Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q02152 (5HT2B_MOUSE) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 130. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (3) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
5-hydroxytryptamine receptor 2B

Short name=5-HT-2B
Short name=5-HT2B
Alternative name(s):
5-HT-2F
NP75 protein
Serotonin receptor 2B
Gene names
Name:Htr2b
OrganismMus musculus (Mouse) [Reference proteome]
Taxonomic identifier10090 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus

Protein attributes

Sequence length479 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various ergot alkaloid derivatives and psychoactive substances. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling activates a phosphatidylinositol-calcium second messenger system that modulates the activity of phosphatidylinositol 3-kinase and down-stream signaling cascades and promotes the release of Ca2+ ions from intracellular stores. Plays a role in the regulation of dopamine and 5-hydroxytryptamine release, 5-hydroxytryptamine uptake and in the regulation of extracellular dopamine and 5-hydroxytryptamine levels, and thereby affects neural activity. May play a role in the perception of pain. Plays a role in the regulation of behavior, including impulsive behavior. Required for normal proliferation of embryonic cardiac myocytes and normal heart development. Protects cardiomyocytes against apoptosis. Plays a role in the adaptation of pulmonary arteries to chronic hypoxia. Plays a role in vasoconstriction. Required for normal osteoblast function and proliferation, and for maintaining normal bone density. Required for normal proliferation of the interstitial cells of Cajal in the intestine. Ref.1 Ref.6 Ref.7 Ref.8 Ref.9 Ref.10 Ref.11 Ref.12 Ref.14 Ref.15 Ref.16

Subunit structure

Interacts with MPDZ By similarity.

Subcellular location

Cell membrane; Multi-pass membrane protein. Cell junctionsynapsesynaptosome Ref.1 Ref.12.

Tissue specificity

Ubiquitous. Detected in intestine, heart, skeletal muscle, testis, urinary bladder, stomach, liver, lung, brain and kidney. Detected in osteoblasts. Detected in the raphe nucleus in the brain, in dorsal root ganglion neurons, the brain stem, cerebellum and spinal cord. Detected in interstitial cells of Cajal in the small intestine. Ref.1 Ref.6 Ref.11 Ref.12 Ref.14 Ref.15

Domain

Ligands are bound in a hydrophobic pocket formed by the transmembrane helices By similarity.

Disruption phenotype

Partial embryonic and perinatal lethality, due to heart ventricle hypoplasia and impaired proliferative capacity of heart myocytes. Mutant mice that survive into adulthood have a decreased heart weight relative to body weight. They display dilated cardiomyopathy with a loss of ventricular mass, due to a reduction in the number and size of cardiomyocytes. The myocardium from mutant mice displays abnormal organization of the contractile elements, with an irregular array of sarcomeric myofibrils and abnormally wide Z bands. In addition, heart muscle mitochondria display structural and functional defects. Mutant mice do not respond to chronic exposure to low oxygen levels by remodeling of their lung arteries, contrary to wild-type mice, and as a consequence, do not develop increased right ventricular systolic pressure in response to chronic hypoxia. Adult mutant female mice display reduced bone density that worsens with age. Osteopenia is due to reduced proliferation and delayed differentiation of osteoblasts and reduced calcium incorporation by osteoblasts. In addition, mutant mice display a reduced number of proliferating interstitial cells of Cajal in the myenteric plexus in jejunum muscle, and a reduced number of interstitial cells of Cajal in the deep muscular plexus. Besides, mutant mice show increased locomotor activity in a novel environment, compared to wild-type. Contrary to wild-type, they do not respond to the drug 3,4-methylenedioxymethamphetamine with increased locomotion and increased 5-hydroxytryptamine and dopamine levels in the brain. Ref.6 Ref.7 Ref.8 Ref.9 Ref.11 Ref.12 Ref.14

Sequence similarities

Belongs to the G-protein coupled receptor 1 family.

Sequence caution

The sequence CAA78824.1 differs from that shown. Reason: Erroneous termination at position 480. Translated as stop.

