<p>An evidence describes the source of an annotation, e.g. an experiment that has been published in the scientific literature, an orthologous protein, a record from another database, etc.</p>
<p><a href="/manual/evidences">More…</a></p>
Your basket is currently empty. i
<p>When browsing through different UniProt proteins, you can use the ‘basket’ to save them, so that you can back to find or analyse them later.<p><a href='/help/basket' target='_top'>More...</a></p>
Select item(s) and click on "Add to basket" to create your own collection here (400 entries max)
<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome.<p><a href='/help/annotation_score' target='_top'>More...</a></p>-Experimental evidence at transcript leveli
<p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>
Select a section on the left to see content.
<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni
Transcription factor that plays an essential role in both trophoblast-giant cells differentiation and in cardiac morphogenesis. In the adult, could be required for ongoing expression of cardiac-specific genes. Binds the DNA sequence 5'-NRTCTG-3' (non-canonical E-box) (By similarity).By similarity
<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni
<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi
<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi
Recommended name:
Heart- and neural crest derivatives-expressed protein 1
Alternative name(s):
Extraembryonic tissues, heart, autonomic nervous system and neural crest derivatives-expressed protein 1
Short name:
eHAND
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>Organismi
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the <span class="caps">NCBI</span> to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineagei
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi
UP000002494
<p>A UniProt <a href="http://www.uniprot.org/manual/proteomes_manual">proteome</a> can consist of several components. <br></br>The component name refers to the genomic component encoding a set of proteins. <br></br>These range from a single component such as Viral genomes to several components as in the case of eukaryotic chromosomes. They may also represent different stages in a genome project and include components such as contigs, scaffolds or Whole Genome Shotgun (WGS) master records.<p><a href='/help/proteome_component' target='_top'>More...</a></p> Componenti: Chromosome 10
<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi
Note:Interaction with MDFIC sequesters it into the nucleolus, preventing the transcription factor activity. Phosphorylation by PLK4 disrupts the interaction with MDFIC and releases it from the nucleolus, leading to transcription factor activity (By similarity).By similarity
Nucleus
nucleolus Source: RGDInferred from sequence orthologyi
nucleus Source: MGI
<p>Inferred from Direct Assay</p>
<p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p>
<p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywords - Cellular componenti
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_0000127187
Heart- and neural crest derivatives-expressed protein 1AddBLAST
216
Amino acid modifications
Feature key
Position(s)
DescriptionActions
Graphical view
Length
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei
<p>Manually curated information which has been propagated from a related experimentally characterized protein.</p>
<p><a href="/manual/evidences#ECO:0000250">More…</a></p> Manual assertion inferred from sequence similarity toi
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei
<p>Manually curated information which has been propagated from a related experimentally characterized protein.</p>
<p><a href="/manual/evidences#ECO:0000250">More…</a></p> Manual assertion inferred from sequence similarity toi
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section"><span class="caps">PTM</span>/processing</a> section describes post-translational modifications (PTMs). This subsection <strong>complements</strong> the information provided at the sequence level or describes modifications for which <strong>position-specific data is not yet available</strong>.<p><a href='/help/post-translational_modification' target='_top'>More...</a></p>Post-translational modificationi
Phosphorylation by PLK4 disrupts the interaction with MDFIC and leads to translocation into the nucleoplasm, allowing dimerization and transcription factor activity.By similarity
<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywords - PTMi
<p>This section provides information on the expression of a gene at the mRNA or protein level in cells or in tissues of multicellular organisms.<p><a href='/help/expression_section' target='_top'>More...</a></p>Expressioni
<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni
<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">‘Interaction’</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">‘Function’</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei
Efficient DNA binding requires dimerization with another bHLH protein. Forms homodimers and heterodimers with TCF3 gene products E12 and E47, HAND2 and HEY1, HEY2 and HEYL (hairy-related transcription factors). Interacts with MDFIC (By similarity).By similarity
<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni
<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei
3D structure databases
Protein Model Portal of the PSI-Nature Structural Biology Knowledgebase
<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi
Domains and Repeats
Feature key
Position(s)
DescriptionActions
Graphical view
Length
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini
<p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p>
<p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi
<p>This subsection of the ‘Family and Domains’ section describes the position of regions of compositional bias within the protein and the particular amino acids that are over-represented within those regions.<p><a href='/help/compbias' target='_top'>More...</a></p>Compositional biasi
<p>This subsection of the ‘Family and Domains’ section describes the position of regions of compositional bias within the protein and the particular amino acids that are over-represented within those regions.<p><a href='/help/compbias' target='_top'>More...</a></p>Compositional biasi
<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei
<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.
<p>The checksum is a form of redundancy check that is calculated
from the sequence. It is useful for tracking sequence updates.</p>
<p>It should be noted that while, in theory, two different sequences could
have the same checksum value, the likelihood that this would happen
is extremely low.</p>
<p>However UniProtKB may contain entries with identical sequences in case
of multiple genes (paralogs).</p>
<p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64)
using the generator polynomial: x<sup>64</sup> + x<sup>4</sup> + x<sup>3</sup> + x + 1.
The algorithm is described in the ISO 3309 standard.
</p>
<p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.<br />
<strong>Cyclic redundancy and other checksums</strong><br />
<a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993)</a>)</p>
Checksum:iFD047598350C9BBC
<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi
<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi
<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi
<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry namei
HAND1_RAT
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>Accessioni
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyi
Integrated into UniProtKB/Swiss-Prot:
December 1, 2000
Last sequence update:
May 1, 1999
Last modified:
March 28, 2018
This is version 125 of the entry and version 2 of the sequence. See complete history.
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusi
<p>This section contains any relevant information that doesn’t fit in any other defined sections<p><a href='/help/miscellaneous_section' target='_top'>More...</a></p>Miscellaneousi
<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywords - Technical termi