Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q02763 (TIE2_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 166. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (8) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Alt products·Sequence annotation·Sequences·References·Web links·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Angiopoietin-1 receptor

EC=2.7.10.1
Alternative name(s):
Endothelial tyrosine kinase
Tunica interna endothelial cell kinase
Tyrosine kinase with Ig and EGF homology domains-2
Tyrosine-protein kinase receptor TEK
Tyrosine-protein kinase receptor TIE-2
Short name=hTIE2
p140 TEK
CD_antigen=CD202b
Gene names
Name:TEK
Synonyms:TIE2, VMCM, VMCM1
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length1124 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Tyrosine-protein kinase that acts as cell-surface receptor for ANGPT1, ANGPT2 and ANGPT4 and regulates angiogenesis, endothelial cell survival, proliferation, migration, adhesion and cell spreading, reorganization of the actin cytoskeleton, but also maintenance of vascular quiescence. Has anti-inflammatory effects by preventing the leakage of proinflammatory plasma proteins and leukocytes from blood vessels. Required for normal angiogenesis and heart development during embryogenesis. Required for post-natal hematopoiesis. After birth, activates or inhibits angiogenesis, depending on the context. Inhibits angiogenesis and promotes vascular stability in quiescent vessels, where endothelial cells have tight contacts. In quiescent vessels, ANGPT1 oligomers recruit TEK to cell-cell contacts, forming complexes with TEK molecules from adjoining cells, and this leads to preferential activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascades. In migrating endothelial cells that lack cell-cell adhesions, ANGT1 recruits TEK to contacts with the extracellular matrix, leading to the formation of focal adhesion complexes, activation of PTK2/FAK and of the downstream kinases MAPK1/ERK2 and MAPK3/ERK1, and ultimately to the stimulation of sprouting angiogenesis. ANGPT1 signaling triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Signaling is modulated by ANGPT2 that has lower affinity for TEK, can promote TEK autophosphorylation in the absence of ANGPT1, but inhibits ANGPT1-mediated signaling by competing for the same binding site. Signaling is also modulated by formation of heterodimers with TIE1, and by proteolytic processing that gives rise to a soluble TEK extracellular domain. The soluble extracellular domain modulates signaling by functioning as decoy receptor for angiopoietins. TEK phosphorylates DOK2, GRB7, GRB14, PIK3R1; SHC1 and TIE1. Ref.7 Ref.10 Ref.12 Ref.13 Ref.14 Ref.15 Ref.16 Ref.21 Ref.22 Ref.26

Catalytic activity

ATP + a [protein]-L-tyrosine = ADP + a [protein]-L-tyrosine phosphate. Ref.1 Ref.9 Ref.11 Ref.13 Ref.14 Ref.21

Enzyme regulation

Angiopoietin binding leads to receptor dimerization and activation by autophosphorylation at Tyr-992 on the kinase activation loop. Inhibited by staurosporine, K252a, PP2, damnacanthal, SB203580, CEP-11207, CEP-11981 and CE-245677. Inhibited by triazine, thienopyrimidine and thiazolopyrimidine derivatives. Ref.9 Ref.26 Ref.27 Ref.29 Ref.30 Ref.31

Subunit structure

Homodimer. Heterodimer with TIE1. Interacts with ANGPT1, ANGPT2 and ANGPT4. At cell-cell contacts in quiescent cells, forms a signaling complex composed of ANGPT1 plus TEK molecules from two adjoining cells. In the absence of endothelial cell-cell contacts, interaction with ANGPT1 mediates contacts with the extracellular matrix. Interacts with PTPRB; this promotes endothelial cell-cell adhesion. Interacts with DOK2, GRB2, GRB7, GRB14, PIK3R1 and PTPN11/SHP2. Colocalizes with DOK2 at contacts with the extracellular matrix in migrating cells. Interacts (tyrosine phosphorylated) with TNIP2. Interacts (tyrosine phosphorylated) with SHC1 (via SH2 domain). Ref.7 Ref.11 Ref.12 Ref.13 Ref.14 Ref.16 Ref.18 Ref.19

Subcellular location

Cell membrane; Single-pass type I membrane protein. Cell junction. Cell junctionfocal adhesion. Cytoplasmcytoskeleton. Secreted. Note: Recruited to cell-cell contacts in quiescent endothelial cells. Colocalizes with the actin cytoskeleton and at actin stress fibers during cell spreading. Recruited to the lower surface of migrating cells, especially the rear end of the cell. Proteolytic processing gives rise to a soluble extracellular domain that is secreted. Ref.8 Ref.14 Ref.15 Ref.16 Ref.18

Tissue specificity

Detected in umbilical vein endothelial cells. Proteolytic processing gives rise to a soluble extracellular domain that is detected in blood plasma (at protein level). Predominantly expressed in endothelial cells and their progenitors, the angioblasts. Has been directly found in placenta and lung, with a lower level in umbilical vein endothelial cells, brain and kidney. Ref.1 Ref.8

Domain

The soluble extracellular domain is functionally active in angiopoietin binding and can modulate the activity of the membrane-bound form by competing for angiopoietins. Ref.12

Post-translational modification

Proteolytic processing leads to the shedding of the extracellular domain (soluble TIE-2 alias sTIE-2).

Autophosphorylated on tyrosine residues in response to ligand binding. Autophosphorylation occurs in trans, i.e. one subunit of the dimeric receptor phosphorylates tyrosine residues on the other subunit. Autophosphorylation occurs in a sequential manner, where Tyr-992 in the kinase activation loop is phosphorylated first, followed by autophosphorylation at Tyr-1108 and at additional tyrosine residues. ANGPT1-induced phosphorylation is impaired during hypoxia, due to increased expression of ANGPT2. Phosphorylation is important for interaction with GRB14, PIK3R1 and PTPN11. Phosphorylation at Tyr-1102 is important for interaction with SHC1, GRB2 and GRB7. Phosphorylation at Tyr-1108 is important for interaction with DOK2 and for coupling to downstream signal transduction pathways in endothelial cells. Dephosphorylated by PTPRB. Ref.7 Ref.9 Ref.11 Ref.13 Ref.14 Ref.16 Ref.17 Ref.21

Ubiquitinated. The phosphorylated receptor is ubiquitinated and internalized, leading to its degradation. Ref.7 Ref.9 Ref.11 Ref.13 Ref.14 Ref.16 Ref.17 Ref.21

Involvement in disease

Dominantly inherited venous malformations (VMCM) [MIM:600195]: An error of vascular morphogenesis characterized by dilated, serpiginous channels.
Note: The disease is caused by mutations affecting the gene represented in this entry. Ref.22 Ref.26 Ref.33 Ref.34 Ref.37

May play a role in a range of diseases with a vascular component, including neovascularization of tumors, psoriasis and inflammation. Ref.22 Ref.26

Sequence similarities

Belongs to the protein kinase superfamily. Tyr protein kinase family. Tie subfamily.

