Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q09472 (EP300_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 188. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (6) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Web links·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Histone acetyltransferase p300

Short name=p300 HAT
EC=2.3.1.48
Alternative name(s):
E1A-associated protein p300
Gene names
Name:EP300
Synonyms:P300
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length2414 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Functions as histone acetyltransferase and regulates transcription via chromatin remodeling. Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation. Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability. Mediates acetylation of histone H3 at 'Lys-27' (H3K27ac). Also functions as acetyltransferase for nonhistone targets. Acetylates 'Lys-131' of ALX1 and acts as its coactivator in the presence of CREBBP. Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function. Acetylates HDAC1 leading to its inactivation and modulation of transcription. Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2. Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement. Can also mediate transcriptional repression. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Acetylates FOXO1 and enhances its transcriptional activity. Acetylates BCL6 wich disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity. Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter. Ref.6 Ref.16 Ref.30 Ref.34 Ref.37 Ref.39 Ref.43 Ref.45 Ref.53 Ref.58 Ref.62 Ref.75 Ref.76

Catalytic activity

Acetyl-CoA + [histone] = CoA + acetyl-[histone]. Ref.7 Ref.75

Subunit structure

Interacts with phosphorylated CREB1. Interacts with HIF1A; the interaction is stimulated in response to hypoxia and inhibited by CITED2. Interacts (via N-terminus) with TFAP2A (via N-terminus); the interaction requires CITED2. Interacts (via CH1 domain) with CITED2 (via C-terminus). Interacts with CITED1 (unphosphorylated form preferentially and via C-terminus). Interacts with ESR1; the interaction is estrogen-dependent and enhanced by CITED1. Interacts with DTX1, EID1, ELF3, FEN1, LEF1, NCOA1, NCOA6, NR3C1, PCAF, PELP1, PRDM6, SP1, SP3, SPIB, SRY, TCF7L2, TP53, DDX5, DDX17, SATB1, SRCAP, TTC5, JMY and TRERF1. The TAZ-type 1 domain interacts with HIF1A. Probably part of a complex with HIF1A and CREBBP. Part of a complex containing CARM1 and NCOA2/GRIP1. Interacts with ING4 and this interaction may be indirect. Interacts with ING5. Interacts with the C-terminal region of CITED4. Non-sumoylated EP300 preferentially interacts with SENP3. Interacts with SS18L1/CREST. Interacts with ALX1 (via homeobox domain). Interacts with NEUROD1; the interaction is inhibited by NR0B2. Interacts with TCF3. Interacts (via CREB-binding domain) with MYOCD (via C-terminus). Binds to HIPK2. Interacts with ROCK2 and PPARG. Forms a complex made of CDK9, CCNT1/cyclin-T1, EP300 and GATA4 that stimulates hypertrophy in cardiomyocytes. Interacts with IRF1 and this interaction enhances acetylation of p53/TP53 and stimulation of its activity. Interacts with FOXO1; the interaction acetylates FOXO1 and enhances its transcriptional activity. Interacts with ALKBH4 and DDIT3/CHOP. Interacts with KLF15. Interacts with CEBPB and RORA. Interacts with HTLV-1 Tax and p30II. Interacts with and acetylates HIV-1 Tat. Interacts with NPAS2, ARNTL/BMAL1 and CLOCK. Ref.6 Ref.8 Ref.9 Ref.10 Ref.11 Ref.12 Ref.13 Ref.14 Ref.15 Ref.18 Ref.19 Ref.20 Ref.21 Ref.22 Ref.23 Ref.24 Ref.25 Ref.26 Ref.27 Ref.28 Ref.29 Ref.30 Ref.31 Ref.32 Ref.33 Ref.35 Ref.36 Ref.37 Ref.38 Ref.39 Ref.40 Ref.42 Ref.43 Ref.44 Ref.45 Ref.46 Ref.47 Ref.49 Ref.50 Ref.53 Ref.54 Ref.55 Ref.56 Ref.59 Ref.60 Ref.61 Ref.67 Ref.70 Ref.74 Ref.77 Ref.79 Ref.81

Subcellular location

Cytoplasm. Nucleus. Note: In the presence of ALX1 relocalizes from the cytoplasm to the nucleus. Colocalizes with ROCK2 in the nucleus. Ref.39 Ref.45 Ref.55

Domain

The CRD1 domain (cell cycle regulatory domain 1) mediates transcriptional repression of a subset of p300 responsive genes; it can be de-repressed by CDKN1A/p21WAF1 at least at some promoters. It conatins sumoylation and acetylation sites and the same lysine residues may be targeted for the respective modifications. It is proposed that deacetylation by SIRT1 allows sumoylation leading to suppressed activity.

Post-translational modification

Acetylated on Lys at up to 17 positions by intermolecular autocatalysis. Deacetylated in the transcriptional repression domain (CRD1) by SIRT1, preferentially at Lys-1020. Ref.48 Ref.52 Ref.57

Citrullinated at Arg-2142 by PADI4, which impairs methylation by CARM1 and promotes interaction with NCOA2/GRIP1.

Methylated at Arg-580 and Arg-604 in the KIX domain by CARM1, which blocks association with CREB, inhibits CREB signaling and activates apoptotic response. Also methylated at Arg-2142 by CARM1, which impairs interaction with NCOA2/GRIP1. Ref.6 Ref.54

Sumoylated; sumoylation in the transcriptional repression domain (CRD1) mediates transcriptional repression. Desumoylated by SENP3 through the removal of SUMO2 and SUMO3. Ref.41 Ref.67

Probable target of ubiquitination by FBXO3, leading to rapid proteasome-dependent degradation.

Phosphorylated by HIPK2 in a RUNX1-dependent manner. This phosphorylation that activates EP300 happens when RUNX1 is associated with DNA and CBFB. Phosphorylated by ROCK2 and this enhances its activity. Phosphorylation at Ser-89 by AMPK reduces interaction with nuclear receptors, such as PPARG. Ref.23 Ref.36 Ref.55 Ref.63

Involvement in disease

Defects in EP300 may play a role in epithelial cancer.

Chromosomal aberrations involving EP300 may be a cause of acute myeloid leukemias. Translocation t(8;22)(p11;q13) with KAT6A.

Rubinstein-Taybi syndrome 2 (RSTS2) [MIM:613684]: A disorder characterized by craniofacial abnormalities, postnatal growth deficiency, broad thumbs, broad big toes, mental retardation and a propensity for development of malignancies. Some individuals with RSTS2 have less severe mental impairment, more severe microcephaly, and a greater degree of changes in facial bone structure than RSTS1 patients.
Note: The disease is caused by mutations affecting the gene represented in this entry. Ref.51

Sequence similarities

Contains 1 bromo domain.

Contains 1 KIX domain.

Contains 2 TAZ-type zinc fingers.

Contains 1 ZZ-type zinc finger.

Ontologies

Keywords
   Biological processBiological rhythms
Cell cycle
Host-virus interaction
Transcription
Transcription regulation
   Cellular componentCytoplasm
Nucleus
   Coding sequence diversityChromosomal rearrangement
Polymorphism
   DiseaseDisease mutation
   DomainBromodomain
Repeat
Zinc-finger
   LigandMetal-binding
Zinc
   Molecular functionAcyltransferase
Transferase
   PTMAcetylation
Citrullination
Isopeptide bond
Methylation
Phosphoprotein
Ubl conjugation
   Technical term3D-structure
Complete proteome
Direct protein sequencing
Reference proteome
Gene Ontology (GO)
   Biological_processG2/M transition of mitotic cell cycle

