Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P54132 (BLM_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 151. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (6) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Web links·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Bloom syndrome protein

EC=3.6.4.12
Alternative name(s):
DNA helicase, RecQ-like type 2
Short name=RecQ2
RecQ protein-like 3
Gene names
Name:BLM
Synonyms:RECQ2, RECQL3
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length1417 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Participates in DNA replication and repair. Exhibits a magnesium-dependent ATP-dependent DNA-helicase activity that unwinds single- and double-stranded DNA in a 3'-5' direction. Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA. Negatively regulates sister chromatid exchange (SCE). Ref.2 Ref.8 Ref.20 Ref.21

Catalytic activity

ATP + H2O = ADP + phosphate.

Subunit structure

Part of the BRCA1-associated genome surveillance complex (BASC), which contains BRCA1, MSH2, MSH6, MLH1, ATM, BLM, PMS2 and the RAD50-MRE11-NBS1 protein complex. This association could be a dynamic process changing throughout the cell cycle and within subnuclear domains. Interacts with ubiquitinated FANCD2. Interacts with RMI complex. Interacts directly with RMI1 (via N-terminal region) component of RMI complex. Interacts with SUPV3L1. Found in a complex, at least composed of BLM, RAD51 and SPIDR; the complex formation is mediated by SPIDR. Interacts with TOP3A (via N-terminal region). Interacts with SPIDR (via C-terminal region); the interaction is direct and required to target BLM to sites of DNA damage. Ref.7 Ref.9 Ref.10 Ref.12 Ref.13 Ref.14 Ref.20 Ref.21

Subcellular location

Nucleus. Note: Together with SPIDR, is redistributed in discrete nuclear DNA damage-induced foci following hydroxyurea (HU) or camptothecin (CPT) treatment. Accumulated at sites of DNA damage in a RMI complex- and SPIDR-dependent manner. Ref.21

Post-translational modification

Phosphorylated in response to DNA damage. Phosphorylation requires the FANCA-FANCC-FANCE-FANCF-FANCG protein complex, as well as the presence of RMI1. Ref.7 Ref.9

Involvement in disease

Bloom syndrome (BLM) [MIM:210900]: An autosomal recessive disorder. It is characterized by proportionate pre- and postnatal growth deficiency, sun-sensitive telangiectatic hypo- and hyperpigmented skin, predisposition to malignancy, and chromosomal instability.
Note: The disease is caused by mutations affecting the gene represented in this entry. Ref.1 Ref.6 Ref.22 Ref.23

Sequence similarities

Belongs to the helicase family. RecQ subfamily.

Contains 1 helicase ATP-binding domain.

Contains 1 helicase C-terminal domain.

Contains 1 HRDC domain.

Ontologies

Keywords
   Biological processDNA replication
   Cellular componentNucleus
   Coding sequence diversityPolymorphism
   DiseaseDisease mutation
Dwarfism
   LigandATP-binding
DNA-binding
Nucleotide-binding
   Molecular functionHelicase
Hydrolase
   PTMAcetylation
Phosphoprotein
   Technical term3D-structure
Complete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processATP catabolic process