Contains 3 EGF-like domains.

Contains 3 fibronectin type-III domains.

Contains 2 Ig-like C2-type (immunoglobulin-like) domains.

Contains 1 protein kinase domain.

Ontologies

Keywords
   Biological processAngiogenesis
   Cellular componentCell junction
Cell membrane
Cytoplasm
Cytoskeleton
Membrane
Secreted
   Coding sequence diversityAlternative splicing
Polymorphism
   DiseaseDisease mutation
   DomainEGF-like domain
Immunoglobulin domain
Repeat
Signal
Transmembrane
Transmembrane helix
   LigandATP-binding
Nucleotide-binding
   Molecular functionKinase
Receptor
Transferase
Tyrosine-protein kinase
   PTMDisulfide bond
Glycoprotein
Phosphoprotein
Ubl conjugation
   Technical term3D-structure
Complete proteome
Direct protein sequencing
Reference proteome
Gene Ontology (GO)
   Biological_processTie signaling pathway

Inferred from direct assay Ref.12Ref.21. Source: UniProtKB

angiogenesis

Inferred from sequence or structural similarity. Source: UniProtKB

blood coagulation

Traceable author statement. Source: Reactome

cell-cell signaling

Traceable author statement Ref.33. Source: ProtInc

cell-matrix adhesion

Inferred from electronic annotation. Source: Ensembl

definitive hemopoiesis

Traceable author statement Ref.22. Source: UniProtKB

endochondral ossification

Inferred from electronic annotation. Source: Ensembl

endothelial cell proliferation

Inferred from sequence or structural similarity. Source: UniProtKB

glomerulus vasculature development

Inferred from sequence or structural similarity. Source: UniProtKB

heart development

Inferred from sequence or structural similarity. Source: UniProtKB

heart trabecula formation

Inferred from sequence or structural similarity. Source: UniProtKB

intracellular signal transduction

Inferred from electronic annotation. Source: Ensembl

leukocyte migration

Traceable author statement. Source: Reactome

negative regulation of angiogenesis

Inferred from mutant phenotype Ref.15. Source: UniProtKB

negative regulation of apoptotic process

Traceable author statement Ref.22. Source: UniProtKB

negative regulation of endothelial cell apoptotic process

Inferred from sequence or structural similarity. Source: UniProtKB

negative regulation of inflammatory response

Traceable author statement Ref.22. Source: UniProtKB

organ regeneration

Inferred from electronic annotation. Source: Ensembl

peptidyl-tyrosine phosphorylation

Inferred from direct assay Ref.9. Source: UniProtKB

positive regulation of ERK1 and ERK2 cascade

Inferred from direct assay PubMed 19615361. Source: UniProtKB

positive regulation of actin cytoskeleton reorganization

Inferred from mutant phenotype Ref.10. Source: UniProtKB

positive regulation of angiogenesis

Inferred from direct assay Ref.12. Source: UniProtKB

positive regulation of endothelial cell migration

Inferred from direct assay Ref.12. Source: UniProtKB

positive regulation of endothelial cell proliferation

Traceable author statement Ref.15. Source: UniProtKB

positive regulation of focal adhesion assembly

Inferred from mutant phenotype Ref.15. Source: UniProtKB

positive regulation of intracellular signal transduction

Inferred from mutant phenotype Ref.21. Source: UniProtKB

positive regulation of peptidyl-serine phosphorylation

Inferred from electronic annotation. Source: Ensembl

positive regulation of phosphatidylinositol 3-kinase activity

Inferred from mutant phenotype Ref.10Ref.15. Source: UniProtKB

positive regulation of phosphatidylinositol 3-kinase signaling

Inferred from mutant phenotype Ref.10Ref.15Ref.21. Source: UniProtKB

positive regulation of protein kinase B signaling

Inferred from direct assay PubMed 19615361. Source: UniProtKB

positive regulation of protein phosphorylation

Inferred from direct assay Ref.12. Source: UniProtKB

protein autophosphorylation

Inferred from direct assay Ref.9. Source: UniProtKB

protein oligomerization

Inferred from direct assay PubMed 19424712. Source: UniProtKB

regulation of endothelial cell apoptotic process

Traceable author statement Ref.15. Source: UniProtKB

regulation of establishment or maintenance of cell polarity

Inferred from mutant phenotype Ref.16. Source: UniProtKB

regulation of vascular permeability

Traceable author statement Ref.22Ref.15. Source: UniProtKB

response to cAMP

Inferred from electronic annotation. Source: Ensembl

response to estrogen

Inferred from electronic annotation. Source: Ensembl

response to hypoxia

Inferred from electronic annotation. Source: Ensembl

response to peptide hormone

Inferred from electronic annotation. Source: Ensembl

signal transduction

Traceable author statement Ref.1. Source: ProtInc

single organismal cell-cell adhesion

Inferred from electronic annotation. Source: Ensembl

sprouting angiogenesis

Inferred from mutant phenotype Ref.13. Source: UniProtKB

substrate adhesion-dependent cell spreading

Inferred from mutant phenotype Ref.16. Source: UniProtKB

transmembrane receptor protein tyrosine kinase signaling pathway

Inferred from direct assay Ref.12. Source: UniProtKB

   Cellular_componentapical plasma membrane

Inferred from direct assay PubMed 19424712. Source: UniProtKB

basal plasma membrane

Inferred from direct assay Ref.15. Source: UniProtKB

basolateral plasma membrane

Inferred from direct assay PubMed 19424712. Source: UniProtKB

cell surface

Inferred from direct assay Ref.18. Source: UniProtKB

cell-cell junction

Inferred from direct assay Ref.15. Source: UniProtKB

cytoplasm

Inferred from electronic annotation. Source: UniProtKB-KW

cytoskeleton

Inferred from electronic annotation. Source: UniProtKB-SubCell

extracellular region

Inferred from electronic annotation. Source: UniProtKB-SubCell

focal adhesion