Traceable author statement. Source: Reactome

N-terminal peptidyl-lysine acetylation

Inferred from direct assay PubMed 12435739. Source: UniProtKB

Notch signaling pathway

Traceable author statement. Source: Reactome

apoptotic process

Inferred from mutant phenotype PubMed 9194565. Source: UniProtKB

cellular response to hydrogen peroxide

Inferred from electronic annotation. Source: Ensembl

cellular response to hypoxia

Traceable author statement. Source: Reactome

cellular response to organic cyclic compound

Inferred from electronic annotation. Source: Ensembl

chromatin organization

Traceable author statement. Source: Reactome

circadian rhythm

Inferred from sequence or structural similarity. Source: UniProtKB

digestive tract development

Inferred from electronic annotation. Source: Ensembl

heart development

Inferred from electronic annotation. Source: Ensembl

histone H2B acetylation

Inferred from direct assay Ref.75. Source: UniProtKB

histone H4 acetylation

Inferred from mutant phenotype PubMed 16325578. Source: UniProtKB

innate immune response

Traceable author statement. Source: Reactome

internal peptidyl-lysine acetylation

Inferred from direct assay PubMed 17403783. Source: UniProtKB

internal protein amino acid acetylation

Inferred from direct assay Ref.62. Source: UniProtKB

intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator

Inferred from direct assay PubMed 17403783. Source: UniProtKB

liver development

Inferred from electronic annotation. Source: Ensembl

lung development

Inferred from electronic annotation. Source: Ensembl

mitotic cell cycle

Traceable author statement. Source: Reactome

negative regulation of transcription from RNA polymerase II promoter

Inferred from direct assay Ref.16. Source: UniProtKB

nervous system development

Traceable author statement PubMed 10205054. Source: ProtInc

organ morphogenesis

Inferred from electronic annotation. Source: Ensembl

positive regulation by host of viral transcription

Inferred from direct assay PubMed 16687403. Source: BHF-UCL

positive regulation of DNA binding

Inferred from electronic annotation. Source: Ensembl

positive regulation of axon extension

Inferred from electronic annotation. Source: Ensembl

positive regulation of cell death

Inferred from electronic annotation. Source: Ensembl

positive regulation of cell size

Inferred from electronic annotation. Source: Ensembl

positive regulation of collagen biosynthetic process

Inferred from electronic annotation. Source: Ensembl

positive regulation of glycoprotein biosynthetic process

Inferred from electronic annotation. Source: Ensembl

positive regulation of protein binding

Inferred from electronic annotation. Source: Ensembl

positive regulation of protein import into nucleus, translocation

Inferred from electronic annotation. Source: Ensembl

positive regulation of protein phosphorylation

Inferred from electronic annotation. Source: Ensembl

positive regulation of protein secretion

Inferred from electronic annotation. Source: Ensembl

positive regulation of proteolysis

Inferred from electronic annotation. Source: Ensembl

positive regulation of sarcomere organization

Inferred from electronic annotation. Source: Ensembl

positive regulation of sequence-specific DNA binding transcription factor activity

Inferred from direct assay PubMed 10518217. Source: UniProtKB

positive regulation of transcription from RNA polymerase II promoter

Inferred from direct assay Ref.37Ref.62. Source: UniProtKB

positive regulation of translation

Inferred from electronic annotation. Source: Ensembl

positive regulation of type I interferon production

Traceable author statement. Source: Reactome

protein kinase B signaling

Inferred from electronic annotation. Source: Ensembl

protein-DNA complex assembly

Inferred from electronic annotation. Source: Ensembl

regulation of androgen receptor signaling pathway

Inferred from direct assay PubMed 18487222. Source: BHF-UCL

regulation of angiotensin metabolic process

Inferred from electronic annotation. Source: Ensembl

regulation of cell cycle

Traceable author statement. Source: Reactome

regulation of transcription from RNA polymerase II promoter in response to hypoxia

Traceable author statement. Source: Reactome

regulation of transcription, DNA-templated

Inferred from direct assay PubMed 15261140. Source: UniProtKB

regulation of tubulin deacetylation

Inferred from direct assay Ref.62. Source: UniProtKB

response to calcium ion

Inferred from electronic annotation. Source: Ensembl

response to cobalt ion

Inferred from electronic annotation. Source: Ensembl

response to drug

Inferred from electronic annotation. Source: Ensembl

response to estrogen

Inferred from direct assay Ref.22. Source: UniProtKB

response to ethanol

Inferred from electronic annotation. Source: Ensembl

response to fatty acid

Inferred from electronic annotation. Source: Ensembl

response to glucocorticoid

Inferred from electronic annotation. Source: Ensembl

response to glucose

Inferred from electronic annotation. Source: Ensembl

response to hypoxia

Inferred from direct assay PubMed 15261140Ref.13. Source: UniProtKB

response to retinoic acid

Inferred from electronic annotation. Source: Ensembl

response to tumor necrosis factor

Inferred from electronic annotation. Source: Ensembl

skeletal muscle tissue development

Inferred from electronic annotation. Source: Ensembl

somitogenesis

Inferred from electronic annotation. Source: Ensembl

transcription, DNA-templated

Inferred from electronic annotation. Source: UniProtKB-KW

viral process

Inferred from electronic annotation. Source: UniProtKB-KW

   Cellular_componentchromatin

Inferred from electronic annotation. Source: Ensembl

cytoplasm

Inferred from direct assay. Source: HPA

histone acetyltransferase complex

Inferred from electronic annotation. Source: Ensembl

nucleoplasm

Traceable author statement. Source: Reactome

nucleus

Inferred from direct assay Ref.39Ref.45PubMed 9194565. Source: UniProtKB

protein-DNA complex

Inferred from electronic annotation. Source: Ensembl

transcription factor complex

Inferred from electronic annotation. Source: Ensembl

   Molecular_functionDNA binding

Inferred from direct assay PubMed 9194565. Source: UniProtKB

RNA polymerase II activating transcription factor binding

Inferred from physical interaction PubMed 20018936. Source: BHF-UCL

RNA polymerase II core promoter proximal region sequence-specific DNA binding

Inferred from electronic annotation. Source: Ensembl

acetyltransferase activity

Inferred from direct assay Ref.62. Source: UniProtKB

activating transcription factor binding

Inferred from physical interaction PubMed 20590529. Source: UniProtKB

androgen receptor binding

Inferred from physical interaction PubMed 18487222. Source: BHF-UCL

antigen binding

Inferred from electronic annotation. Source: Ensembl

beta-catenin binding

Inferred from physical interaction PubMed 12408825. Source: BHF-UCL

chromatin DNA binding

Inferred from electronic annotation. Source: Ensembl

chromatin binding

Inferred from mutant phenotype PubMed 17641689. Source: UniProtKB

core promoter binding

Inferred from direct assay PubMed 17641689. Source: UniProtKB

histone acetyltransferase activity

Inferred from direct assay PubMed 12040021Ref.45Ref.75. Source: UniProtKB

lysine N-acetyltransferase activity

Inferred from direct assay PubMed 20019387. Source: UniProtKB

nuclear hormone receptor binding

Inferred from physical interaction Ref.14. Source: UniProtKB

protein binding

Inferred from physical interaction PubMed 10518217Ref.15Ref.19Ref.30Ref.22PubMed 12435739Ref.37Ref.35Ref.39Ref.45Ref.50Ref.49Ref.46PubMed 15261140Ref.47PubMed 15588252PubMed 15674325PubMed 15843474Ref.53PubMed 16652169Ref.56PubMed 17403783Ref.60PubMed 18160048Ref.62PubMed 19234109PubMed 20019387PubMed 20228809Ref.77PubMed 9194565Ref.13. Source: UniProtKB

transcription coactivator activity

Inferred from direct assay PubMed 12435739Ref.37. Source: UniProtKB

transcription factor binding

Inferred from physical interaction Ref.27PubMed 15261140Ref.8. Source: UniProtKB

transferase activity, transferring acyl groups

Inferred from direct assay PubMed 17403783. Source: UniProtKB

zinc ion binding

Inferred from electronic annotation. Source: InterPro

Complete GO annotation...

Binary interactions

With

Entry

#Exp.