Inferred from direct assay PubMed 12818200PubMed 17878217. Source: GOC

DNA double-strand break processing

Inferred from direct assay Ref.20. Source: UniProtKB

DNA duplex unwinding

Inferred from direct assay PubMed 11433031PubMed 12818200Ref.2. Source: GOC

DNA recombination

Non-traceable author statement PubMed 10728666Ref.1. Source: UniProtKB

DNA repair

Non-traceable author statement Ref.1. Source: UniProtKB

DNA strand renaturation

Inferred from direct assay PubMed 17878217. Source: GOC

G2 DNA damage checkpoint

Non-traceable author statement PubMed 11309417. Source: UniProtKB

alpha-beta T cell differentiation

Inferred from electronic annotation. Source: Ensembl

cellular response to DNA damage stimulus

Inferred from direct assay Ref.21. Source: UniProtKB

cellular response to camptothecin

Inferred from direct assay Ref.21. Source: UniProtKB

cellular response to hydroxyurea

Inferred from direct assay Ref.21. Source: UniProtKB

cellular response to ionizing radiation

Inferred from direct assay Ref.21. Source: UniProtKB

double-strand break repair via homologous recombination

Non-traceable author statement PubMed 11309417. Source: UniProtKB

mitotic G2 phase

Non-traceable author statement PubMed 11309417. Source: UniProtKB

negative regulation of DNA recombination

Inferred from mutant phenotype PubMed 9671747. Source: UniProtKB

negative regulation of cell division

Inferred from mutant phenotype PubMed 11781842. Source: UniProtKB

negative regulation of mitotic recombination

Inferred from electronic annotation. Source: Ensembl

negative regulation of thymocyte apoptotic process

Inferred from electronic annotation. Source: Ensembl

positive regulation of alpha-beta T cell proliferation

Inferred from electronic annotation. Source: Ensembl

positive regulation of transcription, DNA-templated

Inferred from direct assay PubMed 11781842. Source: UniProtKB

protein oligomerization

Inferred from direct assay PubMed 10359700. Source: UniProtKB

regulation of binding

Inferred from electronic annotation. Source: Ensembl

regulation of cyclin-dependent protein serine/threonine kinase activity

Inferred from mutant phenotype PubMed 15604258. Source: UniProtKB

replication fork processing

Inferred from direct assay PubMed 17115688. Source: UniProtKB

replication fork protection

Non-traceable author statement PubMed 10779560. Source: UniProtKB

response to X-ray

Inferred from direct assay PubMed 11309417. Source: UniProtKB

telomere maintenance

Inferred from electronic annotation. Source: Ensembl

   Cellular_componentPML body

Inferred from direct assay PubMed 10728666. Source: UniProtKB

cytoplasm

Inferred from electronic annotation. Source: Ensembl

lateral element

Inferred from direct assay PubMed 10728666. Source: UniProtKB

male germ cell nucleus

Inferred from electronic annotation. Source: Ensembl

nuclear chromosome

Inferred from direct assay Ref.21. Source: UniProtKB

nuclear matrix

Inferred from direct assay PubMed 11309417. Source: UniProtKB

nucleolus

Inferred from direct assay PubMed 10779560. Source: UniProtKB

nucleus

Inferred from direct assay PubMed 11500040Ref.5. Source: UniProtKB

pronucleus

Inferred from electronic annotation. Source: Ensembl

replication fork

Inferred from electronic annotation. Source: Ensembl

   Molecular_functionATP binding

Inferred from direct assay PubMed 17878217. Source: UniProtKB

ATP-dependent 3'-5' DNA helicase activity

Inferred from electronic annotation. Source: Ensembl

ATP-dependent DNA helicase activity

Inferred from direct assay Ref.2. Source: UniProtKB

ATP-dependent helicase activity

Inferred from direct assay PubMed 12818200. Source: UniProtKB

ATPase activity

Inferred from direct assay PubMed 17878217. Source: UniProtKB

G-quadruplex DNA binding

Inferred from direct assay PubMed 11433031. Source: UniProtKB

annealing helicase activity

Inferred from direct assay PubMed 17878217. Source: UniProtKB

bubble DNA binding

Inferred from direct assay PubMed 11433031. Source: UniProtKB

four-way junction helicase activity

Inferred from direct assay PubMed 11433031PubMed 12818200. Source: UniProtKB

helicase activity

Inferred from direct assay PubMed 10871376PubMed 12181313PubMed 17878217. Source: UniProtKB

p53 binding

Inferred from physical interaction PubMed 11781842. Source: UniProtKB

protein binding

Inferred from physical interaction PubMed 10728666PubMed 10825162PubMed 11309417PubMed 12181313Ref.12Ref.20Ref.21. Source: UniProtKB

single-stranded DNA binding

Inferred from direct assay PubMed 12818200. Source: UniProtKB

Complete GO annotation...

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 14171417Bloom syndrome protein
PRO_0000205039

Regions

Domain676 – 851176Helicase ATP-binding
Domain877 – 1024148Helicase C-terminal
Domain1212 – 129281HRDC
Nucleotide binding689 – 6968ATP By similarity
Region301 – 600300Necessary for interaction with SPIDR
Motif795 – 7984DEAH box
Motif1334 – 134916Nuclear localization signal Potential
Compositional bias292 – 2998Poly-Asp
Compositional bias310 – 3167Poly-Ser
Compositional bias557 – 56610Poly-Asp

