Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

P97784

- CRY1_MOUSE

UniProt

P97784 - CRY1_MOUSE

(max 400 entries)x

Your basket is currently empty.

Select item(s) and click on "Add to basket" to create your own collection here
(400 entries max)

Protein

Cryptochrome-1

Gene

Cry1

Organism
Mus musculus (Mouse)
Status
Reviewed - Annotation score: 5 out of 5- Experimental evidence at protein leveli

Functioni

Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. CRY1 and CRY2 have redundant functions but also differential and selective contributions at least in defining the pace of the SCN circadian clock and its circadian transcriptional outputs. More potent transcriptional repressor in cerebellum and liver than CRY2, though more effective in lengthening the period of the SCN oscillator. On its side, CRY2 seems to play a critical role in tuning SCN circadian period by opposing the action of CRY1. With CRY2, is dispensable for circadian rhythm generation but necessary for the development of intercellular networks for rhythm synchrony. Capable of translocating circadian clock core proteins such as PER proteins to the nucleus. Interacts with CLOCK-ARNTL/BMAL1 independently of PER proteins and is found atCLOCK-ARNTL/BMAL1-bound sites, suggesting that CRY may act as a molecular gatekeeper to maintain CLOCK-ARNTL/BMAL1 in a poised and repressed state until the proper time for transcriptional activation. Represses the CLOCK-ARNTL/BMAL1 induced transcription of BHLHE40/DEC1, ATF4, MTA1, KLF10 and NAMPT. May repress circadian target genes expression in collaboration with HDAC1 and HDAC2 through histone deacetylation. Mediates the clock-control activation of ATR and modulates ATR-mediated DNA damage checkpoint. In liver, mediates circadian regulation of cAMP signaling and gluconeogenesis by binding to membrane-coupled G proteins and blocking glucagon-mediated increases in intracellular cAMP concentrations and CREB1 phosphorylation. Besides its role in the maintenance of the circadian clock, is also involved in the regulation of other processes. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by binding to glucocorticoid response elements (GREs). Plays a key role in glucose and lipid metabolism modulation, in part, through the transcriptional regulation of genes involved in these pathways, such as LEP or ACSL4.21 Publications

Cofactori

Protein has several cofactor binding sites:
  • FADBy similarityNote: Binds 1 FAD per subunit. Only a minority of the protein molecules contain bound FAD. Contrary to the situation in photolyases, the FAD is bound in a shallow, surface-exposed pocket.By similarity
  • 5,10-methylenetetrahydrofolateBy similarityNote: Binds 1 5,10-methenyltetrahydrofolate non-covalently per subunit.By similarity

Sites

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Binding sitei252 – 2521FAD; via amide nitrogenBy similarity
Binding sitei289 – 2891FADBy similarity
Binding sitei355 – 3551FADBy similarity

Regions

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Nucleotide bindingi387 – 3893FADBy similarity

GO - Molecular functioni

  1. core promoter binding Source: UniProtKB
  2. core promoter sequence-specific DNA binding Source: UniProtKB
  3. DNA photolyase activity Source: InterPro
  4. double-stranded DNA binding Source: UniProtKB
  5. histone deacetylase binding Source: UniProtKB
  6. kinase binding Source: UniProtKB
  7. nuclear hormone receptor binding Source: UniProtKB
  8. nucleotide binding Source: UniProtKB-KW
  9. photoreceptor activity Source: UniProtKB-KW
  10. protein kinase binding Source: UniProtKB
  11. transcription factor binding Source: UniProtKB
  12. transcription factor binding transcription factor activity Source: Ensembl
  13. ubiquitin binding Source: UniProtKB

GO - Biological processi

  1. circadian regulation of gene expression Source: UniProtKB
  2. circadian rhythm Source: UniProtKB
  3. DNA damage induced protein phosphorylation Source: UniProtKB
  4. DNA repair Source: InterPro
  5. entrainment of circadian clock by photoperiod Source: UniProtKB
  6. gluconeogenesis Source: UniProtKB
  7. glucose homeostasis Source: UniProtKB
  8. lipid storage Source: UniProtKB
  9. negative regulation of circadian rhythm Source: UniProtKB
  10. negative regulation of glucocorticoid receptor signaling pathway Source: UniProtKB
  11. negative regulation of glucocorticoid secretion Source: UniProtKB
  12. negative regulation of G-protein coupled receptor protein signaling pathway Source: UniProtKB
  13. negative regulation of protein ubiquitination Source: UniProtKB
  14. negative regulation of transcription, DNA-templated Source: UniProtKB
  15. negative regulation of transcription from RNA polymerase II promoter Source: UniProtKB
  16. protein-chromophore linkage Source: UniProtKB-KW
  17. regulation of circadian rhythm Source: UniProtKB
  18. regulation of DNA damage checkpoint Source: UniProtKB
  19. response to glucagon Source: UniProtKB
  20. response to insulin Source: UniProtKB
  21. transcription, DNA-templated Source: UniProtKB-KW
Complete GO annotation...

Keywords - Molecular functioni

Photoreceptor protein, Receptor, Repressor

Keywords - Biological processi

Biological rhythms, Sensory transduction, Transcription, Transcription regulation

Keywords - Ligandi

Chromophore, FAD, Flavoprotein, Nucleotide-binding

Enzyme and pathway databases

ReactomeiREACT_198620. BMAL1:CLOCK,NPAS2 activates circadian gene expression.
REACT_241925. Circadian Clock.
REACT_24972. Circadian Clock.

Names & Taxonomyi

Protein namesi
Recommended name:
Cryptochrome-1
Gene namesi
Name:Cry1
OrganismiMus musculus (Mouse)
Taxonomic identifieri10090 [NCBI]
Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus
ProteomesiUP000000589: Chromosome 10

Organism-specific databases

MGIiMGI:1270841. Cry1.

Subcellular locationi

Cytoplasm. Nucleus
Note: Transloctaed to the nucleus through interaction with other Clock proteins such as PER2 or ARNTL/BMAL1.

GO - Cellular componenti

  1. cytosol Source: Reactome
  2. mitochondrion Source: UniProtKB
  3. nucleolus Source: Ensembl
  4. nucleoplasm Source: Reactome
  5. nucleus Source: UniProtKB
Complete GO annotation...

Keywords - Cellular componenti

Cytoplasm, Nucleus

Pathology & Biotechi

Disruption phenotypei

Mice show an advanced phase shift (around 4 hours) in the expression of DBP, NR1D1 and PER1 genes in the liver. Double knockouts of CRY1 and CRY2 show slightly decrease body weight and lose the cycling rhythmicity of feeding behavior, energy expenditure and glucocorticoids expression. Glucose homeostasis is severely disrupted and animals exhibit elevated blood glucose in response to acute feeding after an overnight fast as well as severely impaired glucose clearance in a glucose tolerance test. When challenged with high-fat diet, animals rapidly gain weight and surpass that of wild-type mice, despite displaying hypophagia. They exhibit hyperinsulinemia and selective insulin resistance in the liver and muscle but show high insulin sensitivity in adipose tissue and consequent increased lipid uptake. Mice display enlarged gonadal, subcutaneous and perirenal fat deposits with adipocyte hypertrophy and increased lipied accumulation in liver.5 Publications

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi71 – 711S → A: Phosphomimetic mutant that leads to stabilization of the protein; when associated with A-280. 1 Publication
Mutagenesisi71 – 711S → D: Phosphomimetic mutant that leads to destabilization of the protein and abolishes ability to bind PER2; when associated with D-280. 1 Publication
Mutagenesisi107 – 1071K → R: Sensitive to FBXL3-ediated degradation but noz affected by expression of FBXL21. 1 Publication
Mutagenesisi224 – 2241H → E: Reduces affinity for FBXL3. 1 Publication
Mutagenesisi247 – 2471S → A: Reduced MAPK-catalyzed in vitro phosphorylation. No effect on inhibition of CLOCK-ARNTL/BMAL1-mediated transcriptional activity. 2 Publications
Mutagenesisi247 – 2471S → D: Reduced inhibition of CLOCK-ARNTL/BMAL1-mediated transcriptional activity. 2 Publications
Mutagenesisi280 – 2801S → A: Phosphomimetic mutant that leads to stabilization of the protein; when associated with A-71. 1 Publication
Mutagenesisi280 – 2801S → D: Phosphomimetic mutant that leads to destabilization of the protein and abolishes ability to bind PER2; when associated with D-71. 1 Publication
Mutagenesisi336 – 3361G → D: Abolishes transcriptional repression of target genes. Abolishes interaction with PER2.
Mutagenesisi382 – 3832EE → RR: Decreases transcriptional repression of target genes. Decreases FBXL3 binding. Increases PER2 binding. 1 Publication
Mutagenesisi405 – 4051F → A: Decreases affinity for FBXL3. Slightly increases affinity for PER2. 1 Publication
Mutagenesisi485 – 4851K → D or E: Strongly reduces FBXL3 binding. Reduces PER2 binding. 1 Publication
Mutagenesisi551 – 5511S → A: No effect on circadian period length and protein stability. 1 Publication
Mutagenesisi551 – 5511S → D: No effect on circadian period length and protein stability. 1 Publication
Mutagenesisi564 – 5641S → A: No effect on circadian period length and protein stability. 1 Publication
Mutagenesisi564 – 5641S → D: No effect on circadian period length and protein stability. 1 Publication
Mutagenesisi588 – 5881S → A: No effect on circadian period length and protein stability. 1 Publication
Mutagenesisi588 – 5881S → D: Lengthen circadian period. No effect on repressive activity. Increases protein stability. 1 Publication

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Chaini1 – 606606Cryptochrome-1PRO_0000261142Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Cross-linki11 – 11Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)1 Publication
Modified residuei71 – 711Phosphoserine; by AMPK1 Publication
Cross-linki107 – 107Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)1 Publication
Cross-linki159 – 159Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)1 Publication
Modified residuei247 – 2471Phosphoserine; by MAPK1 Publication
Modified residuei280 – 2801Phosphoserine; by AMPK1 Publication
Cross-linki329 – 329Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)1 Publication
Cross-linki485 – 485Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)1 Publication
Modified residuei588 – 5881Phosphoserine1 Publication

Post-translational modificationi

Phosphorylation on Ser-247 by MAPK is important for the inhibition of CLOCK-ARNTL/BMAL1-mediated transcriptional activity. Phosphorylation by CSNK1E requires interaction with PER1 or PER2. Phosphorylation at Ser-71 and Ser-280 by AMPK decreases protein stability. Phosphorylation at Ser-588 exhibits a robust circadian rhythm with a peak at CT8, increases protein stability, prevents SCF(FBXL3)-mediated degradation and is antagonized by interaction with PRKDC.4 Publications
Ubiquitinated by the SCF(FBXL3) and SCF(FBXL21) complexes, regulating the balance between degradation and stabilization. The SCF(FBXL3) complex is mainly nuclear and mediates ubiquitination and subsequent degradation of CRY1. In contrast, cytoplasmic SCF(FBXL21) complex-mediated ubiquitination leads to stabilize CRY1 and counteract the activity of the SCF(FBXL3) complex. The SCF(FBXL3) and SCF(FBXL21) complexes probably mediate ubiquitination at different Lys residues. Ubiquitination at Lys-11 and Lys-107 are specifically ubiquitinated by the SCF(FBXL21) complex but not by the SCF(FBXL3) complex. Ubiquitination may be inhibited by PER2.5 Publications

Keywords - PTMi

Isopeptide bond, Phosphoprotein, Ubl conjugation

Proteomic databases

MaxQBiP97784.
PaxDbiP97784.
PRIDEiP97784.

PTM databases

PhosphoSiteiP97784.

Expressioni

Tissue specificityi

Expressed in all tissues examined including heart, brain, spleen, lung, liver, skeletal muscle, kidney and testis. Higher levels in brain, liver and testis. In the retina, highly expressed in the ganglion cell layer (GCL) and in the inner nuclear layer (INL). Evenly distributed in central and peripheral retina. In the brain, highly expressed in the suprachiasmatic nucleus (SCN). High levels in cerebral cortical layers particularly in the pyramidial cell layer of the hippocampus, the granular cell layer of the dentate gyrus (DG) and the pyramidal cell layer of the piriform cortex (PFC).5 Publications

Inductioni

Oscillates diurnally, rhythmic expression in the early night is critical for clock function (at ptrotein level). In SCN, exhibits circadian rhythm expression with highest levels during the light phase at CT10. No detectable expression after 8 hours in the dark. Circadian oscillations also observed in liver, skeletal muscle and cerebellum, but not in testis.8 Publications

Gene expression databases

BgeeiP97784.
CleanExiMM_CRY1.
GenevestigatoriP97784.

Interactioni

Subunit structurei

Component of the circadian core oscillator, which includes the CRY proteins, CLOCK or NPAS2, ARNTL/BMAL1 or ARNTL2/BMAL2, CSNK1D and/or CSNK1E, TIMELESS, and the PER proteins. Interacts directly with TIMELESS. Interacts directly with PER1 and PER2 C-terminal domains. Interaction with PER2 inhibits its ubiquitination and vice versa. Interacts with FBXL21. Interacts with FBXL3. Interacts with PPP5C (via TPR repeats). Interacts with the CLOCK-ARNTL/BMAL1 independently of PER2 and DNA. Interacts with HDAC1, HDAC2 and SIN3B. Interacts with nuclear receptors AR, NR1D1, NR3C1/GR, RORA and RORC; the interaction with at least NR3C1/GR is ligand dependent. Interacts with PRKDC. Interacts with the G protein subunit alpha GNAS; the interaction may block GPCR-mediated regulation of cAMP concentrations. Interacts with PRMT5. Interacts with EZH2.20 Publications

Binary interactionsi

WithEntry#Exp.IntActNotes
ArntlQ9WTL812EBI-1266607,EBI-644534
ClockO087857EBI-1266607,EBI-79859
Fbxl21Q8BFZ410EBI-1266607,EBI-6898235
Fbxl3Q8C4V412EBI-1266607,EBI-1266589
Per2O5494315EBI-1266607,EBI-1266779

Protein-protein interaction databases

BioGridi198906. 19 interactions.
DIPiDIP-38515N.
IntActiP97784. 18 interactions.
MINTiMINT-4084985.
STRINGi10090.ENSMUSP00000020227.

Structurei

Secondary structure

1
606
Legend: HelixTurnBeta strand
Show more details
Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Beta strandi4 – 118Combined sources
Beta strandi15 – 173Combined sources
Helixi19 – 246Combined sources
Beta strandi25 – 273Combined sources
Beta strandi29 – 379Combined sources
Turni39 – 446Combined sources
Helixi49 – 6820Combined sources
Beta strandi73 – 786Combined sources
Helixi80 – 9112Combined sources
Beta strandi93 – 997Combined sources
Helixi104 – 11815Combined sources
Turni119 – 1213Combined sources
Beta strandi123 – 1275Combined sources
Beta strandi130 – 1334Combined sources
Helixi135 – 1417Combined sources
Helixi150 – 1589Combined sources
Helixi172 – 1754Combined sources
Turni187 – 1893Combined sources
Helixi195 – 1984Combined sources
Helixi214 – 23118Combined sources
Helixi252 – 2565Combined sources
Helixi262 – 27615Combined sources
Helixi284 – 2874Combined sources
Helixi288 – 30013Combined sources
Turni304 – 3074Combined sources
Helixi324 – 3318Combined sources
Helixi338 – 35013Combined sources
Helixi355 – 36511Combined sources
Turni366 – 3705Combined sources
Helixi374 – 38411Combined sources
Helixi390 – 40011Combined sources
Helixi417 – 4226Combined sources
Helixi427 – 4326Combined sources
Helixi434 – 4363Combined sources
Turni441 – 4433Combined sources
Helixi447 – 4493Combined sources
Helixi454 – 4585Combined sources
Turni462 – 4643Combined sources
Helixi473 – 49422Combined sources

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
EntryMethodResolution (Å)ChainPositionsPDBsum
4CT0X-ray2.45A1-496[»]
4K0RX-ray2.65A1-606[»]
ProteinModelPortaliP97784.
SMRiP97784. Positions 3-496.
ModBaseiSearch...
MobiDBiSearch...

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Domaini3 – 132130Photolyase/cryptochrome alpha/betaAdd
BLAST

Region

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Regioni371 – 470100Required for inhibition of CLOCK-ARNTL/BMAL1-mediated transcriptionAdd
BLAST
Regioni471 – 49323Interaction with TIMELESSAdd
BLAST

Sequence similaritiesi

Belongs to the DNA photolyase class-1 family.Curated

Phylogenomic databases

eggNOGiCOG0415.
GeneTreeiENSGT00500000044813.
HOGENOMiHOG000245622.
HOVERGENiHBG053470.
InParanoidiP97784.
KOiK02295.
OMAiFDTDGLP.
OrthoDBiEOG7QG43M.
PhylomeDBiP97784.
TreeFamiTF323191.

Family and domain databases

Gene3Di3.40.50.620. 1 hit.
InterProiIPR006050. DNA_photolyase_N.
IPR005101. Photolyase_FAD-bd/Cryptochr_C.
IPR014729. Rossmann-like_a/b/a_fold.
[Graphical view]
PfamiPF00875. DNA_photolyase. 1 hit.
PF03441. FAD_binding_7. 1 hit.
[Graphical view]
SUPFAMiSSF48173. SSF48173. 1 hit.
SSF52425. SSF52425. 1 hit.
PROSITEiPS51645. PHR_CRY_ALPHA_BETA. 1 hit.
[Graphical view]

Sequencei

Sequence statusi: Complete.

P97784-1 [UniParc]FASTAAdd to Basket

« Hide

        10         20         30         40         50
MGVNAVHWFR KGLRLHDNPA LKECIQGADT IRCVYILDPW FAGSSNVGIN
60 70 80 90 100
RWRFLLQCLE DLDANLRKLN SRLFVIRGQP ADVFPRLFKE WNITKLSIEY
110 120 130 140 150
DSEPFGKERD AAIKKLATEA GVEVIVRISH TLYDLDKIIE LNGGQPPLTY
160 170 180 190 200
KRFQTLVSKM EPLEMPADTI TSDVIGKCMT PLSDDHDEKY GVPSLEELGF
210 220 230 240 250
DTDGLSSAVW PGGETEALTR LERHLERKAW VANFERPRMN ANSLLASPTG
260 270 280 290 300
LSPYLRFGCL SCRLFYFKLT DLYKKVKKNS SPPLSLYGQL LWREFFYTAA
310 320 330 340 350
TNNPRFDKME GNPICVQIPW DKNPEALAKW AEGRTGFPWI DAIMTQLRQE
360 370 380 390 400
GWIHHLARHA VACFLTRGDL WISWEEGMKV FEELLLDADW SINAGSWMWL
410 420 430 440 450
SCSSFFQQFF HCYCPVGFGR RTDPNGDYIR RYLPVLRGFP AKYIYDPWNA
460 470 480 490 500
PEGIQKVAKC LIGVNYPKPM VNHAEASRLN IERMKQIYQQ LSRYRGLGLL
510 520 530 540 550
ASVPSNSNGN GGLMGYAPGE NVPSCSSSGN GGLMGYAPGE NVPSCSGGNC
560 570 580 590 600
SQGSGILHYA HGDSQQTHSL KQGRSSAGTG LSSGKRPSQE EDAQSVGPKV

QRQSSN
Length:606
Mass (Da):68,001
Last modified:May 1, 1997 - v1
Checksum:i2F2B8DD53F0A9AF9
GO

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AB000777 mRNA. Translation: BAA19175.1.
AF156986 mRNA. Translation: AAD39548.1.
AK162460 mRNA. Translation: BAE36931.1.
BC022174 mRNA. Translation: AAH22174.1.
BC085499 mRNA. Translation: AAH85499.1.
CCDSiCCDS24089.1.
RefSeqiNP_031797.1. NM_007771.3.
UniGeneiMm.26237.

Genome annotation databases

EnsembliENSMUST00000020227; ENSMUSP00000020227; ENSMUSG00000020038.
GeneIDi12952.
KEGGimmu:12952.
UCSCiuc007gle.1. mouse.

Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AB000777 mRNA. Translation: BAA19175.1 .
AF156986 mRNA. Translation: AAD39548.1 .
AK162460 mRNA. Translation: BAE36931.1 .
BC022174 mRNA. Translation: AAH22174.1 .
BC085499 mRNA. Translation: AAH85499.1 .
CCDSi CCDS24089.1.
RefSeqi NP_031797.1. NM_007771.3.
UniGenei Mm.26237.

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
Entry Method Resolution (Å) Chain Positions PDBsum
4CT0 X-ray 2.45 A 1-496 [» ]
4K0R X-ray 2.65 A 1-606 [» ]
ProteinModelPortali P97784.
SMRi P97784. Positions 3-496.
ModBasei Search...
MobiDBi Search...

Protein-protein interaction databases

BioGridi 198906. 19 interactions.
DIPi DIP-38515N.
IntActi P97784. 18 interactions.
MINTi MINT-4084985.
STRINGi 10090.ENSMUSP00000020227.

PTM databases

PhosphoSitei P97784.

Proteomic databases

MaxQBi P97784.
PaxDbi P97784.
PRIDEi P97784.

Protocols and materials databases

Structural Biology Knowledgebase Search...

Genome annotation databases

Ensembli ENSMUST00000020227 ; ENSMUSP00000020227 ; ENSMUSG00000020038 .
GeneIDi 12952.
KEGGi mmu:12952.
UCSCi uc007gle.1. mouse.

Organism-specific databases

CTDi 1407.
MGIi MGI:1270841. Cry1.

Phylogenomic databases

eggNOGi COG0415.
GeneTreei ENSGT00500000044813.
HOGENOMi HOG000245622.
HOVERGENi HBG053470.
InParanoidi P97784.
KOi K02295.
OMAi FDTDGLP.
OrthoDBi EOG7QG43M.
PhylomeDBi P97784.
TreeFami TF323191.

Enzyme and pathway databases

Reactomei REACT_198620. BMAL1:CLOCK,NPAS2 activates circadian gene expression.
REACT_241925. Circadian Clock.
REACT_24972. Circadian Clock.

Miscellaneous databases

NextBioi 282662.
PROi P97784.
SOURCEi Search...

Gene expression databases

Bgeei P97784.
CleanExi MM_CRY1.
Genevestigatori P97784.

Family and domain databases

Gene3Di 3.40.50.620. 1 hit.
InterProi IPR006050. DNA_photolyase_N.
IPR005101. Photolyase_FAD-bd/Cryptochr_C.
IPR014729. Rossmann-like_a/b/a_fold.
[Graphical view ]
Pfami PF00875. DNA_photolyase. 1 hit.
PF03441. FAD_binding_7. 1 hit.
[Graphical view ]
SUPFAMi SSF48173. SSF48173. 1 hit.
SSF52425. SSF52425. 1 hit.
PROSITEi PS51645. PHR_CRY_ALPHA_BETA. 1 hit.
[Graphical view ]
ProtoNeti Search...

Publicationsi

« Hide 'large scale' publications
  1. "Characterization of photolyase/blue-light receptor homologs in mouse and human cells."
    Kobayashi K., Kanno S., Smit B., van der Horst G.T.J., Takao M., Yasui A.
    Nucleic Acids Res. 26:5086-5092(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [MRNA], SUBCELLULAR LOCATION, TISSUE SPECIFICITY.
    Tissue: Brain, Keratinocyte and Liver.
  2. "Analysis of mouse cryptochromes."
    Kume K., Reppert S.M.
    Submitted (JUN-1999) to the EMBL/GenBank/DDBJ databases
    Cited for: NUCLEOTIDE SEQUENCE [MRNA].
    Strain: C57BL/6.
  3. "The transcriptional landscape of the mammalian genome."
    Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J.
    , Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N., Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.
    Science 309:1559-1563(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
    Strain: C57BL/6J.
    Tissue: Embryo.
  4. "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
    The MGC Project Team
    Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
    Strain: C57BL/6 and FVB/N.
    Tissue: Brain, Embryonic brain and Mammary tumor.
  5. "Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals."
    Miyamoto Y., Sancar A.
    Proc. Natl. Acad. Sci. U.S.A. 95:6097-6102(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: TISSUE SPECIFICITY, INDUCTION.
  6. "mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop."
    Kume K., Zylka M.J., Sriram S., Shearman L.P., Weaver D.R., Jin X., Maywood E.S., Hastings M.H., Reppert S.M.
    Cell 98:193-205(1999) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INTERACTION WITH PER1; PER2; PER3 AND TIMELESS, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, INDUCTION.
  7. "Circadian regulation of cryptochrome genes in the mouse."
    Miyamoto Y., Sancar A.
    Brain Res. Mol. Brain Res. 71:238-243(1999) [PubMed] [Europe PMC] [Abstract]
    Cited for: TISSUE SPECIFICITY, INDUCTION.
  8. "Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein."
    Yagita K., Tamanini F., Yasuda M., Hoeijmakers J.H., van der Horst G.T., Okamura H.
    EMBO J. 21:1301-1314(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH PER2, SUBCELLULAR LOCATION, UBIQUITINATION.
  9. "The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon."
    Eide E.J., Vielhaber E.L., Hinz W.A., Virshup D.M.
    J. Biol. Chem. 277:17248-17254(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH PER1 AND PER2, PHOSPHORYLATION, SUBCELLULAR LOCATION.
  10. "Serine phosphorylation of mCRY1 and mCRY2 by mitogen-activated protein kinase."
    Sanada K., Harada Y., Sakai M., Todo T., Fukada Y.
    Genes Cells 9:697-708(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION AT SER-247, MUTAGENESIS OF SER-247.
  11. "Direct association between mouse PERIOD and CKIepsilon is critical for a functioning circadian clock."
    Lee C., Weaver D.R., Reppert S.M.
    Mol. Cell. Biol. 24:584-594(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH PER1; PER2 AND PER3.
  12. "Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation."
    Naruse Y., Oh-hashi K., Iijima N., Naruse M., Yoshioka H., Tanaka M.
    Mol. Cell. Biol. 24:6278-6287(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION AS TRANSCRIPTION REPRESSOR, INTERACTION WITH HDAC1; HDAC2 AND SIN3B.
  13. "Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES."
    Kondratov R.V., Kondratova A.A., Lee C., Gorbacheva V.Y., Chernov M.V., Antoch M.P.
    Cell Cycle 5:890-895(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, SUBCELLULAR LOCATION.
  14. "The polycomb group protein EZH2 is required for mammalian circadian clock function."
    Etchegaray J.P., Yang X., DeBruyne J.P., Peters A.H., Weaver D.R., Jenuwein T., Reppert S.M.
    J. Biol. Chem. 281:21209-21215(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH EZH2; CLOCK AND ARNTL.
  15. "Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance."
    Chaves I., Yagita K., Barnhoorn S., Okamura H., van der Horst G.T.J., Tamanini F.
    Mol. Cell. Biol. 26:1743-1753(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INTERACTION WITH PER1 AND PER2, SUBCELLULAR LOCATION.
  16. "Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5."
    Partch C.L., Shields K.F., Thompson C.L., Selby C.P., Sancar A.
    Proc. Natl. Acad. Sci. U.S.A. 103:10467-10472(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: TISSUE SPECIFICITY, INDUCTION.
  17. "Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression."
    Siepka S.M., Yoo S.H., Park J., Song W., Kumar V., Hu Y., Lee C., Takahashi J.S.
    Cell 129:1011-1023(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH FBXL3, UBIQUITINATION.
  18. "CIPC is a mammalian circadian clock protein without invertebrate homologues."
    Zhao W.N., Malinin N., Yang F.C., Staknis D., Gekakis N., Maier B., Reischl S., Kramer A., Weitz C.J.
    Nat. Cell Biol. 9:268-275(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  19. "Implication of the F-Box Protein FBXL21 in circadian pacemaker function in mammals."
    Dardente H., Mendoza J., Fustin J.M., Challet E., Hazlerigg D.G.
    PLoS ONE 3:E3530-E3530(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH FBXL21, UBIQUITINATION.
  20. "Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism."
    Chen R., Schirmer A., Lee Y., Lee H., Kumar V., Yoo S.H., Takahashi J.S., Lee C.
    Mol. Cell 36:417-430(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH ARNTL AND CLOCK, INDUCTION.
  21. Cited for: PHOSPHORYLATION AT SER-71 AND SER-280, MUTAGENESIS OF SER-71 AND SER-280.
  22. Cited for: FUNCTION.
  23. "The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors."
    Schmutz I., Ripperger J.A., Baeriswyl-Aebischer S., Albrecht U.
    Genes Dev. 24:345-357(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH PER2.
  24. Cited for: FUNCTION, INDUCTION.
  25. "Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis."
    Zhang E.E., Liu Y., Dentin R., Pongsawakul P.Y., Liu A.C., Hirota T., Nusinow D.A., Sun X., Landais S., Kodama Y., Brenner D.A., Montminy M., Kay S.A.
    Nat. Med. 16:1152-1156(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN GLUCONEOGENESIS, DISRUPTION PHENOTYPE.
  26. "Delay in feedback repression by cryptochrome 1 is required for circadian clock function."
    Ukai-Tadenuma M., Yamada R.G., Xu H., Ripperger J.A., Liu A.C., Ueda H.R.
    Cell 144:268-281(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN CIRCADIAN RHYTHMS REGULATION, INDUCTION.
  27. "Biochemical analysis of the canonical model for the mammalian circadian clock."
    Ye R., Selby C.P., Ozturk N., Annayev Y., Sancar A.
    J. Biol. Chem. 286:25891-25902(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH ARNTL; CLOCK AND PER2.
  28. "cAMP-response element (CRE)-mediated transcription by activating transcription factor-4 (ATF4) is essential for circadian expression of the Period2 gene."
    Koyanagi S., Hamdan A.M., Horiguchi M., Kusunose N., Okamoto A., Matsunaga N., Ohdo S.
    J. Biol. Chem. 286:32416-32423(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  29. "Cryptochromes mediate rhythmic repression of the glucocorticoid receptor."
    Lamia K.A., Papp S.J., Yu R.T., Barish G.D., Uhlenhaut N.H., Jonker J.W., Downes M., Evans R.M.
    Nature 480:552-556(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION AS NR3C1 REPRESSOR, INTERACTION WITH AR; NR1D1; NR3C1; RORA AND RORC, DISRUPTION PHENOTYPE.
  30. "Role of type II protein arginine methyltransferase 5 in the regulation of Circadian Per1 gene."
    Na J., Lee K., Kim H.G., Shin J.Y., Na W., Jeong H., Lee J.W., Cho S., Kim W.S., Ju B.G.
    PLoS ONE 7:E48152-E48152(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INDUCTION, INTERACTION WITH PRMT5.
  31. "High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice."
    Barclay J.L., Shostak A., Leliavski A., Tsang A.H., Johren O., Muller-Fielitz H., Landgraf D., Naujokat N., van der Horst G.T., Oster H.
    Am. J. Physiol. 304:E1053-E1063(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN METABOLISM, DISRUPTION PHENOTYPE.
  32. "Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm."
    Yoo S.H., Mohawk J.A., Siepka S.M., Shan Y., Huh S.K., Hong H.K., Kornblum I., Kumar V., Koike N., Xu M., Nussbaum J., Liu X., Chen Z., Chen Z.J., Green C.B., Takahashi J.S.
    Cell 152:1091-1105(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: UBIQUITINATION BY THE SCF(FBXL3) AND SCF(FBXL21) COMPLEXES, INTERACTION WITH FBXL3 AND FBXL21, UBIQUITINATION AT LYS-11.
  33. "FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes."
    Hirano A., Yumimoto K., Tsunematsu R., Matsumoto M., Oyama M., Kozuka-Hata H., Nakagawa T., Lanjakornsiripan D., Nakayama K.I., Fukada Y.
    Cell 152:1106-1118(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: UBIQUITINATION BY THE SCF(FBXL3) AND SCF(FBXL21) COMPLEXES, UBIQUITINATION AT LYS-107; LYS-159; LYS-329 AND LYS-485, INTERACTION WITH FBXL3 AND FBXL21, MUTAGENESIS OF LYS-107.
  34. "Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length."
    Gao P., Yoo S.H., Lee K.J., Rosensweig C., Takahashi J.S., Chen B.P., Green C.B.
    J. Biol. Chem. 288:35277-35286(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN CIRCADIAN CLOCK, INTERACTION WITH PRKDC, PHOSPHORYLATION AT SER-588, MUTAGENESIS OF SER-551; SER-564 AND SER-588.
  35. "Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation."
    Anand S.N., Maywood E.S., Chesham J.E., Joynson G., Banks G.T., Hastings M.H., Nolan P.M.
    J. Neurosci. 33:7145-7153(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN CIRCADIAN CLOCK, DISRUPTION PHENOTYPE.
  36. "Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus."
    Ono D., Honma S., Honma K.
    Nat. Commun. 4:1666-1666(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN CIRCADIAN CLOCK.
  37. "Metastasis-associated protein 1 is an integral component of the circadian molecular machinery."
    Li D.Q., Pakala S.B., Reddy S.D., Peng S., Balasenthil S., Deng C.X., Lee C.C., Rea M.A., Kumar R.
    Nat. Commun. 4:2545-2545(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  38. "Mammalian TIMELESS is involved in period determination and DNA damage-dependent phase advancing of the circadian clock."
    Engelen E., Janssens R.C., Yagita K., Smits V.A., van der Horst G.T., Tamanini F.
    PLoS ONE 8:E56623-E56623(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH TIMELESS AND PER2, SUBCELLULAR LOCATION.
  39. "Metabolism and the circadian clock converge."
    Eckel-Mahan K., Sassone-Corsi P.
    Physiol. Rev. 93:107-135(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  40. "Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression."
    Annayev Y., Adar S., Chiou Y.Y., Lieb J., Sancar A., Ye R.
    J. Biol. Chem. 289:5013-5024(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  41. "Modulation of glucocorticoid receptor induction properties by core circadian clock proteins."
    Han D.H., Lee Y.J., Kim K., Kim C.J., Cho S.
    Mol. Cell. Endocrinol. 383:170-180(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN GR REPRESSION.
  42. "Modulation of ATR-mediated DNA damage checkpoint response by cryptochrome 1."
    Kang T.H., Leem S.H.
    Nucleic Acids Res. 42:4427-4434(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN DNA DAMAGE CHECKPOINT, INTERACTION WITH TIMELESS, SUBCELLULAR LOCATION.
  43. "Molecular architecture of the mammalian circadian clock."
    Partch C.L., Green C.B., Takahashi J.S.
    Trends Cell Biol. 24:90-99(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  44. "Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function."
    Czarna A., Berndt A., Singh H.R., Grudziecki A., Ladurner A.G., Timinszky G., Kramer A., Wolf E.
    Cell 153:1394-1405(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.65 ANGSTROMS) OF APOPROTEIN, INTERACTION WITH ARNTL; PER2 AND FBXL3, FUNCTION, MUTAGENESIS OF HIS-224; SER-247; 382-GLU-GLU-383; PHE-405 AND LYS-485.

Entry informationi

Entry nameiCRY1_MOUSE
AccessioniPrimary (citable) accession number: P97784
Entry historyi
Integrated into UniProtKB/Swiss-Prot: November 28, 2006
Last sequence update: May 1, 1997
Last modified: November 26, 2014
This is version 120 of the entry and version 1 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Miscellaneousi

Keywords - Technical termi

3D-structure, Complete proteome, Reference proteome

Documents

  1. MGD cross-references
    Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot
  2. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  3. SIMILARITY comments
    Index of protein domains and families

External Data

Dasty 3