Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q03145 (EPHA2_MOUSE) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 151. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (3) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Ephrin type-A receptor 2

EC=2.7.10.1
Alternative name(s):
Epithelial cell kinase
Tyrosine-protein kinase receptor ECK
Tyrosine-protein kinase receptor MPK-5
Tyrosine-protein kinase receptor SEK-2
Gene names
Name:Epha2
Synonyms:Eck, Myk2, Sek2
OrganismMus musculus (Mouse) [Reference proteome]
Taxonomic identifier10090 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus

Protein attributes

Sequence length977 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis. Ref.11 Ref.12 Ref.13 Ref.14 Ref.15 Ref.17 Ref.18

Catalytic activity

ATP + a [protein]-L-tyrosine = ADP + a [protein]-L-tyrosine phosphate. Ref.1

Subunit structure

Homodimer. Interacts with INPPL1; regulates activated EPHA2 endocytosis and degradation. Interacts (inactivated form) with PTK2/FAK1 and interacts (EFNA1 ligand-activated form) with PTPN11; regulates integrin-mediated adhesion. Interacts with ARHGEF16, DOCK4 and ELMO2; mediates ligand-independent activation of RAC1 which stimulates cell migration. Interacts with CLDN4; phosphorylates CLDN4 and may regulate tight junctions. Interacts with ACP1. Interacts with CEMIP By similarity. Interacts with SLA. Interacts (phosphorylated form) with VAV2, VAV3 and PI3-kinase p85 subunit (PIK3R1, PIK3R2 or PIK3R3); critical for the EFNA1-induced activation of RAC1 which stimulates cell migration. Interacts with ANKS1A. Ref.9 Ref.13 Ref.14 Ref.21

Subcellular location

Cell membrane; Single-pass type I membrane protein By similarity. Cell projectionruffle membrane; Single-pass type I membrane protein By similarity. Cell projectionlamellipodium membrane; Single-pass type I membrane protein By similarity. Cell junctionfocal adhesion By similarity. Note: Present at regions of cell-cell contacts but also at the leading edge of migrating cells By similarity.

Tissue specificity

Expressed in the lung, intestine and liver. Ref.10

Developmental stage

First detected in gastrulation stage embryos (6.5-7.5 dpc) in ectodermal cells adjacent to the distal region of the primitive streak. By the neural plate stage (approximately 7.5 dpc), EPHA2 expression becomes restricted to the extreme distal end or node of the primitive streak. After the beginning of somitogenesis (approximately 8.0 dpc), expression persists in the node as this structure regresses toward the caudal end of the embryo. In addition, beginning at the mid head fold stage (approximately 7.75 dpc), we observe that EPHA2 exhibits a dynamic and spatially restricted expression pattern in the prospective hindbrain region. EPHA2 transcripts are initially detected in a 5-cell wide strip of mesodermal cells underlying prospective rhombomere 4 (R4). Subsequently at the beginning of somitogenesis, expression is observed in prospective R4. At the 4-8-somite stage, EPHA2 transcripts are observed in R4, mesenchymal cells underlying R4, and surface ectoderm in the vicinity of the developing second branchial arch. By the 10-somite stage, expression in these cells is down-regulated. Additionally, at the 5-8-somite stage, EPHA2 transcripts are detected initially in the lateral mesenchyme immediately underlying the surface ectoderm adjacent to R5 and R6, and subsequently in surface ectoderm overlying the developing third branchial arch. Ref.1 Ref.2 Ref.7 Ref.10

Post-translational modification

Autophosphorylates. Phosphorylated at Ser-898 by PKB; serum-induced phosphorylation which targets EPHA2 to the cell leading edge and stimulates cell migration. Phosphorylation by PKB is inhibited by EFNA1-activated EPHA2 which regulates PKB activity via a reciprocal regulatory loop. Dephosphorylated by ACP1 By similarity. Phosphorylated on tyrosine upon binding and activation by EFNA1. Phosphorylated residues Tyr-589 and Tyr-595 are required for binding VAV2 and VAV3 while phosphorylated residues Tyr-736 and Tyr-931 are required for binding PI3-kinase p85 subunit (PIK3R1, PIK3R2 or PIK3R3). These phosphorylated residues are critical for recruitment of VAV2 and VAV3 and PI3-kinase p85 subunit which transduce downstream signaling to activate RAC1 GTPase and cell migration By similarity. Ref.14

Ubiquitinated by CHIP/STUB1. Ubiquitination is regulated by the HSP90 chaperone and regulates the receptor stability and activity through proteasomal degradation. ANKS1A prevents ubiquitination and degradation. Ref.21

Disruption phenotype

Mice are viable, fertile but exhibit aberrant development of tail vertebra and susceptibility to carcinogenesis. Ref.10 Ref.11 Ref.12

Sequence similarities

Belongs to the protein kinase superfamily. Tyr protein kinase family. Ephrin receptor subfamily.

