Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q06180 (PTN2_MOUSE) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 126. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (2) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Alt products·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Tyrosine-protein phosphatase non-receptor type 2

Short name=Protein-tyrosine phosphatase PTP-2
EC=3.1.3.48
Alternative name(s):
MPTP
Gene names
Name:Ptpn2
Synonyms:Ptpt
OrganismMus musculus (Mouse) [Reference proteome]
Taxonomic identifier10090 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus

Protein attributes

Sequence length406 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Non-receptor type tyrosine-specific phosphatase that dephosphorylates receptor protein tyrosine kinases including INSR, EGFR, CSF1R, PDGFR. Also dephosphorylates non-receptor protein tyrosine kinases like JAK1, JAK2, JAK3, Src family kinases, STAT1, STAT3, STAT5A, STAT5B and STAT6 either in the nucleus or the cytoplasm. Negatively regulates numerous signaling pathways and biological processes like hematopoiesis, inflammatory response, cell proliferation and differentiation, and glucose homeostasis. Plays a multifaceted and important role in the development of the immune system. Functions in T-cell receptor signaling through dephosphorylation of FYN and LCK to control T-cells differentiation and activation. Dephosphorylates CSF1R, negatively regulating its downstream signaling and macrophage differentiation. Negatively regulates cytokine (IL2/interleukin-2 and interferon)-mediated signaling through dephosphorylation of the cytoplasmic kinases JAK1, JAK3 and their substrate STAT1, that propagate signaling downstream of the cytokine receptors. Also regulates the IL6/interleukin-6 and IL4/interleukin-4 cytokine signaling through dephosphorylation of STAT3 and STAT6 respectively. Beside the immune system, it is involved in anchorage-dependent, negative regulation of EGF-stimulated cell growth. Activated by the integrin ITGA1/ITGB1, it dephosphorylates EGFR and negatively regulates EGF signaling. Dephosphorylates PDGFRB and negatively regulates platelet-derived growth factor receptor-beta signaling pathway and therefore cell proliferation. Negatively regulates tumor necrosis factor-mediated signaling downstream via MAPK through SRC dephosphorylation. May also regulate the hepatocyte growth factor receptor signaling pathway through dephosphorylation of the hepatocyte growth factor receptor MET. Plays also an important role in glucose homeostasis. For instance, negatively regulates the insulin receptor signaling pathway through the dephosphorylation of INSR and control gluconeogenesis and liver glucose production through negative regulation of the IL6 signaling pathways. Finally, it negatively regulates prolactin-mediated signaling pathway through dephosphorylation of STAT5A and STAT5B. May also bind DNA. Ref.5 Ref.6 Ref.7 Ref.8 Ref.9 Ref.11 Ref.12 Ref.13 Ref.14 Ref.15 Ref.16

Catalytic activity

Protein tyrosine phosphate + H2O = protein tyrosine + phosphate.

Subunit structure

Interacts with RMDN3. Isoform 1 interacts with TMED9. Isoform 1 interacts with STX17; dephosphorylates STX17. Interacts with ITGA1 (via cytoplasmic domain); activates the phosphatase activity towards EGFR. Interacts with TRAF2; probably involved in tumor necrosis factor-mediated signaling. Interacts with MET By similarity.

Subcellular location

Isoform 1: Endoplasmic reticulum By similarity. Endoplasmic reticulum-Golgi intermediate compartment By similarity. Note: Targeted to the endoplasmic reticulum by its C-terminal hydrophobic region By similarity.

Isoform 2: Nucleus By similarity. Cytoplasm By similarity. Cell membrane By similarity. Note: Predominantly localizes to chromatin. Able to shuttle between the nucleus and the cytoplasm and to dephosphorylate plasma membrane receptors. Recruited by activated ITGA1 at the plasma membrane By similarity.

Tissue specificity

Ubiquitously expressed. The highest expression levels were found in ovary, testis, thymus and kidney. Ref.5 Ref.15

Post-translational modification

Isoform 2:Specifically phosphorylated in a cell cycle-dependent manner by cyclin-dependent kinases. Probably activated through phosphorylation by PKR By similarity.

