Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P51610 (HCFC1_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 162. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (6) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Alt products·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein attributes

Sequence length2035 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Involved in control of the cell cycle. Also antagonizes transactivation by ZBTB17 and GABP2; represses ZBTB17 activation of the p15(INK4b) promoter and inhibits its ability to recruit p300. Coactivator for EGR2 and GABP2. Tethers the chromatin modifying Set1/Ash2 histone H3 'Lys-4' methyltransferase (H3K4me) and Sin3 histone deacetylase (HDAC) complexes (involved in the activation and repression of transcription, respectively) together. Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1. As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. In case of human herpes simplex virus (HSV) infection, HCFC1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and POU2F1 thereby enabling the transcription of the viral immediate early genes. Ref.6 Ref.10 Ref.11 Ref.14 Ref.15 Ref.19 Ref.20 Ref.21 Ref.22 Ref.27 Ref.29 Ref.40 Ref.41

Subunit structure

Composed predominantly of six polypeptides ranging from 110 to 150 kDa and a minor 300 kDa polypeptide. The majority of N- and C-terminal cleavage products remain tightly, albeit non-covalently, associated. Interacts with POU2F1, CREB3, ZBTB17, EGR2, E2F4, CREBZF, SP1, GABP2, Sin3 HDAC complex (SIN3A, HDAC1, HDAC2, SUDS3), SAP30, SIN3B and FHL2. Component of a MLL1 complex, composed of at least the core components KMT2A/MLL1, ASH2L, HCFC1, WDR5 and RBBP5, as well as the facultative components BAP18, CHD8, DPY30, E2F6, HCFC2, HSP70, INO80C, KANSL1, LAS1L, MAX, MCRS1, MEN1, MGA, KAT8, PELP1, PHF20, PRP31, RING2, RUVBL1, RUVBL2, SENP3, TAF1, TAF4, TAF6, TAF7, TAF9 and TEX10. Component of the MLL5-L complex, composed of at least KMT2E/MLL5, STK38, PPP1CA, PPP1CB, PPP1CC, HCFC1, ACTB and OGT. Component of a THAP1/THAP3-HCFC1-OGT complex that is required for the regulation of the transcriptional activity of RRM1. Interacts directly with OGT; the interaction, which requires the HCFC1 cleavage site domain, glycosylates and promotes the proteolytic processing of HCFC1, retains OGT in the nucleus and impacts the expression of herpes simplex virus immediate early viral genes. Interacts with TET2 and TET3. Interacts directly with THAP3 (via its HBM). Interacts (via the Kelch-repeat domain) with THAP1 (via the HBM); the interaction recruits HCHC1 to the RRM1. Interacts with HCFC1R1 and THAP11. Associates with the VP16-induced complex; binding to HCFC1 activates the viral transcriptional activator VP16 for association with POU2F1, to form a multiprotein-DNA complex responsible for activating transcription of the viral immediate early genes. Component of the SET1 complex, at least composed of the catalytic subunit (SETD1A or SETD1B), WDR5, WDR82, RBBP5, ASH2L, CXXC1, HCFC1 and DPY30. Component of the NSL complex at least composed of MOF/KAT8, KANSL1, KANSL2, KANSL3, MCRS1, PHF20, OGT1/OGT, WDR5 and HCFC1. Interacts with the viral transactivator protein VP16. Part of a complex composed at least of ASCL2, C11orf30/EMSY, HCFC1, HSPA8, CCAR2, MATR3, MKI67, RBBP5, TUBB2A, WDR5 and ZNF335; this complex may have a histone H3-specific methyltransferase activity By similarity. Ref.8 Ref.9 Ref.11 Ref.13 Ref.14 Ref.16 Ref.17 Ref.18 Ref.19 Ref.20 Ref.21 Ref.23 Ref.24 Ref.25 Ref.27 Ref.30 Ref.31 Ref.34 Ref.37 Ref.40 Ref.41 Ref.44 Ref.48