Contains 1 Eph LBD (Eph ligand-binding) domain.

Contains 2 fibronectin type-III domains.

Contains 1 protein kinase domain.

Contains 1 SAM (sterile alpha motif) domain.

Ontologies

Keywords
   Biological processAngiogenesis
Apoptosis
Cell adhesion
Differentiation
   Cellular componentCell junction
Cell membrane
Cell projection
Membrane
   DomainRepeat
Signal
Transmembrane
Transmembrane helix
   LigandATP-binding
Nucleotide-binding
   Molecular functionKinase
Receptor
Transferase
Tyrosine-protein kinase
   PTMDisulfide bond
Glycoprotein
Phosphoprotein
Ubl conjugation
   Technical termComplete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processactivation of Rac GTPase activity

Inferred from sequence or structural similarity. Source: UniProtKB

angiogenesis

Inferred from electronic annotation. Source: UniProtKB-KW

axial mesoderm formation

Inferred from mutant phenotype Ref.10. Source: MGI

blood vessel development

Inferred from mutant phenotype Ref.10. Source: MGI

bone remodeling

Inferred from mutant phenotype Ref.17. Source: UniProtKB

branching involved in mammary gland duct morphogenesis

Inferred from mutant phenotype Ref.18. Source: UniProtKB

cell adhesion

Inferred from electronic annotation. Source: UniProtKB-KW

cell chemotaxis

Inferred from sequence or structural similarity. Source: UniProtKB

ephrin receptor signaling pathway

Inferred from mutant phenotype Ref.15. Source: UniProtKB

intrinsic apoptotic signaling pathway in response to DNA damage

Inferred from electronic annotation. Source: Ensembl

keratinocyte differentiation

Inferred from electronic annotation. Source: Ensembl

lens fiber cell morphogenesis

Inferred from direct assay Ref.15. Source: UniProtKB

mammary gland epithelial cell proliferation

Inferred from mutant phenotype Ref.18. Source: UniProtKB

negative regulation of protein kinase B signaling

Inferred from sequence or structural similarity. Source: UniProtKB

neural tube development

Inferred from mutant phenotype Ref.10. Source: MGI

neuron differentiation

Inferred from direct assay PubMed 15145949. Source: MGI

notochord cell development

Inferred from mutant phenotype Ref.10. Source: MGI

notochord formation

Inferred from mutant phenotype Ref.10. Source: MGI

notochord morphogenesis

Inferred from mutant phenotype Ref.10. Source: MGI

osteoblast differentiation

Inferred from mutant phenotype Ref.17. Source: UniProtKB

osteoclast differentiation

Inferred from direct assay Ref.17. Source: UniProtKB

peptidyl-tyrosine phosphorylation

Inferred from sequence or structural similarity. Source: GOC

positive regulation of establishment of protein localization to plasma membrane

Inferred from sequence or structural similarity. Source: UniProtKB

post-anal tail morphogenesis

Inferred from mutant phenotype Ref.10. Source: MGI

protein kinase B signaling

Inferred from sequence or structural similarity. Source: UniProtKB

regulation of ERK1 and ERK2 cascade

Inferred from electronic annotation. Source: Ensembl

regulation of angiogenesis

Inferred from direct assay Ref.13. Source: UniProtKB

regulation of blood vessel endothelial cell migration

Inferred from direct assay Ref.13. Source: UniProtKB

regulation of cell adhesion mediated by integrin

Inferred from sequence or structural similarity. Source: UniProtKB

regulation of lamellipodium assembly

Inferred from sequence or structural similarity. Source: UniProtKB

response to growth factor

Inferred from sequence or structural similarity. Source: UniProtKB