Disruption phenotype

Newborn mice are viable and do not display physical abnormalities. However, by 3 to 5 weeks of age they develop hunched posture, diarrhea and anemia. They do not survive beyond 5 weeks of age due to severe anemia, hematopoietic defects and the development of progressive systemic inflammatory disease. They display splenomegaly, lymphadenopathy and thymic atrophy, associated with altered B-cell differentiation, altered erythropoiesis, and impaired T- and B-cell functions. The inflammatory disease is characterized by high levels of circulating proinflammatory cytokines and lymphocytic infiltrates in non-lymphoid tissues. Heterozygous Ptpn2+/- mice exhibit decreased gluconeogenesis and hepatic glucose production while muscle-specific disruption of Ptpn2 has no effect on insulin signaling and glucose homeostasis in this tissue. Ref.5 Ref.10 Ref.15 Ref.16 Ref.17

Sequence similarities

Belongs to the protein-tyrosine phosphatase family. Non-receptor class 1 subfamily.

Contains 1 tyrosine-protein phosphatase domain.

Ontologies

Keywords
   Cellular componentCell membrane
Cytoplasm
Endoplasmic reticulum
Membrane
Nucleus
   Coding sequence diversityAlternative splicing
   Molecular functionHydrolase
Protein phosphatase
   PTMPhosphoprotein
   Technical termComplete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processB cell differentiation

Inferred from mutant phenotype Ref.5. Source: UniProtKB

T cell differentiation

Inferred from mutant phenotype Ref.5. Source: UniProtKB

erythrocyte differentiation

Inferred from mutant phenotype Ref.5. Source: UniProtKB

glucose homeostasis

Inferred from mutant phenotype Ref.15. Source: UniProtKB

insulin receptor signaling pathway

Inferred from mutant phenotype PubMed 15632081. Source: MGI

negative regulation of ERK1 and ERK2 cascade

Inferred from mutant phenotype Ref.12. Source: UniProtKB

negative regulation of T cell receptor signaling pathway

Inferred from mutant phenotype Ref.16. Source: UniProtKB

negative regulation of cell proliferation

Inferred from sequence or structural similarity. Source: UniProtKB

negative regulation of chemotaxis

Inferred from mutant phenotype Ref.11. Source: UniProtKB

negative regulation of epidermal growth factor receptor signaling pathway

Inferred from sequence or structural similarity. Source: UniProtKB

negative regulation of inflammatory response

Inferred from mutant phenotype Ref.10. Source: UniProtKB

negative regulation of insulin receptor signaling pathway

Inferred from mutant phenotype PubMed 12612081Ref.15. Source: UniProtKB

negative regulation of interferon-gamma-mediated signaling pathway

Inferred from mutant phenotype Ref.8. Source: UniProtKB

negative regulation of interleukin-2-mediated signaling pathway

Inferred from mutant phenotype Ref.7. Source: UniProtKB

negative regulation of interleukin-4-mediated signaling pathway

Inferred from mutant phenotype Ref.14. Source: UniProtKB

negative regulation of interleukin-6-mediated signaling pathway

Inferred from mutant phenotype Ref.15. Source: UniProtKB

negative regulation of lipid storage

Inferred from mutant phenotype Ref.15. Source: UniProtKB

negative regulation of macrophage colony-stimulating factor signaling pathway

Inferred from mutant phenotype Ref.13. Source: UniProtKB

negative regulation of macrophage differentiation

Inferred from mutant phenotype Ref.13. Source: UniProtKB

negative regulation of platelet-derived growth factor receptor-beta signaling pathway

