Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

P63141

- KCNA2_MOUSE

UniProt

P63141 - KCNA2_MOUSE

(max 400 entries)x

Your basket is currently empty.

Select item(s) and click on "Add to basket" to create your own collection here
(400 entries max)

Protein

Potassium voltage-gated channel subfamily A member 2

Gene

Kcna2

Organism
Mus musculus (Mouse)
Status
Reviewed - Annotation score: 5 out of 5- Experimental evidence at protein leveli

Functioni

Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the cardiovascular system. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient (PubMed:12527813, PubMed:21233214). Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, KCNA6, KCNA7, and possibly other family members as well; channel properties depend on the type of alpha subunits that are part of the channel (PubMed:20696761). Channel properties are modulated by cytoplasmic beta subunits that regulate the subcellular location of the alpha subunits and promote rapid inactivation of delayed rectifier potassium channels (By similarity). In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Homotetrameric KCNA2 forms a delayed-rectifier potassium channel that opens in response to membrane depolarization, followed by slow spontaneous channel closure (PubMed:23864368). In contrast, a heteromultimer formed by KCNA2 and KCNA4 shows rapid inactivation (PubMed:23864368). Contributes to the regulation of action potentials in neurons (PubMed:12527813, PubMed:17925011). Response to toxins that are selective for KCNA1, respectively for KCNA2, suggests that heteromeric potassium channels composed of both KCNA1 and KCNA2 play a role in pacemaking and regulate the output of deep cerebellar nuclear neurons (By similarity). Response to toxins that are selective for KCNA2-containing potassium channels suggests that in Purkinje cells, dendritic subthreshold KCNA2-containing potassium channels prevent random spontaneous calcium spikes, suppressing dendritic hyperexcitability without hindering the generation of somatic action potentials, and thereby play an important role in motor coordination (By similarity). KCNA2-containing channels play a role in GABAergic transmission from basket cells to Purkinje cells in the cerebellum, and thereby play an import role in motor coordination (PubMed:20696761). Plays a role in the induction of long-term potentiation of neuron excitability in the CA3 layer of the hippocampus (PubMed:23981714). May function as down-stream effector for G protein-coupled receptors and inhibit GABAergic inputs to basolateral amygdala neurons (By similarity). May contribute to the regulation of neurotransmitter release, such as gamma-aminobutyric acid (GABA) (By similarity). Contributes to the regulation of the axonal release of the neurotransmitter dopamine (PubMed:21233214). Reduced KCNA2 expression plays a role in the perception of neuropathic pain after peripheral nerve injury, but not acute pain (By similarity). Plays a role in the regulation of the time spent in non-rapid eye movement (NREM) sleep (PubMed:17925011).7 PublicationsCurated

Enzyme regulationi

Inhibited by 4-aminopyridine (4-AP), dendrotoxin (DTX) and charybdotoxin (CTX), but not by tetraethylammonium (TEA) (By similarity). Inhibited by tityustoxin-K alpha (TsTX-Kalpha), a toxin that is highly specific for KCNA2 (By similarity). Inhibited by maurotoxin (PubMed:12527813). Inhibited by kappaM conotoxins kappaM-RIIIJ and kappaM-RIIIK (By similarity).By similarity1 Publication

Sites

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sitei252 – 2521Important for normal, slow channel gatingBy similarity

GO - Molecular functioni

  1. delayed rectifier potassium channel activity Source: RefGenome
  2. outward rectifier potassium channel activity Source: Ensembl

GO - Biological processi

  1. optic nerve structural organization Source: MGI
  2. protein homooligomerization Source: InterPro
Complete GO annotation...

Keywords - Molecular functioni

Ion channel, Potassium channel, Voltage-gated channel

Keywords - Biological processi

Ion transport, Potassium transport, Transport

Keywords - Ligandi

Potassium

Enzyme and pathway databases

ReactomeiREACT_199077. Voltage gated Potassium channels.

Names & Taxonomyi

Protein namesi
Recommended name:
Potassium voltage-gated channel subfamily A member 2
Alternative name(s):
MK21 Publication
Voltage-gated potassium channel subunit Kv1.2
Gene namesi
Name:Kcna2
OrganismiMus musculus (Mouse)
Taxonomic identifieri10090 [NCBI]
Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus
ProteomesiUP000000589: Chromosome 3

Organism-specific databases

MGIiMGI:96659. Kcna2.

Subcellular locationi

Cell membrane 5 Publications; Multi-pass membrane protein By similarity. Membrane 3 Publications. Cell projectionaxon 4 Publications. Cell junctionsynapse By similarity. Endoplasmic reticulum membrane By similarity. Cell projectionlamellipodium membrane By similarity. Cell junctionsynapsesynaptosome 1 Publication. Cell junctionsynapsepresynaptic cell membrane 1 Publication. Cell projectiondendrite 1 Publication. Perikaryon 1 Publication
Note: KCNA2 by itself is detected both at the endoplasmic reticulum and at the cell membrane. Coexpression with KCNA4 or with beta subunits promotes expression at the cell membrane. Coexpression with KCNA1 inhibits cell surface expression (By similarity). Cocaine-induced interaction with SIGMAR1 increases expression at the cell surface (PubMed:23332758).By similarity1 Publication

Topology

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Topological domaini1 – 160160CytoplasmicBy similarityAdd
BLAST
Transmembranei161 – 18222Helical; Name=Segment S1By similarityAdd
BLAST
Topological domaini183 – 22139ExtracellularBy similarityAdd
BLAST
Transmembranei222 – 24322Helical; Name=Segment S2By similarityAdd
BLAST
Topological domaini244 – 25411CytoplasmicBy similarityAdd
BLAST
Transmembranei255 – 27521Helical; Name=Segment S3By similarityAdd
BLAST
Topological domaini276 – 28914ExtracellularBy similarityAdd
BLAST
Transmembranei290 – 31021Helical; Voltage-sensor; Name=Segment S4By similarityAdd
BLAST
Topological domaini311 – 32515CytoplasmicBy similarityAdd
BLAST
Transmembranei326 – 34722Helical; Name=Segment S5By similarityAdd
BLAST
Topological domaini348 – 36114ExtracellularBy similarityAdd
BLAST
Intramembranei362 – 37312Helical; Name=Pore helixBy similarityAdd
BLAST
Intramembranei374 – 3818By similarity
Topological domaini382 – 3887ExtracellularBy similarity
Transmembranei389 – 41729Helical; Name=Segment S6By similarityAdd
BLAST
Topological domaini418 – 49982CytoplasmicBy similarityAdd
BLAST

GO - Cellular componenti

  1. juxtaparanode region of axon Source: BHF-UCL
  2. voltage-gated potassium channel complex Source: BHF-UCL
Complete GO annotation...

Keywords - Cellular componenti

Cell junction, Cell membrane, Cell projection, Endoplasmic reticulum, Membrane, Synapse, Synaptosome

Pathology & Biotechi

Disruption phenotypei

Pups are born at the expected Mendelian rate and appear normal during the first 14 days after birth. Starting at 14 to 17 days after birth, mice exhibit susceptibility to generalized seizures, followed by full tonic extension, which in mice often results in fatal apne. The average lifespan is 17 days; none survive more than 28 days (PubMed:17925011, PubMed:17634333). At P17 seizures are very rare and abnormal electroencephalograph activity is only present during the seizure. P17 pups have significantly less non-rapid eye movement (NREM) sleep (-23%) and significantly more waking (+21%) than wild-type siblings with no change in rapid eye movement (REM) sleep time. The decrease in NREM sleep is due to an increase in the number of waking episodes, with no change in number or duration of sleep episodes (PubMed:17925011). Auditory neurons from the medial nucleus of the trapezoid body in brain stem are hypoexcitable and fire fewer action potentials than wild-type neurons with significantly smaller threshold current amplitudes (PubMed:17634333). In the inner ear, spiral ganglion neurons display a hyperpolarized resting membrane potential, increased excitability and increased outward potassium currents; this might be because normally channels there are heterotetramers formed by KCNA2 and KCNA4, so the loss of KCNA2 changes channel characteristics (PubMed:23864368).3 Publications

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi402 – 4021I → T in Pgu; chronic motor incoordination; decreases the number of functional channels at the cell surface. 1 Publication

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Chaini1 – 499499Potassium voltage-gated channel subfamily A member 2PRO_0000053973Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Glycosylationi207 – 2071N-linked (GlcNAc...)Sequence Analysis
Lipidationi244 – 2441S-palmitoyl cysteineSequence Analysis
Modified residuei429 – 4291Phosphotyrosine1 Publication
Modified residuei440 – 4401PhosphoserineBy similarity
Modified residuei441 – 4411PhosphoserineBy similarity
Modified residuei449 – 4491PhosphoserineBy similarity
Modified residuei458 – 4581PhosphotyrosineBy similarity

Post-translational modificationi

Phosphorylated on tyrosine residues; phosphorylation increases in response to ischemia (By similarity). Phosphorylated on tyrosine residues by activated PTK2B/PYK2 (By similarity). Phosphorylation on tyrosine residues suppresses ion channel activity (By similarity). Phosphorylated on tyrosine residues in response to CHRM1 activation; this abolishes interaction with CTTN. This is probably due to endocytosis of the phosphorylated channnel subunits (By similarity). Phosphorylated on serine residues in response to increased cAMP levels; phosphorylation is apparently not catalyzed by PKA (By similarity).By similarity
N-glycosylated, with complex, sialylated N-glycans.By similarity

Keywords - PTMi

Glycoprotein, Lipoprotein, Palmitate, Phosphoprotein

Proteomic databases

PaxDbiP63141.
PRIDEiP63141.

Expressioni

Tissue specificityi

Detected in brain (PubMed:17634333). Detected in cerebellum (PubMed:20696761). Detected in mitral cells in the olfactory bulb (PubMed:8046438). Detected in cochlea (PubMed:23864368). Detected in cerebellum, particularly in the basket cell axon plexus and in the terminal regions around Purkinje cells (PubMed:8361541, PubMed:8046438, PubMed:18760366). Detected in juxtaparanodal regions in sciatic nerve (PubMed:22649228). Detected in Schwann cells from sciatic nerve (PubMed:9852577). Detected in dopamine neurons in substantia nigra (PubMed:21233214). Detected in large myelinated fibers in juxtaparanodes in the CA3 and CA1 areas of the hippocampus (PubMed:8046438, PubMed:18760366). Detected in brain, in punctae on fiber tracts in brain stem and spinal cord, and on axons in the juxtaparanodal regions of the node of Ranvier (at protein level) (PubMed:8361541). Detected in dopamine neurons in the midbrain (PubMed:21233214).8 Publications

Developmental stagei

Detected at low levels in brainstem from neonates; increases tenfold during the first 29 days after birth.1 Publication

Gene expression databases

BgeeiP63141.
ExpressionAtlasiP63141. baseline and differential.
GenevestigatoriP63141.

Interactioni

Subunit structurei

Homotetramer and heterotetramer with other channel-forming alpha subunits, such as KCNA1, KCNA4, KCNA5, KCNA6 and KCNA7 (PubMed:8361541, PubMed:9852577, PubMed:23864368). Channel activity is regulated by interaction with beta subunits, including KCNAB1 and KCNAB2 (By similarity). Identified in a complex with KCNA1 and KCNAB2 (By similarity). Identified in a complex with KCNA5 and KCNAB1 (By similarity). Identified in a complex with KCNA4 and FYN (By similarity). Interacts with PTK2B (By similarity). Interacts (via C-terminus) with CTTN (By similarity). Interacts with ADAM22 (By similarity). Interacts with CNTNAP2 (By similarity). Interacts (via C-terminus) with the PDZ domains of DLG1, DLG2 and DLG4 (By similarity). Interacts (via N-terminal cytoplasmic domain) with RHOA (GTP-bound form); this regulates channel activity by reducing location at the cell surface in response to CHRM1 activation (PubMed:9635436). Interacts with DRD2 (PubMed:21233214). Interacts with SIGMAR1; cocaine consumption leads to increased interaction (PubMed:23332758).By similarity6 PublicationsCurated

Binary interactionsi

WithEntry#Exp.IntActNotes
Sigmar1O552423EBI-644033,EBI-1557700
Sigmar1Q9R0C93EBI-644033,EBI-1557826From a different organism.

Protein-protein interaction databases

BioGridi200877. 3 interactions.
DIPiDIP-32239N.
IntActiP63141. 5 interactions.
MINTiMINT-1659109.

Structurei

3D structure databases

ProteinModelPortaliP63141.
SMRiP63141. Positions 3-421.
ModBaseiSearch...
MobiDBiSearch...

Family & Domainsi

Region

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Regioni1 – 125125Tetramerization domainBy similarityAdd
BLAST
Regioni312 – 32514S4-S5 linkerBy similarityAdd
BLAST

Motif

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Motifi374 – 3796Selectivity filterBy similarity
Motifi497 – 4993PDZ-bindingBy similarity

Domaini

The cytoplasmic N-terminus is important for tetramerization. Interactions between the different subunits modulate the gating characteristics (By similarity). Besides, the cytoplasmic N-terminal domain mediates interaction with RHOA and thus is required for RHOA-mediated endocytosis (By similarity).By similarity
The transmembrane segment S4 functions as voltage-sensor and is characterized by a series of positively charged amino acids at every third position. Channel opening and closing is effected by a conformation change that affects the position and orientation of the voltage-sensor paddle formed by S3 and S4 within the membrane. A transmembrane electric field that is positive inside would push the positively charged S4 segment outwards, thereby opening the pore, while a field that is negative inside would pull the S4 segment inwards and close the pore. Changes in the position and orientation of S4 are then transmitted to the activation gate formed by the inner helix bundle via the S4-S5 linker region.By similarity

Sequence similaritiesi

Keywords - Domaini

Transmembrane, Transmembrane helix

Phylogenomic databases

eggNOGiCOG1226.
GeneTreeiENSGT00760000118846.
HOGENOMiHOG000231015.
HOVERGENiHBG052230.
InParanoidiP63141.
KOiK04875.
OMAiMTFHTYS.
OrthoDBiEOG7M0NRD.
PhylomeDBiP63141.
TreeFamiTF313103.

Family and domain databases

Gene3Di1.20.120.350. 1 hit.
InterProiIPR000210. BTB/POZ-like.
IPR011333. BTB/POZ_fold.
IPR027359. Channel_four-helix_dom.
IPR005821. Ion_trans_dom.
IPR003091. K_chnl.
IPR003968. K_chnl_volt-dep_Kv.
IPR003972. K_chnl_volt-dep_Kv1.
IPR004049. K_chnl_volt-dep_Kv1.2.
IPR003131. T1-type_BTB.
IPR028325. VG_K_chnl.
[Graphical view]
PANTHERiPTHR11537. PTHR11537. 1 hit.
PfamiPF02214. BTB_2. 1 hit.
PF00520. Ion_trans. 1 hit.
[Graphical view]
PRINTSiPR00169. KCHANNEL.
PR01509. KV12CHANNEL.
PR01491. KVCHANNEL.
PR01496. SHAKERCHANEL.
SMARTiSM00225. BTB. 1 hit.
[Graphical view]
SUPFAMiSSF54695. SSF54695. 1 hit.

Sequencei

Sequence statusi: Complete.

P63141-1 [UniParc]FASTAAdd to Basket

« Hide

        10         20         30         40         50
MTVATGDPVD EAAALPGHPQ DTYDPEADHE CCERVVINIS GLRFETQLKT
60 70 80 90 100
LAQFPETLLG DPKKRMRYFD PLRNEYFFDR NRPSFDAILY YYQSGGRLRR
110 120 130 140 150
PVNVPLDIFS EEIRFYELGE EAMEMFREDE GYIKEEERPL PENEFQRQVW
160 170 180 190 200
LLFEYPESSG PARIIAIVSV MVILISIVSF CLETLPIFRD ENEDMHGGGV
210 220 230 240 250
TFHTYSNSTI GYQQSTSFTD PFFIVETLCI IWFSFEFLVR FFACPSKAGF
260 270 280 290 300
FTNIMNIIDI VAIIPYFITL GTELAEKPED AQQGQQAMSL AILRVIRLVR
310 320 330 340 350
VFRIFKLSRH SKGLQILGQT LKASMRELGL LIFFLFIGVI LFSSAVYFAE
360 370 380 390 400
ADERDSQFPS IPDAFWWAVV SMTTVGYGDM VPTTIGGKIV GSLCAIAGVL
410 420 430 440 450
TIALPVPVIV SNFNYFYHRE TEGEEQAQYL QVTSCPKIPS SPDLKKSRSA
460 470 480 490
STISKSDYME IQEGVNNSNE DFREENLKTA NCTLANTNYV NITKMLTDV
Length:499
Mass (Da):56,701
Last modified:September 13, 2004 - v1
Checksum:iA8FEA6F3F59AF42A
GO

Experimental Info

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sequence conflicti33 – 331E → G in BAC31877. (PubMed:16141072)Curated

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
M30440 Genomic DNA. Translation: AAA39713.1.
AK044342 mRNA. Translation: BAC31877.1.
CH466607 Genomic DNA. Translation: EDL01892.1.
BC138650 mRNA. Translation: AAI38651.1.
BC138651 mRNA. Translation: AAI38652.1.
CCDSiCCDS17733.1.
PIRiB40090. I84204.
RefSeqiNP_032443.3. NM_008417.5.
XP_006501111.1. XM_006501048.1.
XP_006501112.1. XM_006501049.1.
XP_006501113.1. XM_006501050.1.
XP_006501114.1. XM_006501051.1.
XP_006501115.1. XM_006501052.1.
XP_006501116.1. XM_006501053.1.
XP_006501117.1. XM_006501054.1.
XP_006501118.1. XM_006501055.1.
UniGeneiMm.39285.

Genome annotation databases

EnsembliENSMUST00000038695; ENSMUSP00000041702; ENSMUSG00000040724.
GeneIDi16490.
KEGGimmu:16490.
UCSCiuc008qws.2. mouse.

Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
M30440 Genomic DNA. Translation: AAA39713.1 .
AK044342 mRNA. Translation: BAC31877.1 .
CH466607 Genomic DNA. Translation: EDL01892.1 .
BC138650 mRNA. Translation: AAI38651.1 .
BC138651 mRNA. Translation: AAI38652.1 .
CCDSi CCDS17733.1.
PIRi B40090. I84204.
RefSeqi NP_032443.3. NM_008417.5.
XP_006501111.1. XM_006501048.1.
XP_006501112.1. XM_006501049.1.
XP_006501113.1. XM_006501050.1.
XP_006501114.1. XM_006501051.1.
XP_006501115.1. XM_006501052.1.
XP_006501116.1. XM_006501053.1.
XP_006501117.1. XM_006501054.1.
XP_006501118.1. XM_006501055.1.
UniGenei Mm.39285.

3D structure databases

ProteinModelPortali P63141.
SMRi P63141. Positions 3-421.
ModBasei Search...
MobiDBi Search...

Protein-protein interaction databases

BioGridi 200877. 3 interactions.
DIPi DIP-32239N.
IntActi P63141. 5 interactions.
MINTi MINT-1659109.

Proteomic databases

PaxDbi P63141.
PRIDEi P63141.

Protocols and materials databases

Structural Biology Knowledgebase Search...

Genome annotation databases

Ensembli ENSMUST00000038695 ; ENSMUSP00000041702 ; ENSMUSG00000040724 .
GeneIDi 16490.
KEGGi mmu:16490.
UCSCi uc008qws.2. mouse.

Organism-specific databases

CTDi 3737.
MGIi MGI:96659. Kcna2.

Phylogenomic databases

eggNOGi COG1226.
GeneTreei ENSGT00760000118846.
HOGENOMi HOG000231015.
HOVERGENi HBG052230.
InParanoidi P63141.
KOi K04875.
OMAi MTFHTYS.
OrthoDBi EOG7M0NRD.
PhylomeDBi P63141.
TreeFami TF313103.

Enzyme and pathway databases

Reactomei REACT_199077. Voltage gated Potassium channels.

Miscellaneous databases

ChiTaRSi Kcna2. mouse.
NextBioi 289787.
PROi P63141.
SOURCEi Search...

Gene expression databases

Bgeei P63141.
ExpressionAtlasi P63141. baseline and differential.
Genevestigatori P63141.

Family and domain databases

Gene3Di 1.20.120.350. 1 hit.
InterProi IPR000210. BTB/POZ-like.
IPR011333. BTB/POZ_fold.
IPR027359. Channel_four-helix_dom.
IPR005821. Ion_trans_dom.
IPR003091. K_chnl.
IPR003968. K_chnl_volt-dep_Kv.
IPR003972. K_chnl_volt-dep_Kv1.
IPR004049. K_chnl_volt-dep_Kv1.2.
IPR003131. T1-type_BTB.
IPR028325. VG_K_chnl.
[Graphical view ]
PANTHERi PTHR11537. PTHR11537. 1 hit.
Pfami PF02214. BTB_2. 1 hit.
PF00520. Ion_trans. 1 hit.
[Graphical view ]
PRINTSi PR00169. KCHANNEL.
PR01509. KV12CHANNEL.
PR01491. KVCHANNEL.
PR01496. SHAKERCHANEL.
SMARTi SM00225. BTB. 1 hit.
[Graphical view ]
SUPFAMi SSF54695. SSF54695. 1 hit.
ProtoNeti Search...

Publicationsi

« Hide 'large scale' publications
  1. "A family of three mouse potassium channel genes with intronless coding regions."
    Chandy K.G., Williams C.B., Spencer R.H., Aguilar B.A., Ghanshani S., Tempel B.L., Gutman G.A.
    Science 247:973-975(1990) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
  2. "The transcriptional landscape of the mammalian genome."
    Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J.
    , Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N., Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.
    Science 309:1559-1563(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
    Strain: C57BL/6J.
    Tissue: Retina.
  3. Mural R.J., Adams M.D., Myers E.W., Smith H.O., Venter J.C.
    Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
  4. "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
    The MGC Project Team
    Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
    Tissue: BrainImported.
  5. "Expression of voltage-gated K+ channels in insulin-producing cells. Analysis by polymerase chain reaction."
    Betsholtz C., Baumann A., Kenna S., Ashcroft F.M., Ashcroft S.J.H., Berggren P.-O., Grupe A., Pongs O., Rorsman P., Sandblom J., Welsh M.
    FEBS Lett. 263:121-126(1990) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 338-394.
  6. "Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons."
    Wang H., Kunkel D.D., Martin T.M., Schwartzkroin P.A., Tempel B.L.
    Nature 365:75-79(1993) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBUNIT, INTERACTION WITH KCNA1, TISSUE SPECIFICITY, SUBCELLULAR LOCATION.
  7. "Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain."
    Wang H., Kunkel D.D., Schwartzkroin P.A., Tempel B.L.
    J. Neurosci. 14:4588-4599(1994) [PubMed] [Europe PMC] [Abstract]
    Cited for: TISSUE SPECIFICITY, SUBCELLULAR LOCATION.
  8. "The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel."
    Cachero T.G., Morielli A.D., Peralta E.G.
    Cell 93:1077-1085(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INTERACTION WITH RHOA.
  9. "Heteromultimeric delayed-rectifier K+ channels in Schwann cells: developmental expression and role in cell proliferation."
    Sobko A., Peretz A., Shirihai O., Etkin S., Cherepanova V., Dagan D., Attali B.
    J. Neurosci. 18:10398-10408(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH KCNA5, SUBCELLULAR LOCATION, TISSUE SPECIFICITY.
  10. "Maurotoxin: a potent inhibitor of intermediate conductance Ca2+-activated potassium channels."
    Castle N.A., London D.O., Creech C., Fajloun Z., Stocker J.W., Sabatier J.-M.
    Mol. Pharmacol. 63:409-418(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, SUBCELLULAR LOCATION, ENZYME REGULATION.
  11. Cited for: DISRUPTION PHENOTYPE, FUNCTION.
  12. "Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons."
    Brew H.M., Gittelman J.X., Silverstein R.S., Hanks T.D., Demas V.P., Robinson L.C., Robbins C.A., McKee-Johnson J., Chiu S.Y., Messing A., Tempel B.L.
    J. Neurophysiol. 98:1501-1525(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: DISRUPTION PHENOTYPE, FUNCTION, DEVELOPMENTAL STAGE, TISSUE SPECIFICITY.
  13. "Postsynaptic density-93 clusters Kv1 channels at axon initial segments independently of Caspr2."
    Ogawa Y., Horresh I., Trimmer J.S., Bredt D.S., Peles E., Rasband M.N.
    J. Neurosci. 28:5731-5739(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION.
  14. "Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain."
    Ballif B.A., Carey G.R., Sunyaev S.R., Gygi S.P.
    J. Proteome Res. 7:311-318(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-429, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
    Tissue: Brain.
  15. "Impairment of learning and memory in TAG-1 deficient mice associated with shorter CNS internodes and disrupted juxtaparanodes."
    Savvaki M., Panagiotaropoulos T., Stamatakis A., Sargiannidou I., Karatzioula P., Watanabe K., Stylianopoulou F., Karagogeos D., Kleopa K.A.
    Mol. Cell. Neurosci. 39:478-490(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: TISSUE SPECIFICITY.
  16. Cited for: FUNCTION, MUTAGENESIS OF ILE-402, SUBCELLULAR LOCATION, MISCELLANEOUS, TISSUE SPECIFICITY.
  17. "Contribution of Kv1.2 voltage-gated potassium channel to D2 autoreceptor regulation of axonal dopamine overflow."
    Fulton S., Thibault D., Mendez J.A., Lahaie N., Tirotta E., Borrelli E., Bouvier M., Tempel B.L., Trudeau L.E.
    J. Biol. Chem. 286:9360-9372(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, TISSUE SPECIFICITY, SUBCELLULAR LOCATION, INTERACTION WITH DRD2.
  18. "Altered distribution of juxtaparanodal kv1.2 subunits mediates peripheral nerve hyperexcitability in type 2 diabetes mellitus."
    Zenker J., Poirot O., de Preux Charles A.S., Arnaud E., Medard J.J., Lacroix C., Kuntzer T., Chrast R.
    J. Neurosci. 32:7493-7498(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: TISSUE SPECIFICITY.
  19. "Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine."
    Kourrich S., Hayashi T., Chuang J.Y., Tsai S.Y., Su T.P., Bonci A.
    Cell 152:236-247(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH SIGMAR1, SUBCELLULAR LOCATION.
  20. "Association of the Kv1 family of K+ channels and their functional blueprint in the properties of auditory neurons as revealed by genetic and functional analyses."
    Wang W., Kim H.J., Lv P., Tempel B., Yamoah E.N.
    J. Neurophysiol. 110:1751-1764(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: DISRUPTION PHENOTYPE, FUNCTION, SUBCELLULAR LOCATION, SUBUNIT, TISSUE SPECIFICITY.
  21. "Activity-dependent downregulation of D-type K+ channel subunit Kv1.2 in rat hippocampal CA3 pyramidal neurons."
    Hyun J.H., Eom K., Lee K.H., Ho W.K., Lee S.H.
    J. Physiol. (Lond.) 591:5525-5540(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.

Entry informationi

Entry nameiKCNA2_MOUSE
AccessioniPrimary (citable) accession number: P63141
Secondary accession number(s): B2RS05
, P15386, Q02010, Q8C8W4
Entry historyi
Integrated into UniProtKB/Swiss-Prot: September 13, 2004
Last sequence update: September 13, 2004
Last modified: January 7, 2015
This is version 115 of the entry and version 1 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Miscellaneousi

Miscellaneous

Mutagenesis with N-ethyl-N-nitrosourea (ENU) lead to the discovery of the Pingu (Pgu) phenotype. At P21, heterozygous mice are clearly smaller than wild-type and have abnormal gait with a higher stance and splayed hind limbs. Homozygous mice are even smaller, and about half of them die betwen P15 and P35. Mutant mice have difficulty staing on a rotating rod and perform poorly in a beam-walking test, where they display flattened posture, severe tremors, myoclonic jerks and ataxic movement. These symptoms are alleviated by a drug used to treat cerebellar ataxia. Measurements with Purkinje cells from cerebellar brain slices show increased frequency and amplitude of spontaneous inhibitory postsynaptic currents.1 Publication

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. MGD cross-references
    Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot
  2. SIMILARITY comments
    Index of protein domains and families

External Data

Dasty 3

Similar proteinsi

Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into Uniref entry.
90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.