skeletal system development

Inferred from mutant phenotype Ref.10. Source: MGI

vasculogenesis

Inferred from mutant phenotype Ref.10. Source: MGI

   Cellular_componentfocal adhesion

Inferred from sequence or structural similarity. Source: UniProtKB

integral component of plasma membrane

Inferred from sequence or structural similarity. Source: UniProtKB

lamellipodium membrane

Inferred from electronic annotation. Source: UniProtKB-SubCell

leading edge membrane

Inferred from sequence or structural similarity. Source: UniProtKB

ruffle membrane

Inferred from electronic annotation. Source: UniProtKB-SubCell

   Molecular_functionATP binding

Inferred from electronic annotation. Source: UniProtKB-KW

ephrin receptor activity

Inferred from electronic annotation. Source: InterPro

transmembrane receptor protein tyrosine kinase activity

Inferred from sequence or structural similarity. Source: UniProtKB

Complete GO annotation...

Binary interactions

With

Entry

#Exp.

IntAct

Notes

Epha4Q031373EBI-529701,EBI-1539152

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Signal peptide1 – 2525 Potential
Chain26 – 977952Ephrin type-A receptor 2
PRO_0000016801

Regions

Topological domain26 – 538513Extracellular Potential
Transmembrane539 – 55921Helical; Potential
Topological domain560 – 977418Cytoplasmic Potential
Domain27 – 205179Eph LBD
Domain329 – 433105Fibronectin type-III 1
Domain439 – 53092Fibronectin type-III 2
Domain614 – 876263Protein kinase
Domain905 – 96965SAM
Nucleotide binding620 – 6289ATP By similarity
Region1 – 205205Mediates interaction with CLDN4 By similarity
Region607 – 907301Mediates interaction with ARHGEF16 By similarity
Region887 – 97791Negatively regulates interaction with ARHGEF16 By similarity
Motif975 – 9773PDZ-binding Potential
Compositional bias187 – 326140Cys-rich

Sites

Active site7401Proton acceptor By similarity
Binding site6471ATP By similarity

Amino acid modifications

Modified residue1521Phosphoserine By similarity
Modified residue3741Phosphoserine By similarity
Modified residue5711Phosphoserine By similarity
Modified residue5801Phosphoserine By similarity
Modified residue5881Phosphothreonine By similarity
Modified residue5891Phosphotyrosine; by autocatalysis By similarity
Modified residue5941Phosphothreonine By similarity
Modified residue5951Phosphotyrosine; by autocatalysis Ref.14 Ref.16
Modified residue6291Phosphotyrosine By similarity
Modified residue6481Phosphothreonine By similarity
Modified residue7361Phosphotyrosine; by autocatalysis Ref.14
Modified residue7721Phosphothreonine By similarity
Modified residue7731Phosphotyrosine; by autocatalysis Ref.14 Ref.16
Modified residue7911Phosphoserine By similarity
Modified residue7921Phosphotyrosine By similarity
Modified residue8701Phosphoserine By similarity
Modified residue8811Phosphoserine By similarity
Modified residue8931Phosphoserine By similarity
Modified residue8981Phosphoserine By similarity
Modified residue8991Phosphothreonine By similarity
Modified residue9001Phosphoserine By similarity
Modified residue9021Phosphoserine By similarity
Modified residue9111Phosphoserine By similarity
Modified residue9221Phosphotyrosine; by autocatalysis Potential
Modified residue9311Phosphotyrosine By similarity
Modified residue9611Phosphotyrosine By similarity
Glycosylation4081N-linked (GlcNAc...) Ref.19 Ref.20
Glycosylation4361N-linked (GlcNAc...) Ref.19 Ref.20
Disulfide bond69 ↔ 187 By similarity
Disulfide bond104 ↔ 114 By similarity

Experimental info

Mutagenesis5891Y → E: No significant effect on kinase activity and loss of binding to VAV2 and VAV3. Inhibits EFNA1-induced vascular assembly and RAC1 activation in endothelial cells, no significant effect on kinase activity, significant reduction in phosphorylation and binding to VAV3; when associated with E-595. Ref.13 Ref.14
Mutagenesis5891Y → F: Inhibits EFNA1-induced vascular assembly and kinase activity. Ref.13 Ref.14
Mutagenesis5951Y → E: No significant effect on kinase activity and loss of binding to VAV2 and VAV3. Inhibits EFNA1-induced vascular assembly and RAC1 activation in endothelial cells, no significant effect on kinase activity, significant reduction in phosphorylation and binding to VAV3; when associated with E-589. Ref.13 Ref.14
Mutagenesis5951Y → F: Inhibits EFNA1-induced vascular assembly and abolishes kinase activity. Ref.13 Ref.14
Mutagenesis7361Y → F: Inhibits EFNA1-induced vascular assembly and RAC1 activation in endothelial cells. No significant effect on kinase activity. Loss of binding to PI3-kinase p85 subunit. Ref.14
Mutagenesis7401D → N: Loss of kinase activity and binding to VAV3. Ref.13
Mutagenesis7731Y → F: No significant effect on kinase activity. Significant reduction in phosphorylation. Ref.14
Mutagenesis9311Y → F: Inhibits EFNA1-induced vascular assembly and RAC1 activation in endothelial cells. Inhibits kinase activity. Loss of binding to VAV3 and PI3-kinase p85 subunit. Ref.14
Sequence conflict51A → T in CAA55135. Ref.1
Sequence conflict112 – 1132SS → HA in AAA82113. Ref.2
Sequence conflict1891A → R in AAA82113. Ref.2
Sequence conflict2091R → C in AAA82113. Ref.2
Sequence conflict2441P → A in AAA82113. Ref.2
Sequence conflict258 – 2603IGQ → SE in AAA82113. Ref.2
Sequence conflict2911C → S in AAA82113. Ref.2
Sequence conflict339 – 3402IG → C in AAA82113. Ref.2
Sequence conflict371 – 3722WP → CA in AAA82113. Ref.2
Sequence conflict3831S → T in AAA82113. Ref.2
Sequence conflict4571W → R in AAA82113. Ref.2
Sequence conflict4851V → G in AAA82113. Ref.2
Sequence conflict5111L → W in AAA82113. Ref.2
Sequence conflict5341A → R in AAA82113. Ref.2
Sequence conflict6781R → P in CAA55135. Ref.1
Sequence conflict6811G → A in AAA82113. Ref.2
Sequence conflict819 – 8202YW → LL in AAA82113. Ref.2
Sequence conflict8781A → R in AAA82113. Ref.2
Sequence conflict919 – 9202MQ → IE in AAA82113. Ref.2

Sequences

Sequence LengthMass (Da)Tools
Q03145 [UniParc].

Last modified July 27, 2011. Version 3.
Checksum: 66338CE7EF2DEE02

FASTA977108,852
        10         20         30         40         50         60 
MELRAVGFCL ALLWGCALAA AAAQGKEVVL LDFAAMKGEL GWLTHPYGKG WDLMQNIMDD 

        70         80         90        100        110        120 
MPIYMYSVCN VVSGDQDNWL RTNWVYREEA ERIFIELKFT VRDCNSFPGG ASSCKETFNL 

       130        140        150        160        170        180 
YYAESDVDYG TNFQKRQFTK IDTIAPDEIT VSSDFEARNV KLNVEERMVG PLTRKGFYLA 

       190        200        210        220        230        240 
FQDIGACVAL LSVRVYYKKC PEMLQSLARF PETIAVAVSD TQPLATVAGT CVDHAVVPYG 

       250        260        270        280        290        300 
GEGPLMHCTV DGEWLVPIGQ CLCQEGYEKV EDACRACSPG FFKSEASESP CLECPEHTLP 

       310        320        330        340        350        360 
STEGATSCQC EEGYFRAPED PLSMSCTRPP SAPNYLTAIG MGAKVELRWT APKDTGGRQD 

       370        380        390        400        410        420 
IVYSVTCEQC WPESGECGPC EASVRYSEPP HALTRTSVTV SDLEPHMNYT FAVEARNGVS 

       430        440        450        460        470        480 
GLVTSRSFRT ASVSINQTEP PKVRLEDRST TSLSVTWSIP VSQQSRVWKY EVTYRKKGDA 

       490        500        510        520        530        540 
NSYNVRRTEG FSVTLDDLAP DTTYLVQVQA LTQEGQGAGS KVHEFQTLST EGSANMAVIG 

       550        560        570        580        590        600 
GVAVGVVLLL VLAGVGLFIH RRRRNLRARQ SSEDVRFSKS EQLKPLKTYV DPHTYEDPNQ 

       610        620        630        640        650        660 
AVLKFTTEIH PSCVARQKVI GAGEFGEVYK GTLKASSGKK EIPVAIKTLK AGYTEKQRVD 