IntAct

Notes

P030702EBI-447295,EBI-617698From a different organism.
P032553EBI-447295,EBI-2603114From a different organism.
P03255-23EBI-447295,EBI-6859460From a different organism.
P032593EBI-447295,EBI-6947456From a different organism.
APEX1P276958EBI-447295,EBI-1048805
ASH2LQ9UBL35EBI-447295,EBI-540797
BRD7Q9NPI13EBI-447295,EBI-711221
CDK2P249415EBI-447295,EBI-375096
CITED2Q999673EBI-447295,EBI-937732
COPS2P612012EBI-447295,EBI-1050386
CREB1P162202EBI-447295,EBI-711855
Creb1Q011472EBI-447295,EBI-2291098From a different organism.
DDX5P178444EBI-447295,EBI-351962
E2P031223EBI-447295,EBI-7028618From a different organism.
E2P064227EBI-447295,EBI-7136851From a different organism.
E2P067906EBI-447295,EBI-7010629From a different organism.
ESR1P033722EBI-447295,EBI-78473
GTF2BQ004032EBI-447295,EBI-389564
HIF1AQ1666513EBI-447295,EBI-447269
Hif1aQ612212EBI-447295,EBI-298954From a different organism.
HIPK2Q9H2X64EBI-447295,EBI-348345
JmyQ9QXM116EBI-447295,EBI-866001From a different organism.
KAT2BQ928312EBI-447295,EBI-477430
NAP1L1P552093EBI-447295,EBI-356392
NBNO609345EBI-447295,EBI-494844
NCOA3Q9Y6Q92EBI-447295,EBI-81196
POU3F2P202653EBI-447295,EBI-1167176
PPP1R13BQ96KQ42EBI-447295,EBI-1105153
PPP1R13LQ8WUF52EBI-447295,EBI-5550163
RUNX3Q137617EBI-447295,EBI-925990
SIRT1Q96EB62EBI-447295,EBI-1802965
SKP2Q133093EBI-447295,EBI-456291
STAT6P422262EBI-447295,EBI-1186478
TFAP2AP055497EBI-447295,EBI-347351
TP53P0463710EBI-447295,EBI-366083
TP53BP2Q136252EBI-447295,EBI-77642
VDRP114733EBI-447295,EBI-286357
YBX1P678092EBI-447295,EBI-354065

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Initiator methionine11Removed
Chain2 – 24142413Histone acetyltransferase p300
PRO_0000211193

Regions

Domain566 – 64580KIX
Domain1067 – 113973Bromo
Zinc finger331 – 41787TAZ-type 1
Zinc finger1664 – 170744ZZ-type
Zinc finger1728 – 180982TAZ-type 2
Region2 – 149148Interaction with RORA
Region2 – 139138Interaction with ALX1
Region1017 – 102913CRD1; mediates transcriptional repression
Region1572 – 1818247Binding region for E1A adenovirus
Region2003 – 2212210Interaction with HTLV-1 Tax
Region2041 – 2240200Interaction with NCOA2
Motif11 – 177Nuclear localization signal Potential
Compositional bias797 – 8004Poly-Ser
Compositional bias1519 – 15268Poly-Glu
Compositional bias2066 – 20694Poly-Gln
Compositional bias2190 – 21956Poly-Gln

Sites

Metal binding3471Zinc 1
Metal binding3511Zinc 1
Metal binding3641Zinc 1
Metal binding3691Zinc 1
Metal binding3781Zinc 2
Metal binding3821Zinc 2
Metal binding3881Zinc 2
Metal binding3931Zinc 2
Metal binding4021Zinc 3
Metal binding4061Zinc 3
Metal binding4111Zinc 3
Metal binding4141Zinc 3
Site31 – 322Breakpoint for translocation to form KAT6A-EP300 and EP300-KAT6A
Site20881Interaction with NCOA2
Site21421Interaction with NCOA2

Amino acid modifications

Modified residue21N-acetylalanine Ref.66 Ref.73
Modified residue891Phosphoserine; by AMPK Ref.23 Ref.55
Modified residue2851Phosphoserine
Modified residue5801Omega-N-methylated arginine; by CARM1 Ref.6
Modified residue6041Omega-N-methylated arginine; by CARM1 Ref.6
Modified residue6361N6-acetyllysine Ref.69
Modified residue8851Phosphothreonine
Modified residue8871Phosphothreonine
Modified residue9771N6-acetyllysine Ref.69
Modified residue10201N6-acetyllysine; alternate Ref.52
Modified residue10241N6-acetyllysine; alternate Ref.52
Modified residue10381Phosphoserine Ref.72
Modified residue11801N6-acetyllysine By similarity
Modified residue13361N6-acetyllysine Ref.57
Modified residue14731N6-acetyllysine Ref.57
Modified residue14991N6-acetyllysine; by autocatalysis Ref.48
Modified residue15421N6-acetyllysine Ref.69
Modified residue15461N6-acetyllysine Ref.69
Modified residue15491N6-acetyllysine; by autocatalysis Ref.48
Modified residue15541N6-acetyllysine; by autocatalysis Ref.48 Ref.69
Modified residue15551N6-acetyllysine Ref.69
Modified residue15581N6-acetyllysine Ref.48 Ref.69
Modified residue15601N6-acetyllysine; by autocatalysis Ref.48 Ref.69
Modified residue15831N6-acetyllysine Ref.69
Modified residue17341Phosphoserine
Modified residue18571Phosphothreonine
Modified residue18591Phosphothreonine
Modified residue21421Asymmetric dimethylarginine; by CARM1; alternate Ref.54
Modified residue21421Citrulline; by PADI4; alternate
Cross-link1020Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO); alternate Ref.41
Cross-link1024Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO); alternate Ref.41

Natural variations

Natural variant2891M → V.
Corresponds to variant rs2230111 [ dbSNP | Ensembl ].
VAR_055554
Natural variant8271L → P in a breast cancer sample. Ref.82
VAR_014428
Natural variant9971I → V.
Corresponds to variant rs20551 [ dbSNP | Ensembl ].
VAR_020425
Natural variant10131E → G in a breast cancer sample. Ref.82
VAR_014429
Natural variant16501S → Y in a pancreatic cancer sample. Ref.82
VAR_014430
Natural variant21741T → S.
Corresponds to variant rs5758252 [ dbSNP | Ensembl ].
VAR_038376
Natural variant22211P → Q in a colorectal cancer sample. Ref.82
Corresponds to variant rs28937578 [ dbSNP | Ensembl ].
VAR_014431
Natural variant22231Q → P. Ref.1
Corresponds to variant rs1046088 [ dbSNP | Ensembl ].
VAR_038377

Experimental info

Mutagenesis891S → A: Abolishes AMPK-mediated phosphorylation. Ref.23
Mutagenesis891S → D: Phosphomimetic mutant that leads to descreased interaction with nuclear receptors. Ref.23
Mutagenesis3441L → A: Inhibits interaction with HIF1A and transcription activation; when associated with A-345. Ref.79
Mutagenesis3451L → A: Inhibits interaction with HIF1A and transcription activation; when associated with A-344. Ref.79
Mutagenesis371 – 3766TMKNVL → NAAIRS: Inhibits interaction with HIF1A. Reduces interaction with CITED2. Ref.13
Mutagenesis413 – 4186VCLPLK → NAAIRS: Inhibits interaction with HIF1A. Does not inhibit interaction with CITED2. Ref.13
Mutagenesis10201K → A: Abolishes sumoylation and transcriptional repression when associated with A-1024. Ref.41 Ref.52
Mutagenesis10201K → R: Abolishes sumoylation and transcriptional repression; when associated with R-1024. Ref.41 Ref.52
Mutagenesis10241K → A: Abolishes sumoylation and transcriptional repression; when associated with A-1020. Ref.41 Ref.52
Mutagenesis10241K → R: Abolishes sumoylation and transcriptional repression; when associated with R-1020. Ref.41 Ref.52
Mutagenesis13571T → L: 40% decrease in activity. Ref.80
Mutagenesis13571T → R: 40% decrease in activity. 90% decrease in activity; when associated with R-1505; R-1625 and R-1628. Ref.80
Mutagenesis13961S → R: Loss of activity; when associated with R-1397. Ref.80
Mutagenesis13961S → W: Loss of activity; when associated with W-1396. Ref.80
Mutagenesis13971Y → R: Loss of activity; when associated with R-1396. Ref.80
Mutagenesis13971Y → W: Loss of activity; when associated with W-1397. Ref.80
Mutagenesis13991D → Y: Does not interact with TFAP2A and inhibits transcriptional coactivation of TFAP2A by CITED2. Does not inhibit interaction with CITED2, DNA-binding of TFAP2A or nuclear localization of TFAP2A or CITED2. No enhancement of FOXO1-mediated transcriptional activity. No inhibition of insulin-mediated translocation to the cytoplasm. Ref.37 Ref.53
Mutagenesis15051E → R: 90% decrease in activity; when associated with R-1625 and R-1628. 90% decrease in activity; when associated with R-1357; R-1625 and R-1628. Ref.80
Mutagenesis16251D → R: 70% decrease in activity; when associated with R-1628. 90% decrease in activity; when associated with R-1505 and R-1628. 90% decrease in activity; when associated with R-1357; R-1505 and R-1628. Ref.80
Mutagenesis16281D → R: 70% decrease in activity; when associated with R-1625. 90% decrease in activity; when associated with E-1505 and R-1625. 90% decrease in activity; when associated with R-1357; R-1505 and R-1625. Ref.80
Mutagenesis20561R → K: No effect on interaction with NCOA2. Ref.54
Mutagenesis20881R → K: Abolishes interaction with NCOA2. Ref.54
Mutagenesis21421R → K: Strongly reduces interaction with NCOA2. Ref.54
Sequence conflict1691M → T in AAA18639. Ref.1
Sequence conflict2041N → D in AAA18639. Ref.1
Sequence conflict9281T → N in AAA18639. Ref.1
Sequence conflict19241A → T in AAA18639. Ref.1

Secondary structure

............................................................................................................. 2414
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Q09472 [UniParc].