Inferred from mutant phenotype Ref.11. Source: UniProtKB

negative regulation of positive thymic T cell selection

Inferred from mutant phenotype Ref.16. Source: UniProtKB

negative regulation of prolactin signaling pathway

Inferred from mutant phenotype Ref.9. Source: UniProtKB

negative regulation of tumor necrosis factor-mediated signaling pathway

Inferred from mutant phenotype Ref.12. Source: UniProtKB

negative regulation of type I interferon-mediated signaling pathway

Inferred from mutant phenotype Ref.7Ref.8. Source: UniProtKB

negative regulation of tyrosine phosphorylation of Stat1 protein

Inferred from sequence or structural similarity. Source: UniProtKB

negative regulation of tyrosine phosphorylation of Stat3 protein

Inferred from sequence or structural similarity. Source: UniProtKB

negative regulation of tyrosine phosphorylation of Stat5 protein

Inferred from mutant phenotype Ref.9. Source: UniProtKB

negative regulation of tyrosine phosphorylation of Stat6 protein

Inferred from mutant phenotype Ref.14. Source: UniProtKB

peptidyl-tyrosine dephosphorylation

Inferred from mutant phenotype Ref.11. Source: UniProtKB

positive regulation of gluconeogenesis

Inferred from mutant phenotype Ref.15. Source: UniProtKB

protein dephosphorylation

Inferred from mutant phenotype PubMed 15632081. Source: MGI

regulation of hepatocyte growth factor receptor signaling pathway

Inferred from sequence or structural similarity. Source: UniProtKB

   Cellular_componentendoplasmic reticulum

Inferred from sequence or structural similarity. Source: UniProtKB

endoplasmic reticulum-Golgi intermediate compartment

Inferred from sequence or structural similarity. Source: UniProtKB

nucleus

Inferred from sequence or structural similarity. Source: UniProtKB

plasma membrane

Inferred from electronic annotation. Source: UniProtKB-SubCell

   Molecular_functionprotein tyrosine phosphatase activity

Inferred from mutant phenotype Ref.11. Source: UniProtKB

Complete GO annotation...

Alternative products

This entry describes 2 isoforms produced by alternative splicing. [Align] [Select]
Isoform 1 (identifier: Q06180-1)

Also known as: PTPB; TC-PTPb;

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Isoform 2 (identifier: Q06180-2)

Also known as: PTPA; TC-PTPa;

The sequence of this isoform differs from the canonical sequence as follows:
     377-406: WLYWQPILTKMGFVSVILVGALVGWTLLFH → PRLTDT

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 406406Tyrosine-protein phosphatase non-receptor type 2
PRO_0000094753

Regions

Domain5 – 275271Tyrosine-protein phosphatase
Region216 – 2227Substrate binding By similarity
Region341 – 40666Endoplasmic reticulum location By similarity
Region371 – 40636Mediates interaction with STX17 By similarity

Sites

Active site2161Phosphocysteine intermediate By similarity
Binding site1821Substrate By similarity
Binding site2601Substrate By similarity

Amino acid modifications

Modified residue2981Phosphoserine By similarity
Modified residue3041Phosphoserine; by CDK1 and CDK2; in isoform 2 By similarity

Natural variations

Alternative sequence377 – 40630WLYWQ…TLLFH → PRLTDT in isoform 2.
VSP_012367

Experimental info

Mutagenesis1821D → A: Substrate-trapping mutant; catalytically inactive it forms a stable complex with physiological substrates including STAT5.
Mutagenesis2161C → S: Catalytically inactive. Unable to restore phosphatase activity toward PDGFRB. Ref.11

Sequences

Sequence LengthMass (Da)Tools
Isoform 1 (PTPB) (TC-PTPb) [UniParc].

Last modified January 4, 2005. Version 2.
Checksum: DFB881DF3C800DC3

FASTA40647,360
        10         20         30         40         50         60 
MSATIEREFE ELDAQCRWQP LYLEIRNESH DYPHRVAKFP ENRNRNRYRD VSPYDHSRVK 

        70         80         90        100        110        120 
LQSTENDYIN ASLVDIEEAQ RSYILTQGPL PNTCCHFWLM VWQQKTKAVV MLNRTVEKES 

       130        140        150        160        170        180 
VKCAQYWPTD DREMVFKETG FSVKLLSEDV KSYYTVHLLQ LENINTGETR TISHFHYTTW 

       190        200        210        220        230        240 
PDFGVPESPA SFLNFLFKVR ESGCLTPDHG PAVIHCSAGI GRSGTFSLVD TCLVLMEKGE 

       250        260        270        280        290        300 
DVNVKQLLLN MRKYRMGLIQ TPDQLRFSYM AIIEGAKYTK GDSNIQKRWK ELSKEDLSPI 

       310        320        330        340        350        360 
CDHSQNRVMV EKYNGKRIGS EDEKLTGLPS KVQDTVEESS ESILRKRIRE DRKATTAQKV 

       370        380        390        400 
QQMKQRLNET ERKRKRWLYW QPILTKMGFV SVILVGALVG WTLLFH 

« Hide

Isoform 2 (PTPA) (TC-PTPa) [UniParc].