Inferred from electronic annotation. Source: UniProtKB-SubCell

integral component of plasma membrane

Inferred from direct assay Ref.18. Source: UniProtKB

membrane raft

Inferred from direct assay PubMed 19615361. Source: UniProtKB

microvillus

Inferred from direct assay PubMed 19424712. Source: UniProtKB

plasma membrane

Traceable author statement. Source: Reactome

   Molecular_functionATP binding

Inferred from electronic annotation. Source: UniProtKB-KW

protein binding

Inferred from physical interaction Ref.19PubMed 19922791PubMed 8980223. Source: UniProtKB

protein kinase activity

Traceable author statement Ref.1. Source: ProtInc

protein tyrosine kinase activity

Inferred from direct assay Ref.9. Source: UniProtKB

receptor activity

Traceable author statement PubMed 10766762. Source: ProtInc

transmembrane receptor protein tyrosine kinase activity

Traceable author statement Ref.1. Source: ProtInc

Complete GO annotation...

Alternative products

This entry describes 3 isoforms produced by alternative splicing. [Align] [Select]
Isoform 1 (identifier: Q02763-1)

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Isoform 2 (identifier: Q02763-2)

The sequence of this isoform differs from the canonical sequence as follows:
     300-342: Missing.
Isoform 3 (identifier: Q02763-3)

The sequence of this isoform differs from the canonical sequence as follows:
     18-121: Missing.
     300-342: Missing.
     788-788: Missing.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Signal peptide1 – 2222 Ref.6
Chain23 – 11241102Angiopoietin-1 receptor
PRO_0000024474

Regions

Topological domain23 – 748726Extracellular Potential
Transmembrane749 – 76921Helical; Potential
Topological domain770 – 1124355Cytoplasmic Potential
Domain44 – 12380Ig-like C2-type 1
Domain210 – 25243EGF-like 1
Domain254 – 29946EGF-like 2
Domain301 – 34141EGF-like 3
Domain350 – 44091Ig-like C2-type 2
Domain447 – 54195Fibronectin type-III 1
Domain545 – 63692Fibronectin type-III 2
Domain641 – 73595Fibronectin type-III 3
Domain824 – 1096273Protein kinase
Nucleotide binding830 – 8389ATP Probable

Sites

Active site9641Proton acceptor Probable
Binding site8551ATP Probable

Amino acid modifications

Modified residue8601Phosphotyrosine; by autocatalysis Ref.9
Modified residue9921Phosphotyrosine; by autocatalysis Ref.9
Modified residue11021Phosphotyrosine; by autocatalysis Ref.13
Modified residue11081Phosphotyrosine; by autocatalysis Ref.9
Glycosylation1401N-linked (GlcNAc...) Ref.28
Glycosylation1581N-linked (GlcNAc...) Potential
Glycosylation3991N-linked (GlcNAc...) Potential
Glycosylation4381N-linked (GlcNAc...) Potential
Glycosylation4641N-linked (GlcNAc...) Potential
Glycosylation5601N-linked (GlcNAc...) Potential
Glycosylation5961N-linked (GlcNAc...) Ref.20
Glycosylation6491N-linked (GlcNAc...) Potential
Glycosylation6911N-linked (GlcNAc...) Potential
Disulfide bond44 ↔ 102 Ref.28
Disulfide bond211 ↔ 220 Ref.28
Disulfide bond224 ↔ 233 Ref.28
Disulfide bond227 ↔ 240 Ref.28
Disulfide bond242 ↔ 251 Ref.28
Disulfide bond255 ↔ 264 Ref.28
Disulfide bond268 ↔ 274 Ref.28
Disulfide bond280 ↔ 287 Ref.28
Disulfide bond289 ↔ 298 Ref.28
Disulfide bond302 ↔ 311 Ref.28
Disulfide bond315 ↔ 323 Ref.28
Disulfide bond317 ↔ 329 Ref.28
Disulfide bond331 ↔ 340 Ref.28
Disulfide bond370 ↔ 424 Ref.28

Natural variations

Alternative sequence18 – 121104Missing in isoform 3.
VSP_042137
Alternative sequence300 – 34243Missing in isoform 2 and isoform 3.
VSP_042138
Alternative sequence7881Missing in isoform 3.
VSP_042139
Natural variant1171K → N in breast cancer samples; infiltrating ductal carcinoma; somatic mutation. Ref.35 Ref.36
VAR_035714
Natural variant1481I → T. Ref.36
Corresponds to variant rs35969327 [ dbSNP | Ensembl ].
VAR_041855
Natural variant2261A → V. Ref.36
Corresponds to variant rs35814893 [ dbSNP | Ensembl ].
VAR_041856
Natural variant3461Q → P. Ref.1 Ref.2 Ref.4 Ref.5
Corresponds to variant rs682632 [ dbSNP | Ensembl ].
VAR_048002
Natural variant3911T → I.
Corresponds to variant rs34032300 [ dbSNP | Ensembl ].
VAR_048003
Natural variant4861V → I. Ref.36
Corresponds to variant rs1334811 [ dbSNP | Ensembl ].
VAR_024578
Natural variant6001V → L. Ref.36
Corresponds to variant rs35030851 [ dbSNP | Ensembl ].
VAR_041857
Natural variant6341L → F. Ref.36
Corresponds to variant rs35378598 [ dbSNP | Ensembl ].
VAR_041858
Natural variant6761V → I. Ref.36
Corresponds to variant rs56367117 [ dbSNP | Ensembl ].
VAR_041859
Natural variant7241A → T. Ref.36
Corresponds to variant rs4631561 [ dbSNP | Ensembl ].
VAR_041860
Natural variant8491R → W in VMCM; increased ligand-independent autophosphorylation and kinase activation. Ref.33 Ref.34 Ref.37
VAR_006352
Natural variant8831P → A in an ovarian serous carcinoma sample; somatic mutation. Ref.36
VAR_041861
Natural variant8971Y → C in VMCM; increased ligand-independent autophosphorylation and kinase activation. Ref.37
VAR_066606
Natural variant8971Y → S in VMCM; increased ligand-independent autophosphorylation and kinase activation. Ref.34 Ref.37
VAR_008716
Natural variant9151R → H in VMCM; strongly increased ligand-independent autophosphorylation and kinase activation. Ref.37
VAR_066607
Natural variant9181R → C in VMCM; strongly increased ligand-independent autophosphorylation and kinase activation. Ref.37
VAR_066608
Natural variant9191V → L in VMCM; increased ligand-independent autophosphorylation and kinase activation. Ref.37
VAR_066609
Natural variant9251A → S in VMCM; increased ligand-independent autophosphorylation and kinase activation. Ref.37
VAR_066610
Natural variant11001K → N in VMCM; strongly increased ligand-independent autophosphorylation and kinase activation. Ref.37
VAR_066611
Natural variant11241A → V in a renal clear cell carcinoma sample; somatic mutation. Ref.36
VAR_041862