Last modified February 10, 2009. Version 2.
Checksum: 8E869E1F174A6FEB

FASTA2,414264,161
        10         20         30         40         50         60 
MAENVVEPGP PSAKRPKLSS PALSASASDG TDFGSLFDLE HDLPDELINS TELGLTNGGD 

        70         80         90        100        110        120 
INQLQTSLGM VQDAASKHKQ LSELLRSGSS PNLNMGVGGP GQVMASQAQQ SSPGLGLINS 

       130        140        150        160        170        180 
MVKSPMTQAG LTSPNMGMGT SGPNQGPTQS TGMMNSPVNQ PAMGMNTGMN AGMNPGMLAA 

       190        200        210        220        230        240 
GNGQGIMPNQ VMNGSIGAGR GRQNMQYPNP GMGSAGNLLT EPLQQGSPQM GGQTGLRGPQ 

       250        260        270        280        290        300 
PLKMGMMNNP NPYGSPYTQN PGQQIGASGL GLQIQTKTVL SNNLSPFAMD KKAVPGGGMP 

       310        320        330        340        350        360 
NMGQQPAPQV QQPGLVTPVA QGMGSGAHTA DPEKRKLIQQ QLVLLLHAHK CQRREQANGE 

       370        380        390        400        410        420 
VRQCNLPHCR TMKNVLNHMT HCQSGKSCQV AHCASSRQII SHWKNCTRHD CPVCLPLKNA 

       430        440        450        460        470        480 
GDKRNQQPIL TGAPVGLGNP SSLGVGQQSA PNLSTVSQID PSSIERAYAA LGLPYQVNQM 

       490        500        510        520        530        540 
PTQPQVQAKN QQNQQPGQSP QGMRPMSNMS ASPMGVNGGV GVQTPSLLSD SMLHSAINSQ 

       550        560        570        580        590        600 
NPMMSENASV PSLGPMPTAA QPSTTGIRKQ WHEDITQDLR NHLVHKLVQA IFPTPDPAAL 

       610        620        630        640        650        660 
KDRRMENLVA YARKVEGDMY ESANNRAEYY HLLAEKIYKI QKELEEKRRT RLQKQNMLPN 

       670        680        690        700        710        720 
AAGMVPVSMN PGPNMGQPQP GMTSNGPLPD PSMIRGSVPN QMMPRITPQS GLNQFGQMSM 

       730        740        750        760        770        780 
AQPPIVPRQT PPLQHHGQLA QPGALNPPMG YGPRMQQPSN QGQFLPQTQF PSQGMNVTNI 

       790        800        810        820        830        840 
PLAPSSGQAP VSQAQMSSSS CPVNSPIMPP GSQGSHIHCP QLPQPALHQN SPSPVPSRTP 

       850        860        870        880        890        900 
TPHHTPPSIG AQQPPATTIP APVPTPPAMP PGPQSQALHP PPRQTPTPPT TQLPQQVQPS 

       910        920        930        940        950        960 
LPAAPSADQP QQQPRSQQST AASVPTPTAP LLPPQPATPL SQPAVSIEGQ VSNPPSTSST 

       970        980        990       1000       1010       1020 
EVNSQAIAEK QPSQEVKMEA KMEVDQPEPA DTQPEDISES KVEDCKMEST ETEERSTELK 

      1030       1040       1050       1060       1070       1080 
TEIKEEEDQP STSATQSSPA PGQSKKKIFK PEELRQALMP TLEALYRQDP ESLPFRQPVD 

      1090       1100       1110       1120       1130       1140 
PQLLGIPDYF DIVKSPMDLS TIKRKLDTGQ YQEPWQYVDD IWLMFNNAWL YNRKTSRVYK 

      1150       1160       1170       1180       1190       1200 
YCSKLSEVFE QEIDPVMQSL GYCCGRKLEF SPQTLCCYGK QLCTIPRDAT YYSYQNRYHF 

      1210       1220       1230       1240       1250       1260 
CEKCFNEIQG ESVSLGDDPS QPQTTINKEQ FSKRKNDTLD PELFVECTEC GRKMHQICVL 

      1270       1280       1290       1300       1310       1320 
HHEIIWPAGF VCDGCLKKSA RTRKENKFSA KRLPSTRLGT FLENRVNDFL RRQNHPESGE 

      1330       1340       1350       1360       1370       1380 
VTVRVVHASD KTVEVKPGMK ARFVDSGEMA ESFPYRTKAL FAFEEIDGVD LCFFGMHVQE 

      1390       1400       1410       1420       1430       1440 
YGSDCPPPNQ RRVYISYLDS VHFFRPKCLR TAVYHEILIG YLEYVKKLGY TTGHIWACPP 

      1450       1460       1470       1480       1490       1500 
SEGDDYIFHC HPPDQKIPKP KRLQEWYKKM LDKAVSERIV HDYKDIFKQA TEDRLTSAKE 

      1510       1520       1530       1540       1550       1560 
LPYFEGDFWP NVLEESIKEL EQEEEERKRE ENTSNESTDV TKGDSKNAKK KNNKKTSKNK 

      1570       1580       1590       1600       1610       1620 
SSLSRGNKKK PGMPNVSNDL SQKLYATMEK HKEVFFVIRL IAGPAANSLP PIVDPDPLIP 

      1630       1640       1650       1660       1670       1680 
CDLMDGRDAF LTLARDKHLE FSSLRRAQWS TMCMLVELHT QSQDRFVYTC NECKHHVETR 

      1690       1700       1710       1720       1730       1740 
WHCTVCEDYD LCITCYNTKN HDHKMEKLGL GLDDESNNQQ AAATQSPGDS RRLSIQRCIQ 

      1750       1760       1770       1780       1790       1800 
SLVHACQCRN ANCSLPSCQK MKRVVQHTKG CKRKTNGGCP ICKQLIALCC YHAKHCQENK 

      1810       1820       1830       1840       1850       1860 
CPVPFCLNIK QKLRQQQLQH RLQQAQMLRR RMASMQRTGV VGQQQGLPSP TPATPTTPTG 

      1870       1880       1890       1900       1910       1920 
QQPTTPQTPQ PTSQPQPTPP NSMPPYLPRT QAAGPVSQGK AAGQVTPPTP PQTAQPPLPG 

      1930       1940       1950       1960       1970       1980 
PPPAAVEMAM QIQRAAETQR QMAHVQIFQR PIQHQMPPMT PMAPMGMNPP PMTRGPSGHL 

      1990       2000       2010       2020       2030       2040 
EPGMGPTGMQ QQPPWSQGGL PQPQQLQSGM PRPAMMSVAQ HGQPLNMAPQ PGLGQVGISP 

      2050       2060       2070       2080       2090       2100 
LKPGTVSQQA LQNLLRTLRS PSSPLQQQQV LSILHANPQL LAAFIKQRAA KYANSNPQPI 

      2110       2120       2130       2140       2150       2160 
PGQPGMPQGQ PGLQPPTMPG QQGVHSNPAM QNMNPMQAGV QRAGLPQQQP QQQLQPPMGG 

      2170       2180       2190       2200       2210       2220 
MSPQAQQMNM NHNTMPSQFR DILRRQQMMQ QQQQQGAGPG IGPGMANHNQ FQQPQGVGYP 

      2230       2240       2250       2260       2270       2280 
PQQQQRMQHH MQQMQQGNMG QIGQLPQALG AEAGASLQAY QQRLLQQQMG SPVQPNPMSP 

      2290       2300       2310       2320       2330       2340 
QQHMLPNQAQ SPHLQGQQIP NSLSNQVRSP QPVPSPRPQS QPPHSSPSPR MQPQPSPHHV 

      2350       2360       2370       2380       2390       2400 
SPQTSSPHPG LVAAQANPME QGHFASPDQN SMLSQLASNP GMANLHGASA TDLGLSTDNS 

      2410 
DLNSNLSQST LDIH 

« Hide

References

« Hide 'large scale' references
[1]"Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor."
Eckner R., Ewen M.E., Newsome D., Gerdes M., Decaprio J.A., Lawrence J.B., Livingston D.M.
Genes Dev. 8:869-884(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], VARIANT PRO-2223.
[2]"The DNA sequence of human chromosome 22."
Dunham I., Hunt A.R., Collins J.E., Bruskiewich R., Beare D.M., Clamp M., Smink L.J., Ainscough R., Almeida J.P., Babbage A.K., Bagguley C., Bailey J., Barlow K.F., Bates K.N., Beasley O.P., Bird C.P., Blakey S.E., Bridgeman A.M. expand/collapse author list , Buck D., Burgess J., Burrill W.D., Burton J., Carder C., Carter N.P., Chen Y., Clark G., Clegg S.M., Cobley V.E., Cole C.G., Collier R.E., Connor R., Conroy D., Corby N.R., Coville G.J., Cox A.V., Davis J., Dawson E., Dhami P.D., Dockree C., Dodsworth S.J., Durbin R.M., Ellington A.G., Evans K.L., Fey J.M., Fleming K., French L., Garner A.A., Gilbert J.G.R., Goward M.E., Grafham D.V., Griffiths M.N.D., Hall C., Hall R.E., Hall-Tamlyn G., Heathcott R.W., Ho S., Holmes S., Hunt S.E., Jones M.C., Kershaw J., Kimberley A.M., King A., Laird G.K., Langford C.F., Leversha M.A., Lloyd C., Lloyd D.M., Martyn I.D., Mashreghi-Mohammadi M., Matthews L.H., Mccann O.T., Mcclay J., Mclaren S., McMurray A.A., Milne S.A., Mortimore B.J., Odell C.N., Pavitt R., Pearce A.V., Pearson D., Phillimore B.J.C.T., Phillips S.H., Plumb R.W., Ramsay H., Ramsey Y., Rogers L., Ross M.T., Scott C.E., Sehra H.K., Skuce C.D., Smalley S., Smith M.L., Soderlund C., Spragon L., Steward C.A., Sulston J.E., Swann R.M., Vaudin M., Wall M., Wallis J.M., Whiteley M.N., Willey D.L., Williams L., Williams S.A., Williamson H., Wilmer T.E., Wilming L., Wright C.L., Hubbard T., Bentley D.R., Beck S., Rogers J., Shimizu N., Minoshima S., Kawasaki K., Sasaki T., Asakawa S., Kudoh J., Shintani A., Shibuya K., Yoshizaki Y., Aoki N., Mitsuyama S., Roe B.A., Chen F., Chu L., Crabtree J., Deschamps S., Do A., Do T., Dorman A., Fang F., Fu Y., Hu P., Hua A., Kenton S., Lai H., Lao H.I., Lewis J., Lewis S., Lin S.-P., Loh P., Malaj E., Nguyen T., Pan H., Phan S., Qi S., Qian Y., Ray L., Ren Q., Shaull S., Sloan D., Song L., Wang Q., Wang Y., Wang Z., White J., Willingham D., Wu H., Yao Z., Zhan M., Zhang G., Chissoe S., Murray J., Miller N., Minx P., Fulton R., Johnson D., Bemis G., Bentley D., Bradshaw H., Bourne S., Cordes M., Du Z., Fulton L., Goela D., Graves T., Hawkins J., Hinds K., Kemp K., Latreille P., Layman D., Ozersky P., Rohlfing T., Scheet P., Walker C., Wamsley A., Wohldmann P., Pepin K., Nelson J., Korf I., Bedell J.A., Hillier L.W., Mardis E., Waterston R., Wilson R., Emanuel B.S., Shaikh T., Kurahashi H., Saitta S., Budarf M.L., McDermid H.E., Johnson A., Wong A.C.C., Morrow B.E., Edelmann L., Kim U.J., Shizuya H., Simon M.I., Dumanski J.P., Peyrard M., Kedra D., Seroussi E., Fransson I., Tapia I., Bruder C.E., O'Brien K.P., Wilkinson P., Bodenteich A., Hartman K., Hu X., Khan A.S., Lane L., Tilahun Y., Wright H.
Nature 402:489-495(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[3]Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L., Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R., Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V., Hannenhalli S., Turner R. expand/collapse author list , Yooseph S., Lu F., Nusskern D.R., Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H., Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G., Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W., Venter J.C.
Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[4]"MOZ is fused to p300 in an acute monocytic leukemia with t(8;22)."
Chaffanet M., Gressin L., Preudhomme C., Soenen-Cornu V., Birnbaum D., Pebusque M.-J.
Genes Chromosomes Cancer 28:138-144(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 27-42, CHROMOSOMAL TRANSLOCATION WITH KAT6A.
[5]"Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP."
Lundblad J.R., Kwok R.P.S., Laurance M.E., Harter M.L., Goodman R.H.
Nature 374:85-88(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 552-660.
[6]"A transcriptional switch mediated by cofactor methylation."
Xu W., Chen H., Du K., Asahara H., Tini M., Emerson B.M., Montminy M., Evans R.M.
Science 294:2507-2511(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: PARTIAL PROTEIN SEQUENCE, INTERACTION WITH CARM1, METHYLATION AT ARG-580 AND ARG-604, FUNCTION.
[7]"The transcriptional coactivators p300 and CBP are histone acetyltransferases."
Ogryzko V.V., Schiltz R.L., Russanova V., Howard B.H., Nakatani Y.
Cell 87:953-959(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: ENZYME ACTIVITY.
[8]"A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A."
Yang X.-J., Ogryzko V.V., Nishikawa J., Howard B.H., Nakatani Y.
Nature 382:319-324(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH PCAF.
[9]"An essential role for p300/CBP in the cellular response to hypoxia."
Arany Z., Huang L.E., Eckner R., Bhattacharya S., Jiang C., Goldberg M.A., Bunn H.F., Livingston D.M.
Proc. Natl. Acad. Sci. U.S.A. 93:12969-12973(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH HIF1A AND CREBBP.
[10]"Differential transcriptional activation by human T-cell leukemia virus type 1 Tax mutants is mediated by distinct interactions with CREB binding protein and p300."
Bex F., Yin M.-J., Burny A., Gaynor R.B.
Mol. Cell. Biol. 18:2392-2405(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH HTLV-1 TAX.
[11]"Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex."
Fryer C.J., Archer T.K.
Nature 393:88-91(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH NR3C1.
[12]"HIV-1 tat transcriptional activity is regulated by acetylation."
Kiernan R.E., Vanhulle C., Schiltz L., Adam E., Xiao H., Maudoux F., Calomme C., Burny A., Nakatani Y., Jeang K.-T., Benkirane M., Van Lint C.
EMBO J. 18:6106-6118(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH HIV-1 TAT.
[13]"Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1."
Bhattacharya S., Michels C.M., Leung M.K., Arany Z.P., Kung A.L., Livingston D.M.
Genes Dev. 13:64-75(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CITED2 AND HIF1A, MUTAGENESIS OF 371-THR--LEU-376 AND 413-VAL--LYS-418.
[14]"Exogenous expression of a dominant negative RORalpha1 vector in muscle cells impairs differentiation: RORalpha1 directly interacts with p300 and myoD."
Lau P., Bailey P., Dowhan D.H., Muscat G.E.
Nucleic Acids Res. 27:411-420(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RORA.
[15]"The MSG1 non-DNA-binding transactivator binds to the p300/CBP coactivators, enhancing their functional link to the Smad transcription factors."
Yahata T., de Caestecker M.P., Lechleider R.J., Andriole S., Roberts A.B., Isselbacher K.J., Shioda T.
J. Biol. Chem. 275:8825-8834(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CITED1.
[16]"A novel transcriptional repression domain mediates p21(WAF1/CIP1) induction of p300 transactivation."
Snowden A.W., Anderson L.A., Webster G.A., Perkins N.D.
Mol. Cell. Biol. 20:2676-2686(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN TRANSCRIPTIONAL REPRESSION.
[17]Erratum
Snowden A.W., Anderson L.A., Webster G.A., Perkins N.D.
Mol. Cell. Biol. 20:5360-5360(2000)
[18]"Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle."
Miyake S., Sellers W.R., Safran M., Li X., Zhao W., Grossman S.R., Gan J., DeCaprio J.A., Adams P.D., Kaelin W.G. Jr.
Mol. Cell. Biol. 20:8889-8902(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH EID1.
[19]"A novel Rb- and p300-binding protein inhibits transactivation by MyoD."
MacLellan W.R., Xiao G., Abdellatif M., Schneider M.D.
Mol. Cell. Biol. 20:8903-8915(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH EID1.
[20]"Thyroid hormone receptor-binding protein, an LXXLL motif-containing protein, functions as a general coactivator."
Ko L., Cardona G.R., Chin W.W.
Proc. Natl. Acad. Sci. U.S.A. 97:6212-6217(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH NCOA6.
[21]"Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones."
Deng L., de la Fuente C., Fu P., Wang L., Donnelly R., Wade J.D., Lambert P., Li H., Lee C.-G., Kashanchi F.
Virology 277:278-295(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH HIV-1 TAT.
[22]"Selective coactivation of estrogen-dependent transcription by CITED1 CBP/p300-binding protein."
Yahata T., Shao W., Endoh H., Hur J., Coser K.R., Sun H., Ueda Y., Kato S., Isselbacher K.J., Brown M., Shioda T.
Genes Dev. 15:2598-2612(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH ESR1.
[23]"Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors."
Yang W., Hong Y.H., Shen X.Q., Frankowski C., Camp H.S., Leff T.
J. Biol. Chem. 276:38341-38344(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT SER-89, MUTAGENESIS OF SER-89, INTERACTION WITH PPARG.
[24]"Adenovirus DNA binding protein interacts with the SNF2-related CBP activator protein (SrCap) and inhibits SrCap-mediated transcription."
Xu X., Chackalaparampil I., Monroy M.A., Cannella M.T., Pesek E., Chrivia J., Yaciuk P.
J. Virol. 75:10033-10040(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SRCAP.
[25]"The oncoprotein Tax binds the SRC-1-interacting domain of CBP/p300 to mediate transcriptional activation."
Scoggin K.E.S., Ulloa A., Nyborg J.K.
Mol. Cell. Biol. 21:5520-5530(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH HTLV-1 TAX.
[26]"Human T-lymphotropic virus type 1 p30(II) regulates gene transcription by binding CREB binding protein/p300."
Zhang W., Nisbet J.W., Albrecht B., Ding W., Kashanchi F., Bartoe J.T., Lairmore M.D.
J. Virol. 75:9885-9895(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH HTLV-1 ACCESSORY PROTEIN P30II.
[27]"A novel zinc finger protein TReP-132 interacts with CBP/p300 to regulate human CYP11A1 gene expression."
Gizard F., Lavallee B., DeWitte F., Hum D.W.
J. Biol. Chem. 276:33881-33892(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TRERF1.
[28]"Molecular cloning and characterization of PELP1, a novel human coregulator of estrogen receptor alpha."
Vadlamudi R.K., Wang R.-A., Mazumdar A., Kim Y.-S., Shin J., Sahin A., Kumar R.
J. Biol. Chem. 276:38272-38279(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH PELP1.
[29]"Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor."
Yamamoto N., Yamamoto S., Inagaki F., Kawaichi M., Fukamizu A., Kishi N., Matsuno K., Nakamura K., Weinmaster G., Okano H., Nakafuku M.
J. Biol. Chem. 276:45031-45040(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DTX1.
[30]"Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300."
Hasan S., Stucki M., Hassa P.O., Imhof R., Gehrig P., Hunziker P., Hubscher U., Hottiger M.O.
Mol. Cell 7:1221-1231(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH FEN1.
[31]"Interaction between the hematopoietic Ets transcription factor Spi-B and the coactivator CREB-binding protein associated with negative cross-talk with c-Myb."
Yamamoto H., Kihara-Negishi F., Yamada T., Suzuki M., Nakano T., Oikawa T.
Cell Growth Differ. 13:69-75(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SPIB.
[32]"Human CREB-binding protein/p300-interacting transactivator with ED-rich tail (CITED) 4, a new member of the CITED family, functions as a co-activator for transcription factor AP-2."
Braganca J., Swingler T., Marques F.I.R., Jones T., Eloranta J.J., Hurst H.C., Shioda T., Bhattacharya S.
J. Biol. Chem. 277:8559-8565(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CITED4.
[33]"Synergy among nuclear receptor coactivators: selective requirement for protein methyltransferase and acetyltransferase activities."
Lee Y.-H., Koh S.S., Zhang X., Cheng X., Stallcup M.R.
Mol. Cell. Biol. 22:3621-3632(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN A COMPLEX WITH CARM1 AND NCOA2.
[34]"Acetylation inactivates the transcriptional repressor BCL6."
Bereshchenko O.R., Gu W., Dalla-Favera R.
Nat. Genet. 32:606-613(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN BCL6 ACETYLATION.
[35]"p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity."
Shiseki M., Nagashima M., Pedeux R.M., Kitahama-Shiseki M., Miura K., Okamura S., Onogi H., Higashimoto Y., Appella E., Yokota J., Harris C.C.
Cancer Res. 63:2373-2378(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH ING4 AND ING5.
[36]"Identification of a promoter-specific transcriptional activation domain at the C-terminus of the Wnt effector protein T-cell factor 4."
Hecht A., Stemmler M.P.
J. Biol. Chem. 278:3776-3785(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION, INTERACTION WITH TCF7L2 AND LEF1.
[37]"Physical and functional interactions among AP-2 transcription factors, p300/CREB-binding protein, and CITED2."
Braganca J., Eloranta J.J., Bamforth S.D., Ibbitt J.C., Hurst H.C., Bhattacharya S.
J. Biol. Chem. 278:16021-16029(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH CITED2 AND TFAP2A, MUTAGENESIS OF ASP-1399.
[38]"Acetylated SP3 is a transcriptional activator."
Ammanamanchi S., Freeman J.W., Brattain M.G.
J. Biol. Chem. 278:35775-35780(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SP3.
[39]"P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain."
Iioka T., Furukawa K., Yamaguchi A., Shindo H., Yamashita S., Tsukazaki T.
J. Bone Miner. Res. 18:1419-1429(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, INTERACTION WITH ALX1.
[40]"SATB1 makes a complex with p300 and represses gp91(phox) promoter activity."
Fujii Y., Kumatori A., Nakamura M.
Microbiol. Immunol. 47:803-811(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SATB1.
[41]"P300 transcriptional repression is mediated by SUMO modification."
Girdwood D., Bumpass D., Vaughan O.A., Thain A., Anderson L.A., Snowden A.W., Garcia-Wilson E., Perkins N.D., Hay R.T.
Mol. Cell 11:1043-1054(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: SUMOYLATION AT LYS-1020 AND LYS-1024, MUTAGENESIS OF LYS-1020 AND LYS-1024.
[42]"Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300."
Rossow K.L., Janknecht R.
Oncogene 22:151-156(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DDX5.
[43]"Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53."
An W., Kim J., Roeder R.G.
Cell 117:735-748(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TP53, FUNCTION.
[44]"Regulation of human SRY subcellular distribution by its acetylation/deacetylation."
Thevenet L., Mejean C., Moniot B., Bonneaud N., Galeotti N., Aldrian-Herrada G., Poulat F., Berta P., Benkirane M., Boizet-Bonhoure B.
EMBO J. 23:3336-3345(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SRY.
[45]"Histone acetyltransferase-dependent chromatin remodeling and the vascular clock."
Curtis A.M., Seo S.B., Westgate E.J., Rudic R.D., Smyth E.M., Chakravarti D., FitzGerald G.A., McNamara P.
J. Biol. Chem. 279:7091-7097(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, INTERACTION WITH NPAS2; ARNTL/BMAL1 AND CLOCK.
[46]"Positive and negative modulation of the transcriptional activity of the ETS factor ESE-1 through interaction with p300, CREB-binding protein, and Ku 70/86."
Wang H., Fang R., Cho J.-Y., Libermann T.A., Oettgen P.
J. Biol. Chem. 279:25241-25250(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH ELF3.
[47]"Interferon regulatory factor 1 binding to p300 stimulates DNA-dependent acetylation of p53."
Dornan D., Eckert M., Wallace M., Shimizu H., Ramsay E., Hupp T.R., Ball K.L.
Mol. Cell. Biol. 24:10083-10098(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH IRF1.
[48]"Regulation of the p300 HAT domain via a novel activation loop."
Thompson P.R., Wang D., Wang L., Fulco M., Pediconi N., Zhang D., An W., Ge Q., Roeder R.G., Wong J., Levrero M., Sartorelli V., Cotter R.J., Cole P.A.
Nat. Struct. Mol. Biol. 11:308-315(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION AT LYS-1499; LYS-1549; LYS-1554; LYS-1558 AND LYS-1560.
[49]"Orphan nuclear receptor small heterodimer partner, a novel corepressor for a basic helix-loop-helix transcription factor BETA2/neuroD."
Kim J.Y., Chu K., Kim H.J., Seong H.A., Park K.C., Sanyal S., Takeda J., Ha H., Shong M., Tsai M.J., Choi H.S.
Mol. Endocrinol. 18:776-790(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH NEUROD1 AND TCF3.
[50]"Dendrite development regulated by CREST, a calcium-regulated transcriptional activator."
Aizawa H., Hu S.-C., Bobb K., Balakrishnan K., Ince G., Gurevich I., Cowan M., Ghosh A.
Science 303:197-202(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SS18L1/CREST.
[51]"Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in both the CBP and EP300 genes cause disease."
Roelfsema J.H., White S.J., Ariyuerek Y., Bartholdi D., Niedrist D., Papadia F., Bacino C.A., den Dunnen J.T., van Ommen G.-J.B., Breuning M.H., Hennekam R.C., Peters D.J.M.
Am. J. Hum. Genet. 76:572-580(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INVOLVEMENT IN RSTS2.
[52]"SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1."
Bouras T., Fu M., Sauve A.A., Wang F., Quong A.A., Perkins N.D., Hay R.T., Gu W., Pestell R.G.
J. Biol. Chem. 280:10264-10276(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: DEACETYLATION BY SIRT1, ACETYLATION AT LYS-1020 AND LYS-1024, MUTAGENESIS OF LYS-1020 AND LYS-1024.
[53]"The coactivator p300 directly acetylates the forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription."
Perrot V., Rechler M.M.
Mol. Endocrinol. 19:2283-2298(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH FOXO1, FUNCTION, MUTAGENESIS OF ASP-1399.
[54]"Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination."
Lee Y.-H., Coonrod S.A., Kraus W.L., Jelinek M.A., Stallcup M.R.
Proc. Natl. Acad. Sci. U.S.A. 102:3611-3616(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: METHYLATION AT ARG-2142, CITRULLINATION AT ARG-2142, INTERACTION WITH NCOA2, MUTAGENESIS OF ARG-2056; ARG-2088 AND ARG-2142.
[55]"Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase."
Tanaka T., Nishimura D., Wu R.C., Amano M., Iso T., Kedes L., Nishida H., Kaibuchi K., Hamamori Y.
J. Biol. Chem. 281:15320-15329(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION, INTERACTION WITH ROCK2, PHOSPHORYLATION AT SER-89.
[56]"The transcriptional activity of CITED1 is regulated by phosphorylation in a cell cycle-dependent manner."
Shi G., Boyle S.C., Sparrow D.B., Dunwoodie S.L., Shioda T., de Caestecker M.P.
J. Biol. Chem. 281:27426-27435(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CITED1.
[57]"Kinetic and mass spectrometric analysis of p300 histone acetyltransferase domain autoacetylation."
Karanam B., Jiang L., Wang L., Kelleher N.L., Cole P.A.
J. Biol. Chem. 281:40292-40301(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION AT LYS-1336 AND LYS-1473, IDENTIFICATION BY MASS SPECTROMETRY.
[58]"HDAC1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription."
Qiu Y., Zhao Y., Becker M., John S., Parekh B.S., Huang S., Hendarwanto A., Martinez E.D., Chen Y., Lu H., Adkins N.L., Stavreva D.A., Wiench M., Georgel P.T., Schiltz R.L., Hager G.L.
Mol. Cell 22:669-679(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN ACETYLATION OF HDAC1.
[59]"Sp1 deacetylation induced by phorbol ester recruits p300 to activate 12(S)-lipoxygenase gene transcription."
Hung J.J., Wang Y.T., Chang W.C.
Mol. Cell. Biol. 26:1770-1785(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SP1.
[60]"Critical and functional regulation of CHOP (C/EBP homologous protein) through the N-terminal portion."
Ohoka N., Hattori T., Kitagawa M., Onozaki K., Hayashi H.
J. Biol. Chem. 282:35687-35694(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DDIT3.
[61]"Concerted activation of the Mdm2 promoter by p72 RNA helicase and the coactivators p300 and P/CAF."
Shin S., Janknecht R.
J. Cell. Biochem. 101:1252-1265(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DDX17.
[62]"Acetylation of Sirt2 by p300 attenuates its deacetylase activity."
Han Y., Jin Y.H., Kim Y.J., Kang B.Y., Choi H.J., Kim D.W., Yeo C.Y., Lee K.Y.
Biochem. Biophys. Res. Commun. 375:576-580(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN ACETYLATION OF SIRT2.
[63]"PEBP2-beta/CBF-beta-dependent phosphorylation of RUNX1 and p300 by HIPK2: implications for leukemogenesis."
Wee H.-J., Voon D.C.-C., Bae S.-C., Ito Y.
Blood 112:3777-3787(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION BY HIPK2.
[64]"PML activates transcription by protecting HIPK2 and p300 from SCFFbx3-mediated degradation."
Shima Y., Shima T., Chiba T., Irimura T., Pandolfi P.P., Kitabayashi I.
Mol. Cell. Biol. 28:7126-7138(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FBXO3-MEDIATED DEGRADATION.
[65]"A quantitative atlas of mitotic phosphorylation."
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E., Elledge S.J., Gygi S.P.
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[66]"Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach."
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J., Mohammed S.
Anal. Chem. 81:4493-4501(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[67]"SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation."
Huang C., Han Y., Wang Y., Sun X., Yan S., Yeh E.T.H., Chen Y., Cang H., Li H., Shi G., Cheng J., Tang X., Yi J.
EMBO J. 28:2748-2762(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SENP3, SUMOYLATION.
[68]"Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions."
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K., Rodionov V., Han D.K.
Sci. Signal. 2:RA46-RA46(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Leukemic T-cell.
[69]"Lysine acetylation targets protein complexes and co-regulates major cellular functions."
Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M., Walther T.C., Olsen J.V., Mann M.
Science 325:834-840(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-636; LYS-977; LYS-1542; LYS-1546; LYS-1554; LYS-1555; LYS-1558; LYS-1560 AND LYS-1583, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[70]"Cyclin-dependent kinase-9 is a component of the p300/GATA4 complex required for phenylephrine-induced hypertrophy in cardiomyocytes."
Sunagawa Y., Morimoto T., Takaya T., Kaichi S., Wada H., Kawamura T., Fujita M., Shimatsu A., Kita T., Hasegawa K.
J. Biol. Chem. 285:9556-9568(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN COMPLEX WITH CCNT1; CDK9 AND GATA4.
[71]"Initial characterization of the human central proteome."
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17-17(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[72]"System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation."
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J., Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V., Blagoev B.
Sci. Signal. 4:RS3-RS3(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-1038, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[73]"Comparative large-scale characterisation of plant vs. mammal proteins reveals similar and idiosyncratic N-alpha acetylation features."
Bienvenut W.V., Sumpton D., Martinez A., Lilla S., Espagne C., Meinnel T., Giglione C.
Mol. Cell. Proteomics 11:M111.015131-M111.015131(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[74]"Human ALKBH4 interacts with proteins associated with transcription."
Bjornstad L.G., Meza T.J., Otterlei M., Olafsrud S.M., Meza-Zepeda L.A., Falnes P.O.
PLoS ONE 7:E49045-E49045(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH ALKBH4.
[75]"Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer."
Tropberger P., Pott S., Keller C., Kamieniarz-Gdula K., Caron M., Richter F., Li G., Mittler G., Liu E.T., Buhler M., Margueron R., Schneider R.
Cell 152:859-872(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, CATALYTIC ACTIVITY.
[76]"A hybrid mechanism of action for BCL6 in B cells defined by formation of functionally distinct complexes at enhancers and promoters."
Hatzi K., Jiang Y., Huang C., Garrett-Bakelman F., Gearhart M.D., Giannopoulou E.G., Zumbo P., Kirouac K., Bhaskara S., Polo J.M., Kormaksson M., Mackerell A.D. Jr., Xue F., Mason C.E., Hiebert S.W., Prive G.G., Cerchietti L., Bardwell V.J., Elemento O., Melnick A.
Cell Rep. 4:578-588(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS ACETYLTRANSFERASE OF H3K27.
[77]"Kruppel-like factor 15 is critical for vascular inflammation."
Lu Y., Zhang L., Liao X., Sangwung P., Prosdocimo D.A., Zhou G., Votruba A.R., Brian L., Han Y.J., Gao H., Wang Y., Shimizu K., Weinert-Stein K., Khrestian M., Simon D.I., Freedman N.J., Jain M.K.
J. Clin. Invest. 123:4232-4241(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH KLF15.
[78]"Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha."
Freedman S.J., Sun Z.-Y.J., Poy F., Kung A.L., Livingston D.M., Wagner G., Eck M.J.
Proc. Natl. Acad. Sci. U.S.A. 99:5367-5372(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY NMR OF 302-418 IN COMPLEX WITH 786-826 OF HIF1A.
[79]"Structural basis for negative regulation of hypoxia-inducible factor-1alpha by CITED2."
Freedman S.J., Sun Z.Y., Kung A.L., France D.S., Wagner G., Eck M.J.
Nat. Struct. Biol. 10:504-512(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY NMR OF 323-423 IN COMPLEX WITH 216-259 OF CITED2 AND ZINC IONS, INTERACTION WITH CITED2, MUTAGENESIS OF LEU-344 AND LEU-345.
[80]"The structural basis of protein acetylation by the p300/CBP transcriptional coactivator."
Liu X., Wang L., Zhao K., Thompson P.R., Hwang Y., Marmorstein R., Cole P.A.
Nature 451:846-850(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (1.7 ANGSTROMS) OF 1287-1666 IN COMPLEX WITH LYS-COA, MUTAGENESIS OF THR-1357; SER-1396; TYR-1397; GLU-1505; ASP-1625 AND ASP-1628.
[81]"Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation."
Feng H., Jenkins L.M.M., Durell S.R., Hayashi R., Mazur S.J., Cherry S., Tropea J.E., Miller M., Wlodawer A., Appella E., Bai Y.
Structure 17:202-210(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY NMR OF 1723-1812, INTERACTION WITH TP53.
[82]"Mutations truncating the EP300 acetylase in human cancers."
Gayther S.A., Batley S.J., Linger L., Bannister A., Thorpe K., Chin S.-F., Daigo Y., Russell P., Wilson A., Sowter H.M., Delhanty J.D.A., Ponder B.A.J., Kouzarides T., Caldas C.
Nat. Genet. 24:300-303(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANTS PRO-827; GLY-1013; TYR-1650 AND GLN-2221, POSSIBLE INVOLVEMENT IN CANCER.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
U01877 mRNA. Translation: AAA18639.1.
AL080243, AL035658, AL096765 Genomic DNA. Translation: CAH70384.1.
AL096765, AL035658, AL080243 Genomic DNA. Translation: CAH73688.1.
AL035658, AL080243, AL096765 Genomic DNA. Translation: CAI23037.1.
CH471095 Genomic DNA. Translation: EAW60408.1.
CCDSCCDS14010.1.
PIRA54277.
RefSeqNP_001420.2. NM_001429.3.
UniGeneHs.517517.
Hs.655211.