Checksum: BFE174ABC0963929
Show »

FASTA38244,573

References

« Hide 'large scale' references
[1]"Cloning and characterization of a mouse cDNA encoding a cytoplasmic protein-tyrosine-phosphatase."
Mosinger B. Jr., Tillmann U., Westphal H., Tremblay M.L.
Proc. Natl. Acad. Sci. U.S.A. 89:499-503(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2).
[2]"Molecular cloning, nucleotide sequence and expression of a cDNA encoding an intracellular protein tyrosine phosphatase, PTPase-2, from mouse testis and T-cells."
Miyasaka H., Li S.S.-L.
Mol. Cell. Biochem. 118:91-98(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2).
Strain: C57BL/6N.
Tissue: T-cell and Testis.
[3]"The transcriptional landscape of the mammalian genome."
Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J. expand/collapse author list , Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N., Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.
Science 309:1559-1563(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
[4]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
Strain: FVB/N.
Tissue: Mammary gland.
[5]"Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice."
You-Ten K.E., Muise E.S., Itie A., Michaliszyn E., Wagner J., Jothy S., Lapp W.S., Tremblay M.L.
J. Exp. Med. 186:683-693(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE, FUNCTION IN IMMUNE SYSTEM DEVELOPMENT, TISSUE SPECIFICITY.
[6]"Murine embryonic fibroblasts lacking TC-PTP display delayed G1 phase through defective NF-kappaB activation."
Ibarra-Sanchez M.J., Wagner J., Ong M.T., Lampron C., Tremblay M.L.
Oncogene 20:4728-4739(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PDGF SIGNALING.
[7]"The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3."
Simoncic P.D., Lee-Loy A., Barber D.L., Tremblay M.L., McGlade C.J.
Curr. Biol. 12:446-453(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN CYTOKINE SIGNALING.
[8]"Identification of a nuclear Stat1 protein tyrosine phosphatase."
ten Hoeve J., de Jesus Ibarra-Sanchez M., Fu Y., Zhu W., Tremblay M., David M., Shuai K.
Mol. Cell. Biol. 22:5662-5668(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DEPHOSPHORYLATION OF STAT1.
[9]"A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus."
Aoki N., Matsuda T.
Mol. Endocrinol. 16:58-69(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DEPHOSPHORYLATION OF STAT5A AND STAT5B.
[10]"T-cell protein tyrosine phosphatase deletion results in progressive systemic inflammatory disease."
Heinonen K.M., Nestel F.P., Newell E.W., Charette G., Seemayer T.A., Tremblay M.L., Lapp W.S.
Blood 103:3457-3464(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE.
[11]"Site-selective regulation of platelet-derived growth factor beta receptor tyrosine phosphorylation by T-cell protein tyrosine phosphatase."
Persson C., Saevenhed C., Bourdeau A., Tremblay M.L., Markova B., Boehmer F.D., Haj F.G., Neel B.G., Elson A., Heldin C.H., Roennstrand L., Ostman A., Hellberg C.
Mol. Cell. Biol. 24:2190-2201(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DEPHOSPHORYLATION OF PDGFRB, MUTAGENESIS OF CYS-216.
[12]"Selective regulation of tumor necrosis factor-induced Erk signaling by Src family kinases and the T cell protein tyrosine phosphatase."
van Vliet C., Bukczynska P.E., Puryer M.A., Sadek C.M., Shields B.J., Tremblay M.L., Tiganis T.
Nat. Immunol. 6:253-260(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN TUMOR NECROSIS FACTOR SIGNALING.
[13]"T-cell protein tyrosine phosphatase (Tcptp) is a negative regulator of colony-stimulating factor 1 signaling and macrophage differentiation."
Simoncic P.D., Bourdeau A., Lee-Loy A., Rohrschneider L.R., Tremblay M.L., Stanley E.R., McGlade C.J.
Mol. Cell. Biol. 26:4149-4160(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DEPHOSPHORYLATION OF CSF1R.
[14]"T-cell protein tyrosine phosphatase, distinctively expressed in activated-B-cell-like diffuse large B-cell lymphomas, is the nuclear phosphatase of STAT6."
Lu X., Chen J., Sasmono R.T., Hsi E.D., Sarosiek K.A., Tiganis T., Lossos I.S.
Mol. Cell. Biol. 27:2166-2179(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DEPHOSPHORYLATION OF STAT6.
[15]"T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis."
Fukushima A., Loh K., Galic S., Fam B., Shields B., Wiede F., Tremblay M.L., Watt M.J., Andrikopoulos S., Tiganis T.
Diabetes 59:1906-1914(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE, FUNCTION IN GLUCOSE HOMEOSTASIS, TISSUE SPECIFICITY.
[16]"T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice."
Wiede F., Shields B.J., Chew S.H., Kyparissoudis K., van Vliet C., Galic S., Tremblay M.L., Russell S.M., Godfrey D.I., Tiganis T.
J. Clin. Invest. 121:4758-4774(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE, FUNCTION IN T-CELL RECEPTOR SIGNALING.
[17]"T cell protein tyrosine phosphatase (TCPTP) deficiency in muscle does not alter insulin signalling and glucose homeostasis in mice."
Loh K., Merry T.L., Galic S., Wu B.J., Watt M.J., Zhang S., Zhang Z.Y., Neel B.G., Tiganis T.
Diabetologia 55:468-478(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
M81477 mRNA. Translation: AAA37446.1.
S52655 mRNA. Translation: AAB25035.2.
BC008269 mRNA. Translation: AAH08269.1.
AK076072 mRNA. Translation: BAC36163.1.
AK132013 mRNA. Translation: BAE20939.1.
PIRA38191.
RefSeqNP_001120649.1. NM_001127177.1.
NP_033003.1. NM_008977.3.
UniGeneMm.260433.