Ontologies

Keywords
   Biological processBehavior
   Cellular componentCell junction
Cell membrane
Membrane
Synapse
Synaptosome
   DomainTransmembrane
Transmembrane helix
   Molecular functionG-protein coupled receptor
Receptor
Transducer
   PTMDisulfide bond
Glycoprotein
Lipoprotein
Palmitate
   Technical termComplete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processERK1 and ERK2 cascade

Inferred from mutant phenotype PubMed 20450948PubMed 8621713. Source: UniProtKB

G-protein coupled receptor internalization

Inferred from direct assay PubMed 17325130. Source: UniProtKB

G-protein coupled receptor signaling pathway

Inferred from sequence or structural similarity. Source: UniProtKB

activation of phospholipase C activity

Inferred from electronic annotation. Source: Ensembl

behavior

Inferred from electronic annotation. Source: UniProtKB-KW

cGMP biosynthetic process

Inferred from sequence or structural similarity. Source: UniProtKB

calcium-mediated signaling

Inferred from sequence or structural similarity. Source: UniProtKB

cardiac muscle hypertrophy

Inferred from mutant phenotype PubMed 19023134. Source: UniProtKB

cellular response to temperature stimulus

Inferred from direct assay PubMed 17325130. Source: UniProtKB

embryonic morphogenesis

Inferred from mutant phenotype PubMed 9165122. Source: UniProtKB

heart development

Inferred from mutant phenotype Ref.6. Source: MGI

heart morphogenesis

Inferred from mutant phenotype PubMed 9165122. Source: UniProtKB

intestine smooth muscle contraction

Inferred from sequence or structural similarity. Source: UniProtKB

negative regulation of apoptotic process

Inferred from mutant phenotype PubMed 9165122. Source: UniProtKB

negative regulation of autophagy

Inferred from sequence or structural similarity. Source: UniProtKB

negative regulation of cell death

Inferred from sequence or structural similarity. Source: UniProtKB

neural crest cell differentiation

Inferred from mutant phenotype PubMed 9165122. Source: UniProtKB

neural crest cell migration

Inferred from mutant phenotype PubMed 9165122. Source: UniProtKB

phosphatidylinositol 3-kinase signaling

Inferred from sequence or structural similarity. Source: UniProtKB

phospholipase C-activating serotonin receptor signaling pathway

Traceable author statement Ref.6. Source: MGI

phosphorylation

Inferred from sequence or structural similarity. Source: UniProtKB

positive regulation of ERK1 and ERK2 cascade

Inferred from electronic annotation. Source: Ensembl

positive regulation of I-kappaB kinase/NF-kappaB signaling

Inferred from sequence or structural similarity. Source: UniProtKB

positive regulation of MAP kinase activity

Inferred from electronic annotation. Source: Ensembl

positive regulation of Ras GTPase activity

Inferred from mutant phenotype PubMed 8621713. Source: GOC

positive regulation of cell division

Inferred from mutant phenotype PubMed 8621713. Source: UniProtKB

positive regulation of cell proliferation

Inferred from sequence or structural similarity. Source: UniProtKB

positive regulation of cytokine production

Inferred from sequence or structural similarity. Source: UniProtKB

positive regulation of cytokine secretion

Inferred from mutant phenotype PubMed 19023134. Source: UniProtKB

positive regulation of endothelial cell proliferation

Inferred from mutant phenotype PubMed 19308295. Source: UniProtKB

positive regulation of nitric-oxide synthase activity

Inferred from sequence or structural similarity. Source: UniProtKB

positive regulation of phosphatidylinositol biosynthetic process

Inferred from sequence or structural similarity. Source: UniProtKB

protein kinase C signaling

Inferred from sequence or structural similarity. Source: UniProtKB

protein kinase C-activating G-protein coupled receptor signaling pathway

Inferred from mutant phenotype PubMed 17325130. Source: UniProtKB

regulation of behavior

Inferred from mutant phenotype Ref.13. Source: UniProtKB

release of sequestered calcium ion into cytosol