Experimental info

Mutagenesis8551K → R: Loss of kinase activity. Ref.11 Ref.14
Mutagenesis11021Y → F: Abolishes interaction with SHC1. Ref.13
Sequence conflict5361F → L in BAG58094. Ref.2
Sequence conflict6951T → I in AAA61139. Ref.1
Sequence conflict939 – 9402QQ → HH in AAH35514. Ref.5

Secondary structure

.......................................................................................................................................... 1124
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Isoform 1 [UniParc].

Last modified December 16, 2008. Version 2.
Checksum: E739DEC3E4FEB124

FASTA1,124125,830
        10         20         30         40         50         60 
MDSLASLVLC GVSLLLSGTV EGAMDLILIN SLPLVSDAET SLTCIASGWR PHEPITIGRD 

        70         80         90        100        110        120 
FEALMNQHQD PLEVTQDVTR EWAKKVVWKR EKASKINGAY FCEGRVRGEA IRIRTMKMRQ 

       130        140        150        160        170        180 
QASFLPATLT MTVDKGDNVN ISFKKVLIKE EDAVIYKNGS FIHSVPRHEV PDILEVHLPH 

       190        200        210        220        230        240 
AQPQDAGVYS ARYIGGNLFT SAFTRLIVRR CEAQKWGPEC NHLCTACMNN GVCHEDTGEC 

       250        260        270        280        290        300 
ICPPGFMGRT CEKACELHTF GRTCKERCSG QEGCKSYVFC LPDPYGCSCA TGWKGLQCNE 

       310        320        330        340        350        360 
ACHPGFYGPD CKLRCSCNNG EMCDRFQGCL CSPGWQGLQC EREGIQRMTP KIVDLPDHIE 

       370        380        390        400        410        420 
VNSGKFNPIC KASGWPLPTN EEMTLVKPDG TVLHPKDFNH TDHFSVAIFT IHRILPPDSG 

       430        440        450        460        470        480 
VWVCSVNTVA GMVEKPFNIS VKVLPKPLNA PNVIDTGHNF AVINISSEPY FGDGPIKSKK 

       490        500        510        520        530        540 
LLYKPVNHYE AWQHIQVTNE IVTLNYLEPR TEYELCVQLV RRGEGGEGHP GPVRRFTTAS 

       550        560        570        580        590        600 
IGLPPPRGLN LLPKSQTTLN LTWQPIFPSS EDDFYVEVER RSVQKSDQQN IKVPGNLTSV 

       610        620        630        640        650        660 
LLNNLHPREQ YVVRARVNTK AQGEWSEDLT AWTLSDILPP QPENIKISNI THSSAVISWT 

       670        680        690        700        710        720 
ILDGYSISSI TIRYKVQGKN EDQHVDVKIK NATITQYQLK GLEPETAYQV DIFAENNIGS 

       730        740        750        760        770        780 
SNPAFSHELV TLPESQAPAD LGGGKMLLIA ILGSAGMTCL TVLLAFLIIL QLKRANVQRR 

       790        800        810        820        830        840 
MAQAFQNVRE EPAVQFNSGT LALNRKVKNN PDPTIYPVLD WNDIKFQDVI GEGNFGQVLK 

       850        860        870        880        890        900 
ARIKKDGLRM DAAIKRMKEY ASKDDHRDFA GELEVLCKLG HHPNIINLLG ACEHRGYLYL 

       910        920        930        940        950        960 
AIEYAPHGNL LDFLRKSRVL ETDPAFAIAN STASTLSSQQ LLHFAADVAR GMDYLSQKQF 

       970        980        990       1000       1010       1020 
IHRDLAARNI LVGENYVAKI ADFGLSRGQE VYVKKTMGRL PVRWMAIESL NYSVYTTNSD 

      1030       1040       1050       1060       1070       1080 
VWSYGVLLWE IVSLGGTPYC GMTCAELYEK LPQGYRLEKP LNCDDEVYDL MRQCWREKPY 

      1090       1100       1110       1120 
ERPSFAQILV SLNRMLEERK TYVNTTLYEK FTYAGIDCSA EEAA 

« Hide

Isoform 2 [UniParc].

Checksum: FA9BF050B49AB557
Show »

FASTA1,081121,048
Isoform 3 [UniParc].

Checksum: CE8D06A4F93D48E0
Show »

FASTA976109,141

References

« Hide 'large scale' references
[1]"Molecular cloning and characterization of a novel receptor protein tyrosine kinase from human placenta."
Ziegler S.F., Bird T.A., Schneringer J.A., Schooley K.A., Baum P.R.
Oncogene 8:663-670(1993) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), CATALYTIC ACTIVITY, TISSUE SPECIFICITY, VARIANT PRO-346.
Tissue: Placenta.
[2]"Complete sequencing and characterization of 21,243 full-length human cDNAs."
Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R., Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H., Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S. expand/collapse author list , Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K., Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A., Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M., Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y., Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M., Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K., Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S., Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J., Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y., Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N., Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S., Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S., Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O., Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H., Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B., Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y., Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T., Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y., Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S., Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T., Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M., Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T., Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K., Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R., Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.
Nat. Genet. 36:40-45(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1; 2 AND 3), VARIANT PRO-346.
Tissue: Brain and Placenta.
[3]"DNA sequence and analysis of human chromosome 9."
Humphray S.J., Oliver K., Hunt A.R., Plumb R.W., Loveland J.E., Howe K.L., Andrews T.D., Searle S., Hunt S.E., Scott C.E., Jones M.C., Ainscough R., Almeida J.P., Ambrose K.D., Ashwell R.I.S., Babbage A.K., Babbage S., Bagguley C.L. expand/collapse author list , Bailey J., Banerjee R., Barker D.J., Barlow K.F., Bates K., Beasley H., Beasley O., Bird C.P., Bray-Allen S., Brown A.J., Brown J.Y., Burford D., Burrill W., Burton J., Carder C., Carter N.P., Chapman J.C., Chen Y., Clarke G., Clark S.Y., Clee C.M., Clegg S., Collier R.E., Corby N., Crosier M., Cummings A.T., Davies J., Dhami P., Dunn M., Dutta I., Dyer L.W., Earthrowl M.E., Faulkner L., Fleming C.J., Frankish A., Frankland J.A., French L., Fricker D.G., Garner P., Garnett J., Ghori J., Gilbert J.G.R., Glison C., Grafham D.V., Gribble S., Griffiths C., Griffiths-Jones S., Grocock R., Guy J., Hall R.E., Hammond S., Harley J.L., Harrison E.S.I., Hart E.A., Heath P.D., Henderson C.D., Hopkins B.L., Howard P.J., Howden P.J., Huckle E., Johnson C., Johnson D., Joy A.A., Kay M., Keenan S., Kershaw J.K., Kimberley A.M., King A., Knights A., Laird G.K., Langford C., Lawlor S., Leongamornlert D.A., Leversha M., Lloyd C., Lloyd D.M., Lovell J., Martin S., Mashreghi-Mohammadi M., Matthews L., McLaren S., McLay K.E., McMurray A., Milne S., Nickerson T., Nisbett J., Nordsiek G., Pearce A.V., Peck A.I., Porter K.M., Pandian R., Pelan S., Phillimore B., Povey S., Ramsey Y., Rand V., Scharfe M., Sehra H.K., Shownkeen R., Sims S.K., Skuce C.D., Smith M., Steward C.A., Swarbreck D., Sycamore N., Tester J., Thorpe A., Tracey A., Tromans A., Thomas D.W., Wall M., Wallis J.M., West A.P., Whitehead S.L., Willey D.L., Williams S.A., Wilming L., Wray P.W., Young L., Ashurst J.L., Coulson A., Blocker H., Durbin R.M., Sulston J.E., Hubbard T., Jackson M.J., Bentley D.R., Beck S., Rogers J., Dunham I.
Nature 429:369-374(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[4]Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L., Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R., Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V., Hannenhalli S., Turner R. expand/collapse author list , Yooseph S., Lu F., Nusskern D.R., Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H., Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G., Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W., Venter J.C.
Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA], VARIANT PRO-346.
[5]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1), VARIANT PRO-346.
Tissue: Pancreas.
[6]"Signal peptide prediction based on analysis of experimentally verified cleavage sites."
Zhang Z., Henzel W.J.
Protein Sci. 13:2819-2824(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 23-37.
[7]"Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis."
Maisonpierre P.C., Suri C., Jones P.F., Bartunkova S., Wiegand S.J., Radziejewski C., Compton D.L., McClain J., Aldrich T.H., Papadopoulos N., Daly T.J., Davis S., Sato T.N., Yancopoulos G.D.
Science 277:55-60(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS RECEPTOR FOR ANGPT1 AND ANGPT2, INTERACTION WITH ANGPT1 AND ANGPT2, AUTOPHOSPHORYLATION.
[8]"Identification of a soluble form of the angiopoietin receptor TIE-2 released from endothelial cells and present in human blood."
Reusch P., Barleon B., Weindel K., Martiny-Baron G., Godde A., Siemeister G., Marme D.
Angiogenesis 4:123-131(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION, PROTEOLYTIC PROCESSING, TISSUE SPECIFICITY.
[9]"Mechanistic effects of autophosphorylation on receptor tyrosine kinase catalysis: enzymatic characterization of Tie2 and phospho-Tie2."
Murray B.W., Padrique E.S., Pinko C., McTigue M.A.
Biochemistry 40:10243-10253(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: CATALYTIC ACTIVITY, ENZYME REGULATION, IDENTIFICATION BY MASS SPECTROMETRY, PHOSPHORYLATION AT TYR-860; TYR-992 AND TYR-1108.
[10]"Tie-2-dependent activation of RhoA and Rac1 participates in endothelial cell motility triggered by angiopoietin-1."
Cascone I., Audero E., Giraudo E., Napione L., Maniero F., Philips M.R., Collard J.G., Serini G., Bussolino F.
Blood 102:2482-2490(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN REGULATION OF PHOSPHATIDYLINOSITOL 3-KINASE ACTIVITY; ENDOTHELIAL CELL MIGRATION AND REORGANIZATION OF THE ACTIN CYTOSKELETON.
[11]"The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-kappaB inhibitor ABIN-2."
Hughes D.P., Marron M.B., Brindle N.P.
Circ. Res. 92:630-636(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TNIP2, AUTOPHOSPHORYLATION, CATALYTIC ACTIVITY, MUTAGENESIS OF LYS-855.
[12]"Biological characterization of angiopoietin-3 and angiopoietin-4."
Lee H.J., Cho C.H., Hwang S.J., Choi H.H., Kim K.T., Ahn S.Y., Kim J.H., Oh J.L., Lee G.M., Koh G.Y.
FASEB J. 18:1200-1208(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN REGULATION OF ANGIOGENESIS; CELL SURVIVAL; CELL MIGRATION AND ACTIVATION OF AKT1, DOMAIN, INTERACTION WITH ANGPT1; ANGPT2 AND ANGPT4.
[13]"Adaptor ShcA protein binds tyrosine kinase Tie2 receptor and regulates migration and sprouting but not survival of endothelial cells."
Audero E., Cascone I., Maniero F., Napione L., Arese M., Lanfrancone L., Bussolino F.
J. Biol. Chem. 279:13224-13233(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS ANGPT1 RECEPTOR IN PHOSPHORYLATION OF SHC1 AND PIK3R1; REGULATION OF CELL MIGRATION AND ANGIOGENESIS, AUTOPHOSPHORYLATION, MUTAGENESIS OF TYR-1102, PHOSPHORYLATION AT TYR-1102, CATALYTIC ACTIVITY, INTERACTION WITH SHC1.
[14]"Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2."
Saharinen P., Kerkela K., Ekman N., Marron M., Brindle N., Lee G.M., Augustin H., Koh G.Y., Alitalo K.
J. Cell Biol. 169:239-243(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TIE1, SUBCELLULAR LOCATION, FUNCTION AS RECEPTOR FOR ANGPT1 IN PHOSPHORYLATION OF TIE1, AUTOPHOSPHORYLATION, CATALYTIC ACTIVITY, MUTAGENESIS OF LYS-855.
[15]"Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1."
Fukuhara S., Sako K., Minami T., Noda K., Kim H.Z., Kodama T., Shibuya M., Takakura N., Koh G.Y., Mochizuki N.
Nat. Cell Biol. 10:513-526(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS ANGPT1 RECEPTOR IN ACTIVATION OF AKT1 OR MAPK1/ERK2 AND MAPK3/ERK1; REGULATION OF ENDOTHELIAL CELL MIGRATION AND CELL SPREADING, SUBCELLULAR LOCATION.
[16]"Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts."
Saharinen P., Eklund L., Miettinen J., Wirkkala R., Anisimov A., Winderlich M., Nottebaum A., Vestweber D., Deutsch U., Koh G.Y., Olsen B.R., Alitalo K.
Nat. Cell Biol. 10:527-537(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS ANGPT1 RECEPTOR IN ACTIVATION OF AKT1 OR MAPK1/ERK2 AND MAPK3/ERK1; REGULATION OF ENDOTHELIAL CELL MIGRATION AND REGULATION OF FOCAL ADHESION ASSEMBLY, INTERACTION WITH TIE1, AUTOPHOSPHORYLATION, SUBCELLULAR LOCATION.
[17]"Tyrosine phosphatase beta regulates angiopoietin-Tie2 signaling in human endothelial cells."
Yacyshyn O.K., Lai P.F.H., Forse K., Teichert-Kuliszewska K., Jurasz P., Stewart D.J.
Angiogenesis 12:25-33(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION, DEPHOSPHORYLATION BY PTPRB.
[18]"Angiopoietin-1-induced ubiquitylation of Tie2 by c-Cbl is required for internalization and degradation."
Wehrle C., Van Slyke P., Dumont D.J.
Biochem. J. 423:375-380(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CBL, SUBCELLULAR LOCATION, UBIQUITINATION.
[19]"VE-PTP controls blood vessel development by balancing Tie-2 activity."
Winderlich M., Keller L., Cagna G., Broermann A., Kamenyeva O., Kiefer F., Deutsch U., Nottebaum A.F., Vestweber D.
J. Cell Biol. 185:657-671(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH PTPRB.
[20]"Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry."
Chen R., Jiang X., Sun D., Han G., Wang F., Ye M., Wang L., Zou H.
J. Proteome Res. 8:651-661(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: GLYCOSYLATION [LARGE SCALE ANALYSIS] AT ASN-596.
Tissue: Liver.
[21]"Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium."
Yuan H.T., Khankin E.V., Karumanchi S.A., Parikh S.M.
Mol. Cell. Biol. 29:2011-2022(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS RECEPTOR FOR ANGPT1 AND ANGPT2 IN ACTIVATION OF PHOSPHATIDYLINOSITOL 3-KINASE AND AKT1; STIMULATION OF ENDOTHELIAL CELL SURVIVAL AND MIGRATION, CATALYTIC ACTIVITY, AUTOPHOSPHORYLATION.
[22]"Tie2: a journey from normal angiogenesis to cancer and beyond."
Martin V., Liu D., Fueyo J., Gomez-Manzano C.
Histol. Histopathol. 23:773-780(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON FUNCTION; INTERACTION WITH EFFECTOR AND SCAFFOLDING PROTEINS, ROLE IN DISEASE.
[23]"Tie2 is tied at the cell-cell contacts and to extracellular matrix by angiopoietin-1."
Fukuhara S., Sako K., Noda K., Nagao K., Miura K., Mochizuki N.
Exp. Mol. Med. 41:133-139(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON SUBCELLULAR LOCATION AND CONTEXT-SPECIFIC SIGNALING.
[24]"Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system."
Augustin H.G., Koh G.Y., Thurston G., Alitalo K.
Nat. Rev. Mol. Cell Biol. 10:165-177(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW.
[25]"Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis."
Fukuhara S., Sako K., Noda K., Zhang J., Minami M., Mochizuki N.
Histol. Histopathol. 25:387-396(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW.
[26]"Targeting the ANGPT-TIE2 pathway in malignancy."
Huang H., Bhat A., Woodnutt G., Lappe R.
Nat. Rev. Cancer 10:575-585(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON SIGNALING, ENZYME REGULATION, ROLE IN DISEASE.
[27]"Structure of the Tie2 RTK domain: self-inhibition by the nucleotide binding loop, activation loop, and C-terminal tail."
Shewchuk L.M., Hassell A.M., Ellis B., Holmes W.D., Davis R., Horne E.L., Kadwell S.H., McKee D.D., Moore J.T.
Structure 8:1105-1113(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 808-1124, ACTIVE SITE, ENZYME REGULATION, PREDICTION OF ATP-BINDING REGION.
[28]"Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2-Tie2 complex."
Barton W.A., Tzvetkova-Robev D., Miranda E.P., Kolev M.V., Rajashankar K.R., Himanen J.P., Nikolov D.B.
Nat. Struct. Mol. Biol. 13:524-532(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.9 ANGSTROMS) OF 23-445 ALONE AND IN COMPLEX WITH ANGPT2, GLYCOSYLATION AT ASN-140, DISULFIDE BONDS.
[29]"Synthesis, structural analysis, and SAR studies of triazine derivatives as potent, selective Tie-2 inhibitors."
Hodous B.L., Geuns-Meyer S.D., Hughes P.E., Albrecht B.K., Bellon S., Caenepeel S., Cee V.J., Chaffee S.C., Emery M., Fretland J., Gallant P., Gu Y., Johnson R.E., Kim J.L., Long A.M., Morrison M., Olivieri P.R., Patel V.F. expand/collapse author list , Polverino A., Rose P., Wang L., Zhao H.
Bioorg. Med. Chem. Lett. 17:2886-2889(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 808-1124 IN COMPLEX WITH TRIAZINE DERIVATIVE, ENZYME REGULATION.
[30]"Evolution of a highly selective and potent 2-(pyridin-2-yl)-1,3,5-triazine Tie-2 kinase inhibitor."
Hodous B.L., Geuns-Meyer S.D., Hughes P.E., Albrecht B.K., Bellon S., Bready J., Caenepeel S., Cee V.J., Chaffee S.C., Coxon A., Emery M., Fretland J., Gallant P., Gu Y., Hoffman D., Johnson R.E., Kendall R., Kim J.L. expand/collapse author list , Long A.M., Morrison M., Olivieri P.R., Patel V.F., Polverino A., Rose P., Tempest P., Wang L., Whittington D.A., Zhao H.
J. Med. Chem. 50:611-626(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.50 ANGSTROMS) OF 808-1124 IN COMPLEX WITH TRIAZINE DERIVATIVE, ENZYME REGULATION.
[31]"Novel thienopyrimidine and thiazolopyrimidine kinase inhibitors with activity against Tie-2 in vitro and in vivo."
Luke R.W., Ballard P., Buttar D., Campbell L., Curwen J., Emery S.C., Griffen A.M., Hassall L., Hayter B.R., Jones C.D., McCoull W., Mellor M., Swain M.L., Tucker J.A.
Bioorg. Med. Chem. Lett. 19:6670-6674(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.95 ANGSTROMS) OF 802-1124 IN COMPLEX WITH THIAZOLOPYRIMIDINE DERIVATIVE, ENZYME REGULATION.
[32]"Crystal structure of cytoplasmic kinase domain of Tie2 complexed with inhibitor CEP11207."
Fedorov A.A., Fedorov E.V., Pauletti D., Meyer S.L., Hudkins R.L., Almo S.C.
Submitted (JAN-2010) to the PDB data bank
Cited for: X-RAY CRYSTALLOGRAPHY (2.40 ANGSTROMS) OF 808-1124 IN COMPLEX WITH CEP11207.
[33]"Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2."
Vikkula M., Boon L.M., Carraway K.L. III, Calvert J.T., Diamonti A.J., Goumnerov B., Pasyk K.A., Marchuk D.A., Warman M.L., Cantley L.C., Mulliken J.B., Olse B.R.
Cell 87:1181-1190(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT VMCM TRP-849.
[34]"Allelic and locus heterogeneity in inherited venous malformations."
Calvert J.T., Riney T.J., Kontos C.D., Cha E.H., Prieto V.G., Shea C.R., Berg J.N., Nevin N.C., Simpson S.A., Pasyk K.A., Speer M.C., Peters K.G., Marchuk D.A.
Hum. Mol. Genet. 8:1279-1289(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANTS VMCM TRP-849 AND SER-897.
[35]"The consensus coding sequences of human breast and colorectal cancers."
Sjoeblom T., Jones S., Wood L.D., Parsons D.W., Lin J., Barber T.D., Mandelker D., Leary R.J., Ptak J., Silliman N., Szabo S., Buckhaults P., Farrell C., Meeh P., Markowitz S.D., Willis J., Dawson D., Willson J.K.V. expand/collapse author list , Gazdar A.F., Hartigan J., Wu L., Liu C., Parmigiani G., Park B.H., Bachman K.E., Papadopoulos N., Vogelstein B., Kinzler K.W., Velculescu V.E.
Science 314:268-274(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT [LARGE SCALE ANALYSIS] ASN-117.
[36]"Patterns of somatic mutation in human cancer genomes."
Greenman C., Stephens P., Smith R., Dalgliesh G.L., Hunter C., Bignell G., Davies H., Teague J., Butler A., Stevens C., Edkins S., O'Meara S., Vastrik I., Schmidt E.E., Avis T., Barthorpe S., Bhamra G., Buck G. expand/collapse author list , Choudhury B., Clements J., Cole J., Dicks E., Forbes S., Gray K., Halliday K., Harrison R., Hills K., Hinton J., Jenkinson A., Jones D., Menzies A., Mironenko T., Perry J., Raine K., Richardson D., Shepherd R., Small A., Tofts C., Varian J., Webb T., West S., Widaa S., Yates A., Cahill D.P., Louis D.N., Goldstraw P., Nicholson A.G., Brasseur F., Looijenga L., Weber B.L., Chiew Y.-E., DeFazio A., Greaves M.F., Green A.R., Campbell P., Birney E., Easton D.F., Chenevix-Trench G., Tan M.-H., Khoo S.K., Teh B.T., Yuen S.T., Leung S.Y., Wooster R., Futreal P.A., Stratton M.R.
Nature 446:153-158(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANTS [LARGE SCALE ANALYSIS] ASN-117; THR-148; VAL-226; ILE-486; LEU-600; PHE-634; ILE-676; THR-724; ALA-883 AND VAL-1124.
[37]"Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper-phosphorylating effects."
Wouters V., Limaye N., Uebelhoer M., Irrthum A., Boon L.M., Mulliken J.B., Enjolras O., Baselga E., Berg J., Dompmartin A., Ivarsson S.A., Kangesu L., Lacassie Y., Murphy J., Teebi A.S., Penington A., Rieu P., Vikkula M.
Eur. J. Hum. Genet. 18:414-420(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANTS VMCM TRP-849; CYS-897; HIS-915; CYS-918; LEU-919; SER-925 AND ASN-1100, CHARACTERIZATION OF VARIANTS VMCM TRP-849; SER-897; HIS-915; CYS-918; LEU-919; SER-925 AND ASN-1100.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
L06139 mRNA. Translation: AAA61139.1.
AK291775 mRNA. Translation: BAF84464.1.
AK294887 mRNA. Translation: BAG57981.1.
AK295043 mRNA. Translation: BAG58094.1.
AL133411, AL355432, AL355433 Genomic DNA. Translation: CAI16055.1.
CH471071 Genomic DNA. Translation: EAW58571.1.
CH471071 Genomic DNA. Translation: EAW58572.1.
BC035514 mRNA. Translation: AAH35514.2.
CCDSCCDS6519.1. [Q02763-1]
PIRI58388.
RefSeqNP_000450.2. NM_000459.4.
NP_001277006.1. NM_001290077.1.
NP_001277007.1. NM_001290078.1.
UniGeneHs.89640.

3D structure databases

PDBe
RCSB-PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1FVRX-ray2.20A/B808-1124[»]
2GY5X-ray2.90A23-445[»]
2GY7X-ray3.70B23-445[»]
2OO8X-ray2.20X808-1124[»]
2OSCX-ray2.80A808-1124[»]
2P4IX-ray2.50A/B808-1124[»]
2WQBX-ray2.95A802-1124[»]
3BEAX-ray2.02A917-935[»]
3L8PX-ray2.40A808-1124[»]
4K0VX-ray4.51A23-542[»]
ProteinModelPortalQ02763.
SMRQ02763. Positions 23-631, 640-725, 813-1121.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid112869. 11 interactions.
DIPDIP-6047N.
IntActQ02763. 20 interactions.
STRING9606.ENSP00000383977.

Chemistry

BindingDBQ02763.
ChEMBLCHEMBL2111375.
GuidetoPHARMACOLOGY1842.

PTM databases

PhosphoSiteQ02763.

Polymorphism databases

DMDM218511853.

Proteomic databases

PaxDbQ02763.
PRIDEQ02763.

Protocols and materials databases

DNASU7010.
StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000380036; ENSP00000369375; ENSG00000120156. [Q02763-1]
ENST00000406359; ENSP00000383977; ENSG00000120156. [Q02763-2]
ENST00000519097; ENSP00000430686; ENSG00000120156. [Q02763-3]
GeneID7010.
KEGGhsa:7010.
UCSCuc003zqj.1. human. [Q02763-2]
uc011lnp.2. human. [Q02763-3]

Organism-specific databases

CTD7010.
GeneCardsGC09P027109.
GeneReviewsTEK.
HGNCHGNC:11724. TEK.
HPACAB010359.
HPA011738.
MIM600195. phenotype.
600221. gene.
neXtProtNX_Q02763.
Orphanet2451. Mucocutaneous venous malformations.
PharmGKBPA36441.
GenAtlasSearch...

Phylogenomic databases

eggNOGCOG0515.
HOGENOMHOG000049232.
HOVERGENHBG007316.
InParanoidQ02763.
KOK05121.
OMACHEDTGE.
OrthoDBEOG7966FR.
PhylomeDBQ02763.
TreeFamTF317568.

Enzyme and pathway databases

BRENDA2.7.10.1. 2681.
ReactomeREACT_604. Hemostasis.
SignaLinkQ02763.

Gene expression databases

ArrayExpressQ02763.
BgeeQ02763.
CleanExHS_TEK.
GenevestigatorQ02763.

Family and domain databases

Gene3D2.60.40.10. 6 hits.
InterProIPR000742. EG-like_dom.
IPR013032. EGF-like_CS.
IPR003961. Fibronectin_type3.
IPR007110. Ig-like_dom.
IPR013783. Ig-like_fold.
IPR011009. Kinase-like_dom.
IPR000719. Prot_kinase_dom.
IPR017441. Protein_kinase_ATP_BS.
IPR001245. Ser-Thr/Tyr_kinase_cat_dom.
IPR018941. Tyr_kin_Tie2_Ig-like_dom-1_N.
IPR008266. Tyr_kinase_AS.
IPR020635. Tyr_kinase_cat_dom.
[Graphical view]
PfamPF00041. fn3. 3 hits.
PF10430. Ig_Tie2_1. 1 hit.
PF07714. Pkinase_Tyr. 1 hit.
[Graphical view]
PRINTSPR00109. TYRKINASE.
SMARTSM00181. EGF. 2 hits.
SM00060. FN3. 3 hits.
SM00219. TyrKc. 1 hit.
[Graphical view]
SUPFAMSSF49265. SSF49265. 2 hits.
SSF56112. SSF56112. 1 hit.
PROSITEPS00022. EGF_1. 3 hits.
PS01186. EGF_2. 3 hits.
PS50026. EGF_3. 1 hit.
PS50853. FN3. 3 hits.
PS50835. IG_LIKE. 1 hit.
PS00107. PROTEIN_KINASE_ATP. 1 hit.
PS50011. PROTEIN_KINASE_DOM. 1 hit.
PS00109. PROTEIN_KINASE_TYR. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

ChiTaRSTEK. human.
EvolutionaryTraceQ02763.
GeneWikiTEK_tyrosine_kinase.
GenomeRNAi7010.
NextBio27384.
PROQ02763.
SOURCESearch...

Entry information

Entry nameTIE2_HUMAN
AccessionPrimary (citable) accession number: Q02763
Secondary accession number(s): A8K6W0 expand/collapse secondary AC list , B4DH20, B4DHD3, D3DRK5, E7EWI2, Q5TCU2, Q8IV34
Entry history
Integrated into UniProtKB/Swiss-Prot: February 1, 1994
Last sequence update: December 16, 2008
Last modified: July 9, 2014
This is version 166 of the entry and version 2 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

Human and mouse protein kinases

Human and mouse protein kinases: classification and index

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 9

Human chromosome 9: entries, gene names and cross-references to MIM

Human cell differentiation molecules

CD nomenclature of surface proteins of human leucocytes and list of entries