Amino acid modifications

Modified residue281Phosphoserine Ref.18
Modified residue481Phosphoserine Ref.15
Modified residue571Phosphothreonine Ref.15
Modified residue1141Phosphothreonine Ref.15
Modified residue1681Phosphoserine Ref.18
Modified residue1711Phosphothreonine Ref.18
Modified residue3581Phosphoserine Ref.15
Modified residue4191Phosphoserine Ref.15 Ref.18
Modified residue4221Phosphoserine Ref.15 Ref.18
Modified residue4261Phosphoserine Ref.18
Modified residue4991Phosphoserine Ref.11 Ref.16
Modified residue5081Phosphothreonine Ref.11
Modified residue8631N6-acetyllysine Ref.17
Modified residue12951Phosphoserine Ref.15
Modified residue12961Phosphoserine Ref.15
Modified residue13101Phosphoserine Ref.15

Natural variations

Natural variant1371K → R. Ref.3
Corresponds to variant rs28384988 [ dbSNP | Ensembl ].
VAR_022295
Natural variant2981T → M. Ref.3
Corresponds to variant rs28384991 [ dbSNP | Ensembl ].
VAR_022296
Natural variant5911R → Q. Ref.3
Corresponds to variant rs28385012 [ dbSNP | Ensembl ].
VAR_022297
Natural variant6721Q → R in BLM. Ref.1
VAR_006901
Natural variant8411I → T in BLM.
VAR_016032
Natural variant8431T → I in BLM. Ref.1
VAR_006902
Natural variant8681P → L. Ref.3
Corresponds to variant rs11852361 [ dbSNP | Ensembl ].
VAR_022298
Natural variant8781C → R in BLM. Ref.23
VAR_016033
Natural variant8911G → E in BLM.
VAR_009138
Natural variant9011C → Y in BLM.
VAR_009139
Natural variant10361C → F in BLM. Ref.22
VAR_009140
Natural variant10431A → D.
Corresponds to variant rs2229035 [ dbSNP | Ensembl ].
VAR_051731
Natural variant10551C → S in BLM. Ref.1
VAR_006903
Natural variant12051V → I. Ref.3
Corresponds to variant rs28385141 [ dbSNP | Ensembl ].
VAR_022299
Natural variant12091S → T.
Corresponds to variant rs1801256 [ dbSNP | Ensembl ].
VAR_014912
Natural variant12131E → K. Ref.3
Corresponds to variant rs28385142 [ dbSNP | Ensembl ].
VAR_022300
Natural variant13211V → I. Ref.3
Corresponds to variant rs7167216 [ dbSNP | Ensembl ].
VAR_022301

Secondary structure

.................................................................................................................. 1417
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
P54132 [UniParc].

Last modified October 1, 1996. Version 1.
Checksum: 423DF5F381194E11

FASTA1,417159,000
        10         20         30         40         50         60 
MAAVPQNNLQ EQLERHSART LNNKLSLSKP KFSGFTFKKK TSSDNNVSVT NVSVAKTPVL 

        70         80         90        100        110        120 
RNKDVNVTED FSFSEPLPNT TNQQRVKDFF KNAPAGQETQ RGGSKSLLPD FLQTPKEVVC 

       130        140        150        160        170        180 
TTQNTPTVKK SRDTALKKLE FSSSPDSLST INDWDDMDDF DTSETSKSFV TPPQSHFVRV 

       190        200        210        220        230        240 
STAQKSKKGK RNFFKAQLYT TNTVKTDLPP PSSESEQIDL TEEQKDDSEW LSSDVICIDD 

       250        260        270        280        290        300 
GPIAEVHINE DAQESDSLKT HLEDERDNSE KKKNLEEAEL HSTEKVPCIE FDDDDYDTDF 

       310        320        330        340        350        360 
VPPSPEEIIS ASSSSSKCLS TLKDLDTSDR KEDVLSTSKD LLSKPEKMSM QELNPETSTD 

       370        380        390        400        410        420 
CDARQISLQQ QLIHVMEHIC KLIDTIPDDK LKLLDCGNEL LQQRNIRRKL LTEVDFNKSD 

       430        440        450        460        470        480 
ASLLGSLWRY RPDSLDGPME GDSCPTGNSM KELNFSHLPS NSVSPGDCLL TTTLGKTGFS 

       490        500        510        520        530        540 
ATRKNLFERP LFNTHLQKSF VSSNWAETPR LGKKNESSYF PGNVLTSTAV KDQNKHTASI 

       550        560        570        580        590        600 
NDLERETQPS YDIDNFDIDD FDDDDDWEDI MHNLAASKSS TAAYQPIKEG RPIKSVSERL 