Inferred from sequence or structural similarity. Source: UniProtKB

response to drug

Inferred from direct assay PubMed 17325130. Source: UniProtKB

serotonin receptor signaling pathway

Inferred from sequence or structural similarity. Source: UniProtKB

vasoconstriction

Inferred from sequence or structural similarity. Source: UniProtKB

   Cellular_componentcell junction

Inferred from electronic annotation. Source: UniProtKB-KW

cytoplasm

Inferred from direct assay PubMed 17325130. Source: UniProtKB

integral component of plasma membrane

Inferred from electronic annotation. Source: InterPro

neuron projection

Inferred from electronic annotation. Source: UniProtKB-SubCell

plasma membrane

Inferred from direct assay PubMed 17325130. Source: UniProtKB

synapse

Inferred from electronic annotation. Source: UniProtKB-KW

   Molecular_functionG-protein alpha-subunit binding

Inferred from sequence or structural similarity. Source: UniProtKB

Ras GTPase activator activity

Inferred from mutant phenotype PubMed 8621713. Source: UniProtKB

calcium channel activity

Inferred from electronic annotation. Source: Ensembl

drug binding

Inferred from direct assay PubMed 17325130. Source: UniProtKB

phosphatidylinositol phospholipase C activity

Inferred from electronic annotation. Source: Ensembl

serotonin binding

Inferred from direct assay PubMed 17325130. Source: UniProtKB

serotonin receptor activity

Inferred from direct assay PubMed 17325130. Source: UniProtKB

Complete GO annotation...

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 4794795-hydroxytryptamine receptor 2B
PRO_0000068954

Regions

Topological domain1 – 5555Extracellular By similarity
Transmembrane56 – 7823Helical; Name=1; By similarity
Topological domain79 – 8911Cytoplasmic By similarity
Transmembrane90 – 11223Helical; Name=2; By similarity
Topological domain113 – 12816Extracellular By similarity
Transmembrane129 – 15022Helical; Name=3; By similarity
Topological domain151 – 17020Cytoplasmic By similarity
Transmembrane171 – 19121Helical; Name=4; By similarity
Topological domain192 – 21524Extracellular By similarity
Transmembrane216 – 23823Helical; Name=5; By similarity
Topological domain239 – 32385Cytoplasmic By similarity
Transmembrane324 – 34421Helical; Name=6; By similarity
Topological domain345 – 35915Extracellular By similarity
Transmembrane360 – 38122Helical; Name=7; By similarity
Topological domain382 – 47998Cytoplasmic By similarity
Region134 – 1396Agonist binding By similarity
Region336 – 3405Agonist binding By similarity
Motif151 – 1533DRY motif; important for ligand-induced conformation changes
Motif211 – 2144[DE]RFG motif; may stabilize a conformation that preferentially activates signaling via beta-arrestin family members By similarity
Motif375 – 3795NPxxY motif; important for ligand-induced conformation changes and signaling
Motif477 – 4793PDZ-binding

Amino acid modifications

Lipidation3961S-palmitoyl cysteine Potential
Glycosylation291N-linked (GlcNAc...) Potential
Disulfide bond127 ↔ 206 By similarity
Disulfide bond349 ↔ 352 By similarity

Experimental info

Sequence conflict1671S → T in CAA78824. Ref.1
Sequence conflict2271A → V in CAA78824. Ref.1
Sequence conflict2271A → V in CAA10051. Ref.2
Sequence conflict4491S → C in CAA78824. Ref.1

Sequences

Sequence LengthMass (Da)Tools
Q02152 [UniParc].

Last modified October 16, 2013. Version 3.
Checksum: F02B30D80C8C9B6D

FASTA47953,597
        10         20         30         40         50         60 
MASSYKMSEQ STTSEHILQK TCDHLILTNR SGLETDSVAE EMKQTVEGQG HTVHWAALLI 

        70         80         90        100        110        120 
LAVIIPTIGG NILVILAVAL EKRLQYATNY FLMSLAIADL LVGLFVMPIA LLTIMFEAIW 

       130        140        150        160        170        180 
PLPLALCPAW LFLDVLFSTA SIMHLCAISL DRYIAIKKPI QANQCNSRAT AFIKITVVWL 

       190        200        210        220        230        240 
ISIGIAIPVP IKGIETDVIN PHNVTCELTK DRFGSFMVFG SLAAFFAPLT IMVVTYFLTI 

       250        260        270        280        290        300 
HTLQKKAYLV KNKPPQRLTR WTVPTVFLRE DSSFSSPEKV AMLDGSHRDK ILPNSSDETL 

       310        320        330        340        350        360 
MRRMSSVGKR SAQTISNEQR ASKALGVVFF LFLLMWCPFF ITNLTLALCD SCNQTTLKTL 

       370        380        390        400        410        420 
LEIFVWIGYV SSGVNPLIYT LFNKTFREAF GRYITCNYRA TKSVKALRKF SSTLCFGNSM 

       430        440        450        460        470 
VENSKFFTKH GIRNGINPAM YQSPMRLRSS TIQSSSIILL DTLLTENDGD KAEEQVSYI 

« Hide

References

« Hide 'large scale' references
[1]"New mouse 5-HT2-like receptor. Expression in brain, heart and intestine."
Loric S., Launay J.-M., Colas J.-F., Maroteaux L.
FEBS Lett. 312:203-207(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY.
Tissue: Brain.
[2]"Genomic sequence of the 5-HT2B receptor locus."
Choi D.S., Maroteaux L.
Submitted (NOV-1998) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
Strain: 129/Sv.
[3]"High-throughput sequence identification of gene coding variants within alcohol-related QTLs."
Ehringer M.A., Thompson J., Conroy O., Xu Y., Yang F., Canniff J., Beeson M., Gordon L., Bennett B., Johnson T.E., Sikela J.M.
Mamm. Genome 12:657-663(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA].
Strain: ILS and ISS.
[4]"The transcriptional landscape of the mammalian genome."
Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J. expand/collapse author list , Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N., Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.
Science 309:1559-1563(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Strain: C57BL/6J.
Tissue: Cecum.
[5]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Strain: FVB/N.
Tissue: Mammary tumor.
[6]"Serotonin 2B receptor is required for heart development."
Nebigil C.G., Choi D.S., Dierich A., Hickel P., Le Meur M., Messaddeq N., Launay J.M., Maroteaux L.
Proc. Natl. Acad. Sci. U.S.A. 97:9508-9513(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE, FUNCTION, TISSUE SPECIFICITY.
[7]"Ablation of serotonin 5-HT(2B) receptors in mice leads to abnormal cardiac structure and function."
Nebigil C.G., Hickel P., Messaddeq N., Vonesch J.L., Douchet M.P., Monassier L., Gyorgy K., Matz R., Andriantsitohaina R., Manivet P., Launay J.M., Maroteaux L.
Circulation 103:2973-2979(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE, FUNCTION.
[8]"Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension."
Launay J.M., Herve P., Peoc'h K., Tournois C., Callebert J., Nebigil C.G., Etienne N., Drouet L., Humbert M., Simonneau G., Maroteaux L.
Nat. Med. 8:1129-1135(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE, FUNCTION.
[9]"Serotonin is a novel survival factor of cardiomyocytes: mitochondria as a target of 5-HT2B receptor signaling."
Nebigil C.G., Etienne N., Messaddeq N., Maroteaux L.
FASEB J. 17:1373-1375(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE, FUNCTION.
[10]"Serotonin transport and serotonin transporter-mediated antidepressant recognition are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells."
Launay J.M., Schneider B., Loric S., Da Prada M., Kellermann O.
FASEB J. 20:1843-1854(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[11]"The serotonin 5-HT2B receptor controls bone mass via osteoblast recruitment and proliferation."
Collet C., Schiltz C., Geoffroy V., Maroteaux L., Launay J.M., de Vernejoul M.C.
FASEB J. 22:418-427(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE, FUNCTION, TISSUE SPECIFICITY.
[12]"Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro."
Doly S., Valjent E., Setola V., Callebert J., Herve D., Launay J.M., Maroteaux L.
J. Neurosci. 28:2933-2940(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE, FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY.
[13]"A population-specific HTR2B stop codon predisposes to severe impulsivity."
Bevilacqua L., Doly S., Kaprio J., Yuan Q., Tikkanen R., Paunio T., Zhou Z., Wedenoja J., Maroteaux L., Diaz S., Belmer A., Hodgkinson C.A., Dell'osso L., Suvisaari J., Coccaro E., Rose R.J., Peltonen L., Virkkunen M., Goldman D.
Nature 468:1061-1066(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: INVOLVEMENT IN IMPULSIVE BEHAVIOR.
[14]"Lack of serotonin 5-HT2B receptor alters proliferation and network volume of interstitial cells of Cajal in vivo."
Tharayil V.S., Wouters M.M., Stanich J.E., Roeder J.L., Lei S., Beyder A., Gomez-Pinilla P.J., Gershon M.D., Maroteaux L., Gibbons S.J., Farrugia G.
Neurogastroenterol. Motil. 22:462-469(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE, FUNCTION, TISSUE SPECIFICITY.
[15]"Serotonin receptor 5-HT2B mediates serotonin-induced mechanical hyperalgesia."
Lin S.Y., Chang W.J., Lin C.S., Huang C.Y., Wang H.F., Sun W.H.
J. Neurosci. 31:1410-1418(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: TISSUE SPECIFICITY, POSSIBLE FUNCTION IN PAIN PERCEPTION.
[16]"5HT(2A) and 5HT(2B) receptors contribute to serotonin-induced vascular dysfunction in diabetes."
Nelson P.M., Harrod J.S., Lamping K.G.
Exp. Diabetes Res. 2012:398406-398406(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
Z15119 mRNA. Translation: CAA78824.1. Sequence problems.
AJ012488 Genomic DNA. Translation: CAA10051.1.
AF498254 mRNA. Translation: AAM22971.1.
AF498255 mRNA. Translation: AAM22972.1.
AK033713 mRNA. Translation: BAC28441.1.
BC023690 mRNA. Translation: AAH23690.1.
CCDSCCDS35644.1.
PIRS27269.
RefSeqNP_032337.2. NM_008311.2.
XP_006529210.1. XM_006529147.1.
UniGeneMm.439747.

3D structure databases

ProteinModelPortalQ02152.
SMRQ02152. Positions 47-399.
ModBaseSearch...
MobiDBSearch...

Chemistry

BindingDBQ02152.
ChEMBLCHEMBL2096671.
GuidetoPHARMACOLOGY7.

Protein family/group databases

GPCRDBSearch...

PTM databases

PhosphoSiteQ02152.

Proteomic databases

PRIDEQ02152.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENSMUST00000027431; ENSMUSP00000027431; ENSMUSG00000026228.
GeneID15559.
KEGGmmu:15559.
UCSCuc007buz.1. mouse.

Organism-specific databases

CTD3357.
MGIMGI:109323. Htr2b.

Phylogenomic databases

eggNOGNOG247243.
GeneTreeENSGT00750000117240.
HOGENOMHOG000240378.
HOVERGENHBG107487.
InParanoidQ02152.
KOK04157.
OMACDSCNQT.
OrthoDBEOG70ZZN5.
TreeFamTF316350.

Gene expression databases

ArrayExpressQ02152.
BgeeQ02152.
CleanExMM_HTR2B.
GenevestigatorQ02152.

Family and domain databases

Gene3D1.20.1070.10. 2 hits.
InterProIPR000482. 5HT2B_rcpt.
IPR002231. 5HT_rcpt.
IPR000276. GPCR_Rhodpsn.
IPR017452. GPCR_Rhodpsn_7TM.
[Graphical view]
PANTHERPTHR24247:SF31. PTHR24247:SF31. 1 hit.
PfamPF00001. 7tm_1. 1 hit.
[Graphical view]
PRINTSPR00651. 5HT2BRECEPTR.
PR01101. 5HTRECEPTOR.
PR00237. GPCRRHODOPSN.
PROSITEPS00237. G_PROTEIN_RECEP_F1_1. 1 hit.
PS50262. G_PROTEIN_RECEP_F1_2. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

NextBio288504.
PROQ02152.
SOURCESearch...

Entry information

Entry name5HT2B_MOUSE
AccessionPrimary (citable) accession number: Q02152
Secondary accession number(s): Q8JZK5, Q9QWS2
Entry history
Integrated into UniProtKB/Swiss-Prot: July 1, 1993
Last sequence update: October 16, 2013
Last modified: July 9, 2014
This is version 130 of the entry and version 3 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Relevant documents

SIMILARITY comments

Index of protein domains and families

MGD cross-references

Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot

7-transmembrane G-linked receptors

List of 7-transmembrane G-linked receptor entries