       670        680        690        700        710        720 
FLSEASIMGQ FSHHNIIRLE GVVSKYKPMM IITEYMENGA LDKFLREKDG EFSVLQLVGM 

       730        740        750        760        770        780 
LRGIASGMKY LANMNYVHRD LAARNILVNS NLVCKVSDFG LSRVLEDDPE ATYTTSGGKI 

       790        800        810        820        830        840 
PIRWTAPEAI SYRKFTSASD VWSYGIVMWE VMTYGERPYW ELSNHEVMKA INDGFRLPTP 

       850        860        870        880        890        900 
MDCPSAIYQL MMQCWQQERS RRPKFADIVS ILDKLIRAPD SLKTLADFDP RVSIRLPSTS 

       910        920        930        940        950        960 
GSEGVPFRTV SEWLESIKMQ QYTEHFMVAG YTAIEKVVQM SNEDIKRIGV RLPGHQKRIA 

       970 
YSLLGLKDQV NTVGIPI 

« Hide

References

« Hide 'large scale' references
[1]"The Eck receptor tyrosine kinase is implicated in pattern formation during gastrulation, hindbrain segmentation and limb development."
Ganju P., Shigemoto K., Brennan J., Entwistle A., Reith A.D.
Oncogene 9:1613-1624(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], GLYCOSYLATION, CATALYTIC ACTIVITY, DEVELOPMENTAL STAGE.
[2]"The expression of the receptor-protein tyrosine kinase gene, eck, is highly restricted during early mouse development."
Ruiz J.C., Robertson E.J.
Mech. Dev. 46:87-100(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], DEVELOPMENTAL STAGE.
[3]"The transcriptional landscape of the mammalian genome."
Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J. expand/collapse author list , Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N., Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.
Science 309:1559-1563(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Strain: C57BL/6J.
Tissue: Bone marrow and Vagina.
[4]"Lineage-specific biology revealed by a finished genome assembly of the mouse."
Church D.M., Goodstadt L., Hillier L.W., Zody M.C., Goldstein S., She X., Bult C.J., Agarwala R., Cherry J.L., DiCuccio M., Hlavina W., Kapustin Y., Meric P., Maglott D., Birtle Z., Marques A.C., Graves T., Zhou S. expand/collapse author list , Teague B., Potamousis K., Churas C., Place M., Herschleb J., Runnheim R., Forrest D., Amos-Landgraf J., Schwartz D.C., Cheng Z., Lindblad-Toh K., Eichler E.E., Ponting C.P.
PLoS Biol. 7:E1000112-E1000112(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: C57BL/6J.
[5]Mural R.J., Adams M.D., Myers E.W., Smith H.O., Venter J.C.
Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[6]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Tissue: Brain.
[7]"Several receptor tyrosine kinase genes of the Eph family are segmentally expressed in the developing hindbrain."
Becker N., Seitanidou T., Murphy P., Mattei M.-G., Topilko P., Nieto A., Wilkinson D.G., Charnay P., Gilardi P.
Mech. Dev. 47:3-17(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 552-977, DEVELOPMENTAL STAGE.
Strain: C57BL/6.
Tissue: Embryo.
[8]"An Eph-related receptor protein tyrosine kinase gene segmentally expressed in the developing mouse hindbrain."
Gilardi-Hebenstreit P., Nieto M.A., Frain M., Mattei M.-G., Chestier A., Wilkinson D.G., Charnay P.
Oncogene 7:2499-2506(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 742-799.
Tissue: Embryonic brain.
[9]"Characterization of a novel Src-like adapter protein that associates with the Eck receptor tyrosine kinase."
Pandey A., Duan H., Dixit V.M.
J. Biol. Chem. 270:19201-19204(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SLA.
Tissue: Embryonic brain.
[10]"Involvement of EphA2 in the formation of the tail notochord via interaction with ephrinA1."
Naruse-Nakajima C., Asano M., Iwakura Y.
Mech. Dev. 102:95-105(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE, DEVELOPMENTAL STAGE, TISSUE SPECIFICITY.
[11]"EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Rac1 GTPase activation."
Brantley-Sieders D.M., Caughron J., Hicks D., Pozzi A., Ruiz J.C., Chen J.
J. Cell Sci. 117:2037-2049(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN ANGIOGENESIS, DISRUPTION PHENOTYPE.
[12]"Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in mouse skin."
Guo H., Miao H., Gerber L., Singh J., Denning M.F., Gilliam A.C., Wang B.
Cancer Res. 66:7050-7058(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN CELL PROLIFERATION, DISRUPTION PHENOTYPE.
[13]"Essential role of Vav family guanine nucleotide exchange factors in EphA receptor-mediated angiogenesis."
Hunter S.G., Zhuang G., Brantley-Sieders D.M., Swat W., Cowan C.W., Chen J.
Mol. Cell. Biol. 26:4830-4842(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN ANGIOGENESIS, INTERACTION WITH VAV2 AND VAV3, MUTAGENESIS OF TYR-589; TYR-595 AND ASP-740.
[14]"Identification and functional analysis of phosphorylated tyrosine residues within EphA2 receptor tyrosine kinase."
Fang W.B., Brantley-Sieders D.M., Hwang Y., Ham A.-J.L., Chen J.
J. Biol. Chem. 283:16017-16026(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY, FUNCTION, INTERACTION WITH VAV2; VAV3 AND PI3-KINASE P85 SUBUNIT, PHOSPHORYLATION AT TYR-589; TYR-595; TYR-736 AND TYR-773, MUTAGENESIS OF TYR-589; TYR-595; TYR-736; TYR-773 AND TYR-931.
[15]"Loss of ephrin-A5 function disrupts lens fiber cell packing and leads to cataract."
Cooper M.A., Son A.I., Komlos D., Sun Y., Kleiman N.J., Zhou R.
Proc. Natl. Acad. Sci. U.S.A. 105:16620-16625(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN LENS FIBER CELLS MORPHOGENESIS.
[16]"Large scale localization of protein phosphorylation by use of electron capture dissociation mass spectrometry."
Sweet S.M., Bailey C.M., Cunningham D.L., Heath J.K., Cooper H.J.
Mol. Cell. Proteomics 8:904-912(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-595 AND TYR-773, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Embryonic fibroblast.
[17]"Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis."
Irie N., Takada Y., Watanabe Y., Matsuzaki Y., Naruse C., Asano M., Iwakura Y., Suda T., Matsuo K.
J. Biol. Chem. 284:14637-14644(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN BONE IN REMODELING.
[18]"Regulation of mammary gland branching morphogenesis by EphA2 receptor tyrosine kinase."
Vaught D., Chen J., Brantley-Sieders D.M.
Mol. Biol. Cell 20:2572-2581(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN MAMMARY GLAND DEVELOPMENT.
[19]"The mouse C2C12 myoblast cell surface N-linked glycoproteome: identification, glycosite occupancy, and membrane orientation."
Gundry R.L., Raginski K., Tarasova Y., Tchernyshyov I., Bausch-Fluck D., Elliott S.T., Boheler K.R., Van Eyk J.E., Wollscheid B.
Mol. Cell. Proteomics 8:2555-2569(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: GLYCOSYLATION [LARGE SCALE ANALYSIS] AT ASN-408 AND ASN-436.
Tissue: Myoblast.
[20]"Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins."
Wollscheid B., Bausch-Fluck D., Henderson C., O'Brien R., Bibel M., Schiess R., Aebersold R., Watts J.D.
Nat. Biotechnol. 27:378-386(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: GLYCOSYLATION [LARGE SCALE ANALYSIS] AT ASN-408 AND ASN-436.
[21]"The SAM domains of Anks family proteins are critically involved in modulating the degradation of EphA receptors."
Kim J., Lee H., Kim Y., Yoo S., Park E., Park S.
Mol. Cell. Biol. 30:1582-1592(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: UBIQUITINATION, INTERACTION WITH ANKS1A.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
X78339 mRNA. Translation: CAA55135.1.
U07634 mRNA. Translation: AAA82113.1.
AK137704 mRNA. Translation: BAE23470.1.
AK144202 mRNA. Translation: BAE25765.1.
AL607087, AL670285 Genomic DNA. Translation: CAM17000.1.
AL670285, AL607087 Genomic DNA. Translation: CAM20402.1.
CH466615 Genomic DNA. Translation: EDL13361.1.
BC140960 mRNA. Translation: AAI40961.1.
X76010 mRNA. Translation: CAA53597.1.
X57243 mRNA. Translation: CAA40519.1.
PIRI48759.
I48974.
S49004.
RefSeqNP_034269.2. NM_010139.3.
UniGeneMm.2581.