       610        620        630        640        650        660 
SSAKTDCLPV SSTAQNINFS ESIQNYTDKS AQNLASRNLK HERFQSLSFP HTKEMMKIFH 

       670        680        690        700        710        720 
KKFGLHNFRT NQLEAINAAL LGEDCFILMP TGGGKSLCYQ LPACVSPGVT VVISPLRSLI 

       730        740        750        760        770        780 
VDQVQKLTSL DIPATYLTGD KTDSEATNIY LQLSKKDPII KLLYVTPEKI CASNRLISTL 

       790        800        810        820        830        840 
ENLYERKLLA RFVIDEAHCV SQWGHDFRQD YKRMNMLRQK FPSVPVMALT ATANPRVQKD 

       850        860        870        880        890        900 
ILTQLKILRP QVFSMSFNRH NLKYYVLPKK PKKVAFDCLE WIRKHHPYDS GIIYCLSRRE 

       910        920        930        940        950        960 
CDTMADTLQR DGLAALAYHA GLSDSARDEV QQKWINQDGC QVICATIAFG MGIDKPDVRF 

       970        980        990       1000       1010       1020 
VIHASLPKSV EGYYQESGRA GRDGEISHCL LFYTYHDVTR LKRLIMMEKD GNHHTRETHF 

      1030       1040       1050       1060       1070       1080 
NNLYSMVHYC ENITECRRIQ LLAYFGENGF NPDFCKKHPD VSCDNCCKTK DYKTRDVTDD 

      1090       1100       1110       1120       1130       1140 
VKSIVRFVQE HSSSQGMRNI KHVGPSGRFT MNMLVDIFLG SKSAKIQSGI FGKGSAYSRH 

      1150       1160       1170       1180       1190       1200 
NAERLFKKLI LDKILDEDLY INANDQAIAY VMLGNKAQTV LNGNLKVDFM ETENSSSVKK 

      1210       1220       1230       1240       1250       1260 
QKALVAKVSQ REEMVKKCLG ELTEVCKSLG KVFGVHYFNI FNTVTLKKLA ESLSSDPEVL 

      1270       1280       1290       1300       1310       1320 
LQIDGVTEDK LEKYGAEVIS VLQKYSEWTS PAEDSSPGIS LSSSRGPGRS AAEELDEEIP 

      1330       1340       1350       1360       1370       1380 
VSSHYFASKT RNERKRKKMP ASQRSKRRKT ASSGSKAKGG SATCRKISSK TKSSSIIGSS 

      1390       1400       1410 
SASHTSQATS GANSKLGIMA PPKPINRPFL KPSYAFS 

« Hide

References

« Hide 'large scale' references
[1]"The Bloom's syndrome gene product is homologous to RecQ helicases."
Ellis N.A., Groden J., Ye T.-Z., Straughen J., Lennon D.J., Ciocci S., Proytcheva M., German J.
Cell 83:655-666(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], VARIANTS BLM ARG-672; ILE-843 AND SER-1055.
[2]"The Bloom's syndrome gene product is a 3'-5' DNA helicase."
Karow J.K., Chakraverty R.K., Hickson I.D.
J. Biol. Chem. 272:30611-30614(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], FUNCTION.
Tissue: B-cell.
[3]NIEHS SNPs program
Submitted (JAN-2005) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], VARIANTS ARG-137; MET-298; GLN-591; LEU-868; ILE-1205 LYS-1213 AND ILE-1321.
[4]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
[5]"BLM (the causative gene of Bloom syndrome) protein translocation into the nucleus by a nuclear localization signal."
Kaneko H., Orii K.O., Matsui E., Shimozawa N., Fukao T., Matsumoto T., Shimamoto A., Furuichi Y., Hayakawa S., Kasahara K., Kondo N.
Biochem. Biophys. Res. Commun. 240:348-353(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEAR LOCALIZATION SIGNAL.
[6]"BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures."
Wang Y., Cortez D., Yazdi P., Neff N., Elledge S.J., Qin J.
Genes Dev. 14:927-939(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION OF BLM AS MEMBER OF BASC.
[7]"BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks."
Pichierri P., Franchitto A., Rosselli F.
EMBO J. 23:3154-3163(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH FANCD2, PHOSPHORYLATION.
[8]"The BLM helicase is necessary for normal DNA double-strand break repair."
Langland G., Elliott J., Li Y., Creaney J., Dixon K., Groden J.
Cancer Res. 62:2766-2770(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DNA REPAIR.
[9]"BLAP75, an essential component of Bloom's syndrome protein complexes that maintain genome integrity."
Yin J., Sobeck A., Xu C., Meetei A.R., Hoatlin M., Li L., Wang W.
EMBO J. 24:1465-1476(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN A COMPLEX WITH RMI1, PHOSPHORYLATION.
[10]"A double Holliday junction dissolvasome comprising BLM, topoisomerase III alpha, and BLAP75."
Raynard S., Bussen W., Sung P.
J. Biol. Chem. 281:13861-13864(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RMI1.
[11]"A probability-based approach for high-throughput protein phosphorylation analysis and site localization."
Beausoleil S.A., Villen J., Gerber S.A., Rush J., Gygi S.P.
Nat. Biotechnol. 24:1285-1292(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-499 AND THR-508, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[12]"Interaction of human SUV3 RNA/DNA helicase with BLM helicase; loss of the SUV3 gene results in mouse embryonic lethality."
Pereira M., Mason P., Szczesny R.J., Maddukuri L., Dziwura S., Jedrzejczak R., Paul E., Wojcik A., Dybczynska L., Tudek B., Bartnik E., Klysik J., Bohr V.A., Stepien P.P.
Mech. Ageing Dev. 128:609-617(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SUPV3L1.
[13]"RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability."
Xu D., Guo R., Sobeck A., Bachrati C.Z., Yang J., Enomoto T., Brown G.W., Hoatlin M.E., Hickson I.D., Wang W.
Genes Dev. 22:2843-2855(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RMI1.
[14]"BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome."
Singh T.R., Ali A.M., Busygina V., Raynard S., Fan Q., Du C.-H., Andreassen P.R., Sung P., Meetei A.R.
Genes Dev. 22:2856-2868(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RMI1.
[15]"A quantitative atlas of mitotic phosphorylation."
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E., Elledge S.J., Gygi S.P.
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-48; THR-57; THR-114; SER-358; SER-419; SER-422; SER-1295; SER-1296 AND SER-1310, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[16]"Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions."
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K., Rodionov V., Han D.K.
Sci. Signal. 2:RA46-RA46(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-499, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Leukemic T-cell.
[17]"Lysine acetylation targets protein complexes and co-regulates major cellular functions."
Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M., Walther T.C., Olsen J.V., Mann M.
Science 325:834-840(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-863, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[18]"Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis."
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L., Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.
Sci. Signal. 3:RA3-RA3(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-28; SER-168; THR-171; SER-419; SER-422 AND SER-426, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[19]"Initial characterization of the human central proteome."
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17-17(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[20]"BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair."
Nimonkar A.V., Genschel J., Kinoshita E., Polaczek P., Campbell J.L., Wyman C., Modrich P., Kowalczykowski S.C.
Genes Dev. 25:350-362(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH DNA2.
[21]"Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair."
Wan L., Han J., Liu T., Dong S., Xie F., Chen H., Huang J.
Proc. Natl. Acad. Sci. U.S.A. 110:10646-10651(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, IDENTIFICATION IN A COMPLEX WITH SPIDR AND RAD51, INTERACTION WITH RMI1; SPIDR AND TOP3A, SUBCELLULAR LOCATION.
[22]"Characterization of a new BLM mutation associated with a topoisomerase II alpha defect in a patient with Bloom's syndrome."
Foucault F., Vaury C., Barakat A., Thibout D., Planchon P., Jaulin C., Praz F., Amor-Gueret M.
Hum. Mol. Genet. 6:1427-1434(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT BLM PHE-1036.
[23]"Identification of a novel BLM missense mutation (2706T>C) in a Moroccan patient with Bloom's syndrome."
Barakat A., Ababou M., Onclercq R., Dutertre S., Chadli E., Hda N., Benslimane A., Amor-Gueret M.
Hum. Mutat. 15:584-585(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT BLM ARG-878.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
U39817 mRNA. Translation: AAA87850.1.
AY886902 Genomic DNA. Translation: AAW62255.1.
BC093622 mRNA. Translation: AAH93622.1.
BC101567 mRNA. Translation: AAI01568.1.
BC115030 mRNA. Translation: AAI15031.1.
BC115032 mRNA. Translation: AAI15033.1.
CCDSCCDS10363.1.
PIRA57570.
RefSeqNP_000048.1. NM_000057.3.
NP_001274175.1. NM_001287246.1.
NP_001274176.1. NM_001287247.1.
NP_001274177.1. NM_001287248.1.
UniGeneHs.725208.

3D structure databases

PDBe
RCSB-PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
2KV2NMR-A1210-1294[»]
2RRDNMR-A1200-1295[»]
3WE2X-ray2.70A/B1068-1209[»]
3WE3X-ray2.90A/B1068-1209[»]
4CDGX-ray2.79A/B636-1298[»]
4CGZX-ray3.20A636-1298[»]
4O3MX-ray2.30A640-1298[»]
ProteinModelPortalP54132.
SMRP54132. Positions 639-1295.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid107110. 72 interactions.
DIPDIP-33322N.
IntActP54132. 22 interactions.
MINTMINT-131918.
STRING9606.ENSP00000347232.

Chemistry

ChEMBLCHEMBL1293237.

PTM databases

PhosphoSiteP54132.

Polymorphism databases

DMDM1705486.

Proteomic databases

MaxQBP54132.
PaxDbP54132.
PRIDEP54132.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000355112; ENSP00000347232; ENSG00000197299.
GeneID641.
KEGGhsa:641.
UCSCuc002bpr.3. human.

Organism-specific databases

CTD641.
GeneCardsGC15P091260.
GeneReviewsBLM.
HGNCHGNC:1058. BLM.
HPAHPA005689.
MIM210900. phenotype.
604610. gene.
neXtProtNX_P54132.
Orphanet125. Bloom syndrome.
PharmGKBPA25369.
GenAtlasSearch...

Phylogenomic databases

eggNOGCOG0514.
HOGENOMHOG000095239.
HOVERGENHBG004850.
InParanoidP54132.
KOK10901.
OMACLEWIRK.
OrthoDBEOG72NRPB.
PhylomeDBP54132.
TreeFamTF317801.

Enzyme and pathway databases

ReactomeREACT_115566. Cell Cycle.

Gene expression databases

ArrayExpressP54132.
BgeeP54132.
CleanExHS_BLM.
GenevestigatorP54132.

Family and domain databases

Gene3D1.10.10.10. 1 hit.
1.10.150.80. 1 hit.
3.40.50.300. 2 hits.
InterProIPR012532. BDHCT.
IPR011545. DNA/RNA_helicase_DEAD/DEAH_N.
IPR002464. DNA/RNA_helicase_DEAH_CS.
IPR004589. DNA_helicase_ATP-dep_RecQ.
IPR014001. Helicase_ATP-bd.
IPR001650. Helicase_C.
IPR010997. HRDC-like.
IPR002121. HRDC_dom.
IPR027417. P-loop_NTPase.
IPR018982. RQC_domain.
IPR011991. WHTH_DNA-bd_dom.
[Graphical view]
PfamPF08072. BDHCT. 1 hit.
PF00270. DEAD. 1 hit.
PF00271. Helicase_C. 1 hit.
PF00570. HRDC. 1 hit.
PF09382. RQC. 1 hit.
[Graphical view]
SMARTSM00487. DEXDc. 1 hit.
SM00490. HELICc. 1 hit.
SM00341. HRDC. 1 hit.
SM00956. RQC. 1 hit.
[Graphical view]
SUPFAMSSF47819. SSF47819. 1 hit.
SSF52540. SSF52540. 3 hits.
TIGRFAMsTIGR00614. recQ_fam. 1 hit.
PROSITEPS00690. DEAH_ATP_HELICASE. 1 hit.
PS51192. HELICASE_ATP_BIND_1. 1 hit.
PS51194. HELICASE_CTER. 1 hit.
PS50967. HRDC. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

EvolutionaryTraceP54132.
GeneWikiBloom_syndrome_protein.
GenomeRNAi641.
NextBio2600.
PMAP-CutDBP54132.
PROP54132.
SOURCESearch...

Entry information

Entry nameBLM_HUMAN
AccessionPrimary (citable) accession number: P54132
Secondary accession number(s): Q52M96
Entry history
Integrated into UniProtKB/Swiss-Prot: October 1, 1996
Last sequence update: October 1, 1996
Last modified: July 9, 2014
This is version 151 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 15

Human chromosome 15: entries, gene names and cross-references to MIM