3D structure databases

PDBe
RCSB-PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1L3ENMR-B323-423[»]
1P4QNMR-B323-423[»]
2K8FNMR-A1723-1812[»]
3BIYX-ray1.70A1287-1666[»]
3I3JX-ray2.33A/B/C/D/E/F/G/H/I/J/K/L1040-1161[»]
3IO2X-ray2.50A1723-1836[»]
3P57X-ray2.19P1726-1835[»]
3T92X-ray1.50A1723-1818[»]
4BHWX-ray2.80A/B1043-1519[»]
A/B1581-1666[»]
DisProtDP00633.
ProteinModelPortalQ09472.
SMRQ09472. Positions 323-423, 566-646, 1046-1713, 1726-1834, 2050-2092.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid108347. 383 interactions.
DIPDIP-257N.
IntActQ09472. 170 interactions.
MINTMINT-104535.
STRING9606.ENSP00000263253.

Chemistry

BindingDBQ09472.
ChEMBLCHEMBL3784.
GuidetoPHARMACOLOGY2735.

PTM databases

PhosphoSiteQ09472.

Polymorphism databases

DMDM223590203.

Proteomic databases

MaxQBQ09472.
PaxDbQ09472.
PRIDEQ09472.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000263253; ENSP00000263253; ENSG00000100393.
GeneID2033.
KEGGhsa:2033.
UCSCuc003azl.4. human.

Organism-specific databases

CTD2033.
GeneCardsGC22P041487.
GeneReviewsEP300.
H-InvDBHIX0203186.
HGNCHGNC:3373. EP300.
HPACAB000146.
HPA003128.
HPA004112.
MIM602700. gene.
613684. phenotype.
neXtProtNX_Q09472.
Orphanet353284. Rubinstein-Taybi syndrome due to EP300 haploinsufficiency.
PharmGKBPA27807.
GenAtlasSearch...

Phylogenomic databases

eggNOGCOG5076.
HOGENOMHOG000111353.
HOVERGENHBG000185.
InParanoidQ09472.
KOK04498.
OMAPTMIRGS.
OrthoDBEOG75B84F.
PhylomeDBQ09472.
TreeFamTF101097.

Enzyme and pathway databases

ReactomeREACT_111045. Developmental Biology.
REACT_111102. Signal Transduction.
REACT_115566. Cell Cycle.
REACT_116125. Disease.
REACT_120956. Cellular responses to stress.
REACT_172623. Chromatin organization.
REACT_24941. Circadian Clock.
REACT_6900. Immune System.
SignaLinkQ09472.

Gene expression databases

ArrayExpressQ09472.
BgeeQ09472.
CleanExHS_EP300.
GenevestigatorQ09472.

Family and domain databases

Gene3D1.10.1630.10. 1 hit.
1.10.246.20. 1 hit.
1.20.1020.10. 2 hits.
1.20.920.10. 1 hit.
InterProIPR001487. Bromodomain.
IPR018359. Bromodomain_CS.
IPR010303. DUF902_CREBbp.
IPR013178. Histone_H3-K56_AcTrfase_RTT109.
IPR003101. KIX_dom.
IPR009110. Nuc_rcpt_coact.
IPR014744. Nuc_rcpt_coact_CREBbp.
IPR000197. Znf_TAZ.
IPR000433. Znf_ZZ.
[Graphical view]
PfamPF00439. Bromodomain. 1 hit.
PF09030. Creb_binding. 1 hit.
PF06001. DUF902. 1 hit.
PF08214. KAT11. 1 hit.
PF02172. KIX. 1 hit.
PF02135. zf-TAZ. 2 hits.
PF00569. ZZ. 1 hit.
[Graphical view]
PRINTSPR00503. BROMODOMAIN.
SMARTSM00297. BROMO. 1 hit.
SM00551. ZnF_TAZ. 2 hits.
SM00291. ZnF_ZZ. 1 hit.
[Graphical view]
SUPFAMSSF47040. SSF47040. 1 hit.
SSF47370. SSF47370. 1 hit.
SSF57933. SSF57933. 2 hits.
SSF69125. SSF69125. 1 hit.
PROSITEPS00633. BROMODOMAIN_1. 1 hit.
PS50014. BROMODOMAIN_2. 1 hit.
PS50952. KIX. 1 hit.
PS50134. ZF_TAZ. 2 hits.
PS01357. ZF_ZZ_1. 1 hit.
PS50135. ZF_ZZ_2. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

ChiTaRSEP300. human.
EvolutionaryTraceQ09472.
GeneWikiEP300.
GenomeRNAi2033.
NextBio8251.
PROQ09472.
SOURCESearch...

Entry information

Entry nameEP300_HUMAN
AccessionPrimary (citable) accession number: Q09472
Secondary accession number(s): B1AKC2
Entry history
Integrated into UniProtKB/Swiss-Prot: July 15, 1998
Last sequence update: February 10, 2009
Last modified: July 9, 2014
This is version 188 of the entry and version 2 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 22

Human chromosome 22: entries, gene names and cross-references to MIM