3D structure databases

ProteinModelPortalQ03145.
SMRQ03145. Positions 24-529, 603-971.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid199469. 2 interactions.
DIPDIP-829N.
IntActQ03145. 4 interactions.
MINTMINT-3388286.

PTM databases

PhosphoSiteQ03145.

Proteomic databases

PaxDbQ03145.
PRIDEQ03145.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENSMUST00000006614; ENSMUSP00000006614; ENSMUSG00000006445.
GeneID13836.
KEGGmmu:13836.
UCSCuc008voc.2. mouse.

Organism-specific databases

CTD1969.
MGIMGI:95278. Epha2.

Phylogenomic databases

eggNOGCOG0515.
GeneTreeENSGT00740000115081.
HOGENOMHOG000233856.
HOVERGENHBG062180.
InParanoidQ3UNI2.
KOK05103.
OMALVPIGQC.
OrthoDBEOG7VTDM6.
TreeFamTF315608.

Enzyme and pathway databases

BRENDA2.7.10.1. 3474.

Gene expression databases

BgeeQ03145.
CleanExMM_EPHA2.
GenevestigatorQ03145.

Family and domain databases

Gene3D1.10.150.50. 1 hit.
2.60.120.260. 1 hit.
2.60.40.10. 2 hits.
InterProIPR027936. Eph_TM.
IPR001090. Ephrin_rcpt_lig-bd_dom.
IPR003961. Fibronectin_type3.
IPR008979. Galactose-bd-like.
IPR009030. Growth_fac_rcpt_N_dom.
IPR013783. Ig-like_fold.
IPR011009. Kinase-like_dom.
IPR000719. Prot_kinase_dom.
IPR017441. Protein_kinase_ATP_BS.
IPR001660. SAM.
IPR013761. SAM/pointed.
IPR021129. SAM_type1.
IPR001245. Ser-Thr/Tyr_kinase_cat_dom.
IPR008266. Tyr_kinase_AS.
IPR020635. Tyr_kinase_cat_dom.
IPR016257. Tyr_kinase_ephrin_rcpt.
IPR001426. Tyr_kinase_rcpt_V_CS.
[Graphical view]
PfamPF14575. EphA2_TM. 1 hit.
PF01404. Ephrin_lbd. 1 hit.
PF00041. fn3. 2 hits.
PF07714. Pkinase_Tyr. 1 hit.
PF00536. SAM_1. 1 hit.
[Graphical view]
PIRSFPIRSF000666. TyrPK_ephrin_receptor. 1 hit.
PRINTSPR00109. TYRKINASE.
SMARTSM00615. EPH_lbd. 1 hit.
SM00060. FN3. 2 hits.
SM00454. SAM. 1 hit.
SM00219. TyrKc. 1 hit.
[Graphical view]
SUPFAMSSF47769. SSF47769. 1 hit.
SSF49265. SSF49265. 1 hit.
SSF49785. SSF49785. 1 hit.
SSF56112. SSF56112. 1 hit.
SSF57184. SSF57184. 2 hits.
PROSITEPS01186. EGF_2. 1 hit.
PS51550. EPH_LBD. 1 hit.
PS50853. FN3. 2 hits.
PS00107. PROTEIN_KINASE_ATP. 1 hit.
PS50011. PROTEIN_KINASE_DOM. 1 hit.
PS00109. PROTEIN_KINASE_TYR. 1 hit.
PS00790. RECEPTOR_TYR_KIN_V_1. 1 hit.
PS00791. RECEPTOR_TYR_KIN_V_2. 1 hit.
PS50105. SAM_DOMAIN. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

NextBio284656.
PROQ03145.
SOURCESearch...

Entry information

Entry nameEPHA2_MOUSE
AccessionPrimary (citable) accession number: Q03145
Secondary accession number(s): Q3UNI2, Q60633, Q62212
Entry history
Integrated into UniProtKB/Swiss-Prot: October 1, 1994
Last sequence update: July 27, 2011
Last modified: April 16, 2014
This is version 151 of the entry and version 3 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Relevant documents

SIMILARITY comments

Index of protein domains and families

Human and mouse protein kinases

Human and mouse protein kinases: classification and index

MGD cross-references

Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot