Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q03103 (ERO1_YEAST) Reviewed, UniProtKB/Swiss-Prot

Last modified June 11, 2014. Version 119. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (4) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Endoplasmic oxidoreductin-1

EC=1.8.4.-
Alternative name(s):
Endoplasmic reticulum oxidoreductase protein 1
Gene names
Name:ERO1
Ordered Locus Names:YML130C
ORF Names:YM4987.05C
OrganismSaccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [Reference proteome]
Taxonomic identifier559292 [NCBI]
Taxonomic lineageEukaryotaFungiDikaryaAscomycotaSaccharomycotinaSaccharomycetesSaccharomycetalesSaccharomycetaceaeSaccharomyces

Protein attributes

Sequence length563 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Essential oxidoreductase that oxidizes proteins in the endoplasmic reticulum to produce disulfide bonds. Acts by oxidizing directly PDI1 isomerase through a direct disulfide exchange. Does not act as a direct oxidant of folding substrate, but relies on PDI1 to transfer oxidizing equivalent. Also able to oxidize directly the PDI related protein MPD2. Does not oxidize all PDI related proteins, suggesting that it can discriminate between PDI1 and related proteins. Reoxidation of ERO1 probably involves electron transfer to molecular oxygen via FAD. Acts independently of glutathione. May be responsible for a significant proportion of reactive oxygen species (ROS) in the cell, thereby being a source of oxidative stress. Ref.4 Ref.5 Ref.6 Ref.7 Ref.10

Cofactor

FAD. Ref.7

Enzyme regulation

Enzyme activity is tightly regulated to prevent the accumulation of reactive oxygen species in the endoplasmic reticulum. Reversibly down-regulated by the formation of disulfide bonds between Cys-150 and Cys-295. Ref.12

Subunit structure

May function both as a monomer and a homodimer. Ref.13

Subcellular location

Endoplasmic reticulum membrane; Peripheral membrane protein; Lumenal side Ref.4 Ref.5 Ref.9.

Induction

By unfolded protein response (UPR). Ref.4 Ref.5 Ref.12

Domain

The C-terminal part (437-563) is required for the association with the endoplasmic reticulum lumen membrane. Ref.9

Post-translational modification

The Cys-100/Cys-105 and Cys-352/Cys-355 disulfide bonds constitute the redox-active center. The Cys-100/Cys-105 disulfide bond may accept electron from PDI1 and funnel them to the active site disulfide Cys-352/Cys-355.

N-glycosylated. Ref.4 Ref.5

Sequence similarities

Belongs to the EROs family.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Signal peptide1 – 1818 Potential
Chain19 – 563545Endoplasmic oxidoreductin-1
PRO_0000008429

Sites

Active site3521Nucleophile
Active site3551
Binding site1871FAD
Binding site1891FAD
Binding site2001FAD
Binding site2281FAD
Binding site2311FAD
Binding site2601FAD

Amino acid modifications

Glycosylation211N-linked (GlcNAc...) Potential
Glycosylation351N-linked (GlcNAc...) Potential
Glycosylation531N-linked (GlcNAc...) Potential
Glycosylation1301N-linked (GlcNAc...) Potential
Glycosylation3421N-linked (GlcNAc...) Potential
Glycosylation4251N-linked (GlcNAc...) Potential
Glycosylation4581N-linked (GlcNAc...) Potential
Glycosylation4681N-linked (GlcNAc...) Potential
Glycosylation4911N-linked (GlcNAc...) Potential
Disulfide bond90 ↔ 349 Ref.12 Ref.13
Disulfide bond100 ↔ 105Redox-active Ref.12 Ref.13
Disulfide bond143 ↔ 166 Ref.12 Ref.13
Disulfide bond150 ↔ 295 Ref.12 Ref.13
Disulfide bond352 ↔ 355Redox-active Ref.12 Ref.13

Experimental info

Mutagenesis901C → A: No effect. Ref.8 Ref.12
Mutagenesis1001C → A: Impairs the capture of mixed-disulfide with PDI1 thereby blocking its function. Loss of activity; when associated with A-105. Ref.8 Ref.12
Mutagenesis1051C → A: Loss of activity. Ref.8 Ref.12
Mutagenesis1431C → A: No effect; when associated with A-166. Ref.12
Mutagenesis1501C → A: Loss of regulatory disulfide bond and strongly increased activity towards PDI; when associated with A-295. Ref.12
Mutagenesis1661C → A: No effect; when associated with A-143. Ref.12
Mutagenesis2081C → A: No effect. Ref.8
Mutagenesis2291G → S in ERO1-1; induces defective folding of disulfide proteins. Ref.13
Mutagenesis2311H → Y in ERO1-2; induces defective folding of disulfide proteins. Ref.5
Mutagenesis2951C → A: Loss of regulatory disulfide bond and strongly increased activity towards PDI; when associated with A-150. Ref.12
Mutagenesis3491C → A: Does not affect activity but increases by twofold the amount of protein found in mixed disulfide with PDI1 or MPD2. Ref.8
Mutagenesis3521C → A: Loss of activity. Prevents its reoxidation thereby blocking its function. Ref.8 Ref.12
Mutagenesis3551C → A: Loss of activity. Prevents its reoxidation thereby blocking its function. Ref.8 Ref.12
Sequence conflict5551P → L in AAT93069. Ref.3

Secondary structure

.................................................................. 563
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Q03103 [UniParc].

Last modified November 1, 1997. Version 1.
Checksum: 928CE700AE6137EF

FASTA56365,033
        10         20         30         40         50         60 
MRLRTAIATL CLTAFTSATS NNSYIATDQT QNAFNDTHFC KVDRNDHVSP SCNVTFNELN 

        70         80         90        100        110        120 
AINENIRDDL SALLKSDFFK YFRLDLYKQC SFWDANDGLC LNRACSVDVV EDWDTLPEYW 

       130        140        150        160        170        180 
QPEILGSFNN DTMKEADDSD DECKFLDQLC QTSKKPVDIE DTINYCDVND FNGKNAVLID 

       190        200        210        220        230        240 
LTANPERFTG YGGKQAGQIW STIYQDNCFT IGETGESLAK DAFYRLVSGF HASIGTHLSK 

       250        260        270        280        290        300 
EYLNTKTGKW EPNLDLFMAR IGNFPDRVTN MYFNYAVVAK ALWKIQPYLP EFSFCDLVNK 

       310        320        330        340        350        360 
EIKNKMDNVI SQLDTKIFNE DLVFANDLSL TLKDEFRSRF KNVTKIMDCV QCDRCRLWGK 

       370        380        390        400        410        420 
IQTTGYATAL KILFEINDAD EFTKQHIVGK LTKYELIALL QTFGRLSESI ESVNMFEKMY 

       430        440        450        460        470        480 
GKRLNGSENR LSSFFQNNFF NILKEAGKSI RYTIENINST KEGKKKTNNS QSHVFDDLKM 

       490        500        510        520        530        540 
PKAEIVPRPS NGTVNKWKKA WNTEVNNVLE AFRFIYRSYL DLPRNIWELS LMKVYKFWNK 

       550        560 
FIGVADYVSE ETREPISYKL DIQ 

« Hide

References

« Hide 'large scale' references
[1]"The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII."
Bowman S., Churcher C.M., Badcock K., Brown D., Chillingworth T., Connor R., Dedman K., Devlin K., Gentles S., Hamlin N., Hunt S., Jagels K., Lye G., Moule S., Odell C., Pearson D., Rajandream M.A., Rice P. expand/collapse author list , Skelton J., Walsh S.V., Whitehead S., Barrell B.G.
Nature 387:90-93(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: ATCC 204508 / S288c.
[2]"The reference genome sequence of Saccharomyces cerevisiae: Then and now."
Engel S.R., Dietrich F.S., Fisk D.G., Binkley G., Balakrishnan R., Costanzo M.C., Dwight S.S., Hitz B.C., Karra K., Nash R.S., Weng S., Wong E.D., Lloyd P., Skrzypek M.S., Miyasato S.R., Simison M., Cherry J.M.
G3 (Bethesda) 4:389-398(2014) [PubMed] [Europe PMC] [Abstract]
Cited for: GENOME REANNOTATION.
Strain: ATCC 204508 / S288c.
[3]"Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae."
Hu Y., Rolfs A., Bhullar B., Murthy T.V.S., Zhu C., Berger M.F., Camargo A.A., Kelley F., McCarron S., Jepson D., Richardson A., Raphael J., Moreira D., Taycher E., Zuo D., Mohr S., Kane M.F., Williamson J. expand/collapse author list , Simpson A.J.G., Bulyk M.L., Harlow E., Marsischky G., Kolodner R.D., LaBaer J.
Genome Res. 17:536-543(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
Strain: ATCC 204508 / S288c.
[4]"The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum."
Frand A.R., Kaiser C.A.
Mol. Cell 1:161-170(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, GLYCOSYLATION, INDUCTION.
[5]"Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum."
Pollard M.G., Travers K.J., Weissman J.S.
Mol. Cell 1:171-182(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, GLYCOSYLATION, INDUCTION, MUTAGENESIS OF HIS-231.
[6]"Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum."
Frand A.R., Kaiser C.A.
Mol. Cell 4:469-477(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, DIRECT OXIDATION OF PDI1 AND MPD2.
[7]"Biochemical basis of oxidative protein folding in the endoplasmic reticulum."
Tu B.P., Ho-Schleyer S.C., Travers K.J., Weissman J.S.
Science 290:1571-1574(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, COFACTOR.
[8]"Two pairs of conserved cysteines are required for the oxidative activity of Ero1p in protein disulfide bond formation in the endoplasmic reticulum."
Frand A.R., Kaiser C.A.
Mol. Biol. Cell 11:2833-2843(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: MUTAGENESIS OF CYS-90; CYS-100; CYS-105; CYS-208; CYS-349; CYS-352 AND CYS-355.
[9]"The C-terminal domain of yeast Ero1p mediates membrane localization and is essential for function."
Pagani M., Pilati S., Bertoli G., Valsasina B., Sitia R.
FEBS Lett. 508:117-120(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION, DOMAIN.
[10]"The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum."
Tu B.P., Weissman J.S.
Mol. Cell 10:983-994(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[11]"Oxidative protein folding in eukaryotes: mechanisms and consequences."
Tu B.P., Weissman J.S.
J. Cell Biol. 164:341-346(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW.
[12]"Modulation of cellular disulfide-bond formation and the ER redox environment by feedback regulation of Ero1."
Sevier C.S., Qu H., Heldman N., Gross E., Fass D., Kaiser C.A.
Cell 129:333-344(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: ENZYME REGULATION, DISULFIDE BONDS, MUTAGENESIS OF CYS-90; CYS-100; CYS-105; CYS-143; CYS-150; CYS-166; CYS-295; CYS-352 AND CYS-355.
[13]"Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell."
Gross E., Kastner D.B., Kaiser C.A., Fass D.
Cell 117:601-610(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 56-424 IN COMPLEX WITH FAD, POTENTIAL HOMODIMERIZATION, DISULFIDE BONDS, MUTAGENESIS OF GLY-229.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
Z50178 Genomic DNA. Translation: CAA90553.1.
AY693050 Genomic DNA. Translation: AAT93069.1.
BK006946 Genomic DNA. Translation: DAA09769.1.
PIRS58198.
RefSeqNP_013576.1. NM_001182493.1.

3D structure databases

PDBe
RCSB-PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1RP4X-ray2.20A56-424[»]
1RQ1X-ray2.80A56-424[»]
3M31X-ray1.85A56-424[»]
3NVJX-ray3.20A56-424[»]
ProteinModelPortalQ03103.
SMRQ03103. Positions 55-424.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid35075. 45 interactions.
DIPDIP-4515N.
IntActQ03103. 11 interactions.
MINTMINT-503775.
STRING4932.YML130C.

Proteomic databases

MaxQBQ03103.
PaxDbQ03103.
PeptideAtlasQ03103.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblFungiYML130C; YML130C; YML130C.
GeneID854909.
KEGGsce:YML130C.

Organism-specific databases

CYGDYML130c.
SGDS000004599. ERO1.

Phylogenomic databases

eggNOGCOG5061.
GeneTreeENSGT00390000007753.
HOGENOMHOG000158050.
OMACDRCRLW.
OrthoDBEOG7SV15N.

Enzyme and pathway databases

BioCycMetaCyc:MONOMER-16234.
YEAST:G3O-32708-MONOMER.

Gene expression databases

GenevestigatorQ03103.

Family and domain databases

InterProIPR007266. Ero1.
[Graphical view]
PANTHERPTHR12613. PTHR12613. 1 hit.
PfamPF04137. ERO1. 1 hit.
[Graphical view]
PIRSFPIRSF017205. ERO1. 1 hit.
ProtoNetSearch...

Other

EvolutionaryTraceQ03103.
NextBio977902.

Entry information

Entry nameERO1_YEAST
AccessionPrimary (citable) accession number: Q03103
Secondary accession number(s): D6W0F5, E9P913
Entry history
Integrated into UniProtKB/Swiss-Prot: November 1, 1997
Last sequence update: November 1, 1997
Last modified: June 11, 2014
This is version 119 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

Relevant documents

Yeast chromosome XIII

Yeast (Saccharomyces cerevisiae) chromosome XIII: entries and gene names

Yeast

Yeast (Saccharomyces cerevisiae): entries, gene names and cross-references to SGD

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references