3D structure databases

ProteinModelPortalQ06180.
SMRQ06180. Positions 5-277.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

IntActQ06180. 2 interactions.
MINTMINT-5170362.

PTM databases

PhosphoSiteQ06180.

Proteomic databases

PaxDbQ06180.
PRIDEQ06180.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENSMUST00000025420; ENSMUSP00000025420; ENSMUSG00000024539. [Q06180-2]
ENSMUST00000122412; ENSMUSP00000112675; ENSMUSG00000024539. [Q06180-1]
GeneID19255.
KEGGmmu:19255.
UCSCuc008fmu.2. mouse. [Q06180-2]
uc008fmv.2. mouse. [Q06180-1]

Organism-specific databases

CTD5771.
MGIMGI:97806. Ptpn2.

Phylogenomic databases

eggNOGCOG5599.
GeneTreeENSGT00750000117312.
HOGENOMHOG000273908.
HOVERGENHBG008321.
InParanoidQ06180.
KOK18026.
OMANTAQKVQ.
PhylomeDBQ06180.
TreeFamTF315897.

Gene expression databases

ArrayExpressQ06180.
BgeeQ06180.
CleanExMM_PTPN2.
GenevestigatorQ06180.

Family and domain databases

InterProIPR012265. Ptpn1/Ptpn2.
IPR000387. Tyr/Dual-sp_Pase.
IPR016130. Tyr_Pase_AS.
IPR000242. Tyr_Pase_rcpt/non-rcpt.
[Graphical view]
PfamPF00102. Y_phosphatase. 1 hit.
[Graphical view]
PIRSFPIRSF000926. Tyr-Ptase_nr1. 1 hit.
PRINTSPR00700. PRTYPHPHTASE.
SMARTSM00194. PTPc. 1 hit.
[Graphical view]
PROSITEPS00383. TYR_PHOSPHATASE_1. 1 hit.
PS50056. TYR_PHOSPHATASE_2. 1 hit.
PS50055. TYR_PHOSPHATASE_PTP. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

NextBio296100.
PROQ06180.
SOURCESearch...

Entry information

Entry namePTN2_MOUSE
AccessionPrimary (citable) accession number: Q06180
Secondary accession number(s): Q3V259, Q922E7
Entry history
Integrated into UniProtKB/Swiss-Prot: February 1, 1994
Last sequence update: January 4, 2005
Last modified: April 16, 2014
This is version 126 of the entry and version 2 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Relevant documents

SIMILARITY comments

Index of protein domains and families

MGD cross-references

Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot