Turni2056 – 2058Combined sources3
Helixi2069 – 2072Combined sources4
Beta strandi2078 – 2087Combined sources10
Helixi2090 – 2092Combined sources3
Turni2094 – 2097Combined sources4
Helixi2098 – 2107Combined sources10

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
2KR5NMR-A1705-1791[»]
3HRQX-ray1.80A/B1305-1660[»]
3HRRX-ray1.90A/B1305-1660[»]
3ILSX-ray1.70A1845-2109[»]
ProteinModelPortaliQ12053.
SMRiQ12053.
ModBaseiSearch...
MobiDBiSearch...

Miscellaneous databases

EvolutionaryTraceiQ12053.

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Domaini1714 – 1785Acyl carrierPROSITE-ProRule annotation1 PublicationAdd BLAST72

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Regioni1 – 374Starter unit:ACP transacylase (SAT) domainSequence analysisAdd BLAST374
Regioni363 – 819Ketoacyl synthase (KS)domainSequence analysis1 PublicationAdd BLAST457
Regioni895 – 1216Malonyl-CoA:ACP transacylase (MAT) domainSequence analysis1 PublicationAdd BLAST322
Regioni1206 – 1713Product template (PT) domainSequence analysisAdd BLAST508
Regioni1867 – 2102Thioesterase/Claisen cyclase (TE/CLC) domainSequence analysisAdd BLAST236

Domaini

The domain architecture includes starter unit:ACP transacylase (SAT), beta-ketoacyl synthase (KS), malonyl-CoA:ACP transacylase (MAT), product template (PT), acyl-carrier domain (ACP), and thioesterase/Claisen cyclase (TE/CLC) domains (PubMed:17086560). The SAT domain receives a C6-fatty acid starter unit and transfers it onto the ACP for chain elongation. The KS accepts the hexanoyl-ACP unit and subsequent malonate extender units are loaded onto the ACP from the MAT domain for chain extension to generate the linear poly-beta-keto ACP-bound intermediate. The linear intermediate is then cyclized and aromatized in the PT domain. The resulting bicyclic intermediate is ultimately transferred from the ACP to the TE/CLC domain and undergoes Claisen-type C-C bond cyclization to release the product norsolorinic acid anthrone (noranthrone), which spontaneously oxidizes in vitro to norsolorinic acid (PubMed:17086560, PubMed:18403714, PubMed:19847268, PubMed:20332208).4 Publications

Sequence similaritiesi

Contains 1 acyl carrier domain.PROSITE-ProRule annotation

Family and domain databases

Gene3Di1.10.1200.10. 1 hit.
3.40.366.10. 2 hits.
3.40.47.10. 2 hits.
3.40.50.1820. 2 hits.
InterProiIPR029058. AB_hydrolase.
IPR001227. Ac_transferase_dom.
IPR014043. Acyl_transferase.
IPR016035. Acyl_Trfase/lysoPLipase.
IPR032821. KAsynt_C_assoc.
IPR014031. Ketoacyl_synth_C.
IPR014030. Ketoacyl_synth_N.
IPR016036. Malonyl_transacylase_ACP-bd.
IPR020801. PKS_acyl_transferase.
IPR020841. PKS_Beta-ketoAc_synthase_dom.
IPR020807. PKS_dehydratase.
IPR020806. PKS_PP-bd.
IPR009081. PP-bd_ACP.
IPR030918. PT_fungal_PKS.
IPR032088. SAT.
IPR001031. Thioesterase.
IPR016039. Thiolase-like.
[Graphical view]
PfamiPF00698. Acyl_transf_1. 1 hit.
PF16197. KAsynt_C_assoc. 1 hit.
PF00109. ketoacyl-synt. 1 hit.
PF02801. Ketoacyl-synt_C. 1 hit.
PF00550. PP-binding. 1 hit.
PF14765. PS-DH. 1 hit.
PF16073. SAT. 1 hit.
PF00975. Thioesterase. 1 hit.
[Graphical view]
SMARTiSM00827. PKS_AT. 1 hit.
SM00825. PKS_KS. 1 hit.
SM00823. PKS_PP. 1 hit.
[Graphical view]
SUPFAMiSSF47336. SSF47336. 1 hit.
SSF52151. SSF52151. 2 hits.
SSF53474. SSF53474. 1 hit.
SSF53901. SSF53901. 1 hit.
SSF55048. SSF55048. 1 hit.
TIGRFAMsiTIGR04532. PT_fungal_PKS. 1 hit.
PROSITEiPS50075. ACP_DOMAIN. 1 hit.
[Graphical view]

Sequencei

Sequence statusi: Complete.

Q12053-1 [UniParc]FASTAAdd to basket

« Hide

        10         20         30         40         50
MAQSRQLFLF GDQTADFVPK LRSLLSVQDS PILAAFLDQS HYVVRAQMLQ
60 70 80 90 100
SMNTVDHKLA RTADLRQMVQ KYVDGKLTPA FRTALVCLCQ LGCFIREYEE
110 120 130 140 150
SGNMYPQPSD SYVLGFCMGS LAAVAVSCSR SLSELLPIAV QTVLIAFRLG
160 170 180 190 200
LCALEMRDRV DGCSDDRGDP WSTIVWGLDP QQARDQIEVF CRTTNVPQTR
210 220 230 240 250
RPWISCISKN AITLSGSPST LRAFCAMPQM AQHRTAPIPI CLPAHNGALF
260 270 280 290 300
TQADITTILD TTPTTPWEQL PGQIPYISHV TGNVVQTSNY RDLIEVALSE
310 320 330 340 350
TLLEQVRLDL VETGLPRLLQ SRQVKSVTIV PFLTRMNETM SNILPDSFIS
360 370 380 390 400
TETRTDTGRA IPASGRPGAG KCKLAIVSMS GRFPESPTTE SFWDLLYKGL
410 420 430 440 450
DVCKEVPRRR WDINTHVDPS GKARNKGATK WGCWLDFSGD FDPRFFGISP
460 470 480 490 500
KEAPQMDPAQ RMALMSTYEA MERAGLVPDT TPSTQRDRIG VFHGVTSNDW
510 520 530 540 550
METNTAQNID TYFITGGNRG FIPGRINFCF EFAGPSYTND TACSSSLAAI
560 570 580 590 600
HLACNSLWRG DCDTAVAGGT NMIYTPDGHT GLDKGFFLSR TGNCKPYDDK
610 620 630 640 650
ADGYCRAEGV GTVFIKRLED ALADNDPILG VILDAKTNHS AMSESMTRPH
660 670 680 690 700
VGAQIDNMTA ALNTTGLHPN DFSYIEMHGT GTQVGDAVEM ESVLSVFAPS
710 720 730 740 750
ETARKADQPL FVGSAKANVG HGEGVSGVTS LIKVLMMMQH DTIPPHCGIK
760 770 780 790 800
PGSKINRNFP DLGARNVHIA FEPKPWPRTH TPRRVLINNF SAAGGNTALI
810 820 830 840 850
VEDAPERHWP TEKDPRSSHI VALSAHVGAS MKTNLERLHQ YLLKNPHTDL
860 870 880 890 900
AQLSYTTTAR RWHYLHRVSV TGASVEEVTR KLEMAIQNGD GVSRPKSKPK
910 920 930 940 950
ILFAFTGQGS QYATMGKQVY DAYPSFREDL EKFDRLAQSH GFPSFLHVCT
960 970 980 990 1000
SPKGDVEEMA PVVVQLAITC LQMALTNLMT SFGIRPDVTV GHSLGEFAAL
1010 1020 1030 1040 1050
YAAGVLSASD VVYLVGQRAE LLQERCQRGT HAMLAVKATP EALSQWIQDH
1060 1070 1080 1090 1100
DCEVACINGP EDTVLSGTTK NVAEVQRAMT DNGIKCTLLK LPFAFHSAQV
1110 1120 1130 1140 1150
QPILDDFEAL AQGATFAKPQ LLILSPLLRT EIHEQGVVTP SYVAQHCRHT
1160 1170 1180 1190 1200
VDMAQALRSA REKGLIDDKT LVIELGPKPL ISGMVKMTLG DKISTLPTLA
1210 1220 1230 1240 1250
PNKAIWPSLQ KILTSVYTGG WDINWKKYHA PFASSQKVVD LPSYGWDLKD
1260 1270 1280 1290 1300
YYIPYQGDWC LHRHQQDCKC AAPGHEIKTA DYQVPPESTP HRPSKLDPSK
1310 1320 1330 1340 1350
EAFPEIKTTT TLHRVVEETT KPLGATLVVE TDISRKDVNG LARGHLVDGI
1360 1370 1380 1390 1400
PLCTPSFYAD IAMQVGQYSM QRLRAGHPGA GAIDGLVDVS DMVVDKALVP
1410 1420 1430 1440 1450
HGKGPQLLRT TLTMEWPPKA AATTRSAKVK FATYFADGKL DTEHASCTVR
1460 1470 1480 1490 1500
FTSDAQLKSL RRSVSEYKTH IRQLHDGHAK GQFMRYNRKT GYKLMSSMAR
1510 1520 1530 1540 1550
FNPDYMLLDY LVLNEAENEA ASGVDFSLGS SEGTFAAHPA HVDAITQVAG
1560 1570 1580 1590 1600
FAMNANDNVD IEKQVYVNHG WDSFQIYQPL DNSKSYQVYT KMGQAKENDL
1610 1620 1630 1640 1650
VHGDVVVLDG EQIVAFFRGL TLRSVPRGAL RVVLQTTVKK ADRQLGFKTM
1660 1670 1680 1690 1700
PSPPPPTTTM PISPYKPANT QVSSQAIPAE ATHSHTPPQP KHSPVPETAG
1710 1720 1730 1740 1750
SAPAAKGVGV SNEKLDAVMR VVSEESGIAL EELTDDSNFA DMGIDSLSSM
1760 1770 1780 1790 1800
VIGSRFREDL GLDLGPEFSL FIDCTTVRAL KDFMLGSGDA GSGSNVEDPP
1810 1820 1830 1840 1850
PSATPGINPE TDWSSSASDS IFASEDHGHS SESGADTGSP PALDLKPYCR
1860 1870 1880 1890 1900
PSTSVVLQGL PMVARKTLFM LPDGGGSAFS YASLPRLKSD TAVVGLNCPY
1910 1920 1930 1940 1950
ARDPENMNCT HGAMIESFCN EIRRRQPRGP YHLGGWSSGG AFAYVVAEAL
1960 1970 1980 1990 2000
VNQGEEVHSL IIIDAPIPQA MEQLPRAFYE HCNSIGLFAT QPGASPDGST
2010 2020 2030 2040 2050
EPPSYLIPHF TAVVDVMLDY KLAPLHARRM PKVGIVWAAD TVMDERDAPK
2060 2070 2080 2090 2100
MKGMHFMIQK RTEFGPDGWD TIMPGASFDI VRADGANHFT LMQKEHVSII

SDLIDRVMA
Length:2,109
Mass (Da):230,716
Last modified:November 1, 1997 - v1
Checksum:iCB701372A16D8551
GO

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
L42766 mRNA. Translation: AAC41675.1.
L42765 Genomic DNA. Translation: AAC41674.1.
AY371490 Genomic DNA. Translation: AAS66004.1.
JZEE01000728 Genomic DNA. Translation: KJK60793.1.
PIRiT17490.

Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
L42766 mRNA. Translation: AAC41675.1.
L42765 Genomic DNA. Translation: AAC41674.1.
AY371490 Genomic DNA. Translation: AAS66004.1.
JZEE01000728 Genomic DNA. Translation: KJK60793.1.
PIRiT17490.

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
2KR5NMR-A1705-1791[»]
3HRQX-ray1.80A/B1305-1660[»]
3HRRX-ray1.90A/B1305-1660[»]
3ILSX-ray1.70A1845-2109[»]
ProteinModelPortaliQ12053.
SMRiQ12053.
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

DIPiDIP-59286N.

Protein family/group databases

ESTHERiaspor-PKSL1. Thioesterase.

Proteomic databases

PRIDEiQ12053.

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Enzyme and pathway databases

UniPathwayiUPA00287.
BRENDAi2.3.1.221. 523.

Miscellaneous databases

EvolutionaryTraceiQ12053.

Family and domain databases

Gene3Di1.10.1200.10. 1 hit.
3.40.366.10. 2 hits.
3.40.47.10. 2 hits.
3.40.50.1820. 2 hits.
InterProiIPR029058. AB_hydrolase.
IPR001227. Ac_transferase_dom.
IPR014043. Acyl_transferase.
IPR016035. Acyl_Trfase/lysoPLipase.
IPR032821. KAsynt_C_assoc.
IPR014031. Ketoacyl_synth_C.
IPR014030. Ketoacyl_synth_N.
IPR016036. Malonyl_transacylase_ACP-bd.
IPR020801. PKS_acyl_transferase.
IPR020841. PKS_Beta-ketoAc_synthase_dom.
IPR020807. PKS_dehydratase.
IPR020806. PKS_PP-bd.
IPR009081. PP-bd_ACP.
IPR030918. PT_fungal_PKS.
IPR032088. SAT.
IPR001031. Thioesterase.
IPR016039. Thiolase-like.
[Graphical view]
PfamiPF00698. Acyl_transf_1. 1 hit.
PF16197. KAsynt_C_assoc. 1 hit.
PF00109. ketoacyl-synt. 1 hit.
PF02801. Ketoacyl-synt_C. 1 hit.
PF00550. PP-binding. 1 hit.
PF14765. PS-DH. 1 hit.
PF16073. SAT. 1 hit.
PF00975. Thioesterase. 1 hit.
[Graphical view]
SMARTiSM00827. PKS_AT. 1 hit.
SM00825. PKS_KS. 1 hit.
SM00823. PKS_PP. 1 hit.
[Graphical view]
SUPFAMiSSF47336. SSF47336. 1 hit.
SSF52151. SSF52151. 2 hits.
SSF53474. SSF53474. 1 hit.
SSF53901. SSF53901. 1 hit.
SSF55048. SSF55048. 1 hit.
TIGRFAMsiTIGR04532. PT_fungal_PKS. 1 hit.
PROSITEiPS50075. ACP_DOMAIN. 1 hit.
[Graphical view]
ProtoNetiSearch...

Entry informationi

Entry nameiAFLC_ASPPU
AccessioniPrimary (citable) accession number: Q12053
Secondary accession number(s): A0A0F0I481, Q6UEH2
Entry historyi
Integrated into UniProtKB/Swiss-Prot: November 1, 1997
Last sequence update: November 1, 1997
Last modified: November 30, 2016
This is version 97 of the entry and version 1 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

Miscellaneousi

Keywords - Technical termi

3D-structure, Complete proteome, Multifunctional enzyme, Reference proteome

Documents

  1. PATHWAY comments
    Index of metabolic and biosynthesis pathways
  2. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  3. SIMILARITY comments
    Index of protein domains and families

Similar proteinsi

Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into one UniRef entry.
90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.