Subcellular location

Cytoplasm. Nucleus. Note: HCFC1R1 modulates its subcellular localization and overexpression of HCFC1R1 leads to accumulation of HCFC1 in the cytoplasm. Nuclear in general, but uniquely cytoplasmic in trigeminal ganglia, becoming nuclear upon HSV reactivation from the latent state. Non-processed HCFC1 associates with chromatin. Colocalizes with CREB3 and CANX in the ER. Ref.10 Ref.12 Ref.18 Ref.36 Ref.40 Ref.44

Tissue specificity

Highly expressed in fetal tissues and the adult kidney. Present in all tissues tested. Ref.9

Domain

The HCF repeat is a highly specific proteolytic cleavage signal. Ref.18

The kelch repeats fold into a 6-bladed kelch beta-propeller called the beta-propeller domain which mediates interaction with HCFC1R1. Ref.18

Post-translational modification

Proteolytically cleaved at one or several PPCE--THET sites within the HCF repeats. Further cleavage of the primary N- and C-terminal chains results in a 'trimming' and accumulation of the smaller chains. Cleavage is promoted by O-glycosylation. Ref.6 Ref.7 Ref.27 Ref.44

O-glycosylated. GlcNAcylation by OGT promotes proteolytic processing. Ref.41 Ref.44 Ref.48

Ubiquitinated. Lys-1807 and Lys-1808 are ubiquitinated both via 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains. BAP1 mediated deubiquitination of 'Lys-48'-linked polyubiquitin chains; deubiquitination by BAP1 does not seem to stabilize the protein. Ref.35 Ref.36

Involvement in disease

Mental retardation, X-linked 3 (MRX3) [MIM:309541]: A disorder characterized by significantly below average general intellectual functioning associated with impairments in adaptive behavior and manifested during the developmental period. Intellectual deficiency is the only primary symptom of non-syndromic X-linked mental retardation, while syndromic mental retardation presents with associated physical, neurological and/or psychiatric manifestations.
Note: The disease is caused by mutations affecting the gene represented in this entry. Ref.49

Sequence similarities

Contains 3 fibronectin type-III domains.

Contains 5 Kelch repeats.

Sequence caution

The sequence CAA55790.1 differs from that shown. Reason: Erroneous initiation. Translation N-terminally extended.

Ontologies

Keywords
   Biological processCell cycle
Host-virus interaction
   Cellular componentCytoplasm
Nucleus
   Coding sequence diversityAlternative splicing
Polymorphism
   DiseaseDisease mutation
Mental retardation
   DomainKelch repeat
Repeat
   Molecular functionChromatin regulator
   PTMAcetylation
Autocatalytic cleavage
Glycoprotein
Isopeptide bond
Phosphoprotein
Ubl conjugation
   Technical term3D-structure
Complete proteome
Direct protein sequencing
Reference proteome
Gene Ontology (GO)
   Biological_processcell cycle

Inferred from electronic annotation. Source: UniProtKB-KW

chromatin organization

Traceable author statement. Source: Reactome

histone H4-K16 acetylation

Inferred from direct assay Ref.40. Source: UniProtKB

histone H4-K5 acetylation

Inferred from direct assay Ref.40. Source: UniProtKB

histone H4-K8 acetylation

Inferred from direct assay Ref.40. Source: UniProtKB

negative regulation of transcription from RNA polymerase II promoter

Inferred from sequence or structural similarity. Source: UniProtKB

positive regulation of cell cycle

Traceable author statement Ref.12. Source: UniProtKB

positive regulation of gene expression

Inferred from direct assay Ref.44. Source: UniProtKB

protein stabilization

Inferred from direct assay Ref.44. Source: UniProtKB

regulation of protein complex assembly

Inferred from direct assay Ref.11. Source: UniProtKB

regulation of transcription, DNA-templated

Inferred from direct assay Ref.21. Source: UniProtKB

release from viral latency

Non-traceable author statement Ref.11. Source: UniProtKB

transcription from RNA polymerase II promoter

Traceable author statement Ref.1. Source: ProtInc

   Cellular_componentMLL1 complex

Inferred from direct assay Ref.24. Source: UniProtKB

MLL5-L complex

Inferred from direct assay Ref.37. Source: UniProtKB

Set1C/COMPASS complex

Inferred from direct assay Ref.30Ref.31. Source: UniProtKB

cytoplasm

Inferred from direct assay Ref.12PubMed 20091349. Source: UniProtKB

histone acetyltransferase complex

Inferred from direct assay Ref.40. Source: UniProtKB

mitochondrion

Inferred from direct assay. Source: HPA

neuronal cell body

Inferred from direct assay PubMed 20091349. Source: UniProtKB

nucleoplasm

Traceable author statement. Source: Reactome

nucleus

Inferred from direct assay Ref.12Ref.36PubMed 20091349Ref.44Ref.2. Source: UniProtKB

   Molecular_functionchromatin binding

Inferred from direct assay Ref.44. Source: UniProtKB

identical protein binding

Inferred from physical interaction Ref.21. Source: IntAct

sequence-specific DNA binding transcription factor activity

Non-traceable author statement Ref.1. Source: ProtInc

transcription coactivator activity

Inferred from mutant phenotype Ref.11. Source: UniProtKB

Complete GO annotation...

Alternative products

This entry describes 4 isoforms produced by alternative splicing. [Align] [Select]
Isoform 1 (identifier: P51610-1)

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Isoform 2 (identifier: P51610-2)

The sequence of this isoform differs from the canonical sequence as follows:
     382-450: Missing.
Note: The N- and the C-terminal fragments fail to associate. No experimental confirmation available.
Isoform 3 (identifier: P51610-3)

The sequence of this isoform differs from the canonical sequence as follows:
     428-428: P → L
     429-2035: Missing.
Note: No experimental confirmation available.
Isoform 4 (identifier: P51610-4)

The sequence of this isoform differs from the canonical sequence as follows:
     1499-1499: P → PKISSMTETAPRALTTEVPIPAKITVTIANTETSDMPFSAVDILQ
Note: No experimental confirmation available.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Initiator methionine11Removed Ref.33
Chain2 – 14231422HCF N-terminal chain 6
PRO_0000016611
Chain2 – 13231322HCF N-terminal chain 5
PRO_0000016612
Chain2 – 12951294HCF N-terminal chain 4
PRO_0000016613
Chain2 – 11101109HCF N-terminal chain 3
PRO_0000016614
Chain2 – 10811080HCF N-terminal chain 2
PRO_0000016615
Chain2 – 10191018HCF N-terminal chain 1
PRO_0000016616
Chain1020 – 20351016HCF C-terminal chain 1
PRO_0000016617
Chain1082 – 2035954HCF C-terminal chain 2
PRO_0000016618
Chain1111 – 2035925HCF C-terminal chain 3
PRO_0000016619
Chain1296 – 2035740HCF C-terminal chain 4
PRO_0000016620
Chain1324 – 2035712HCF C-terminal chain 5
PRO_0000016621
Chain1424 – 2035612HCF C-terminal chain 6
PRO_0000016622

Regions

Repeat44 – 8946Kelch 1
Repeat93 – 14048Kelch 2
Repeat148 – 19447Kelch 3
Repeat217 – 26549Kelch 4
Repeat266 – 31348Kelch 5
Domain366 – 466101Fibronectin type-III 1
Repeat1010 – 103526HCF repeat 1
Repeat1072 – 109726HCF repeat 2
Repeat1101 – 112626HCF repeat 3
Repeat1158 – 118326HCF repeat 4; degenerate
Repeat1286 – 131126HCF repeat 5
Repeat1314 – 133926HCF repeat 6
Repeat1349 – 137426HCF repeat 7; degenerate
Repeat1414 – 143926HCF repeat 8
Domain1797 – 188892Fibronectin type-III 2
Domain1890 – 2006117Fibronectin type-III 3
Region500 – 55051Required for interaction with OGT
Region610 – 722113Interaction with SIN3A
Region750 – 902153Interaction with ZBTB17
Region813 – 912100Interaction with GABP2

Sites

Site1019 – 10202Cleavage; by autolysis
Site1081 – 10822Cleavage; by autolysis
Site1110 – 11112Cleavage; by autolysis
Site1295 – 12962Cleavage; by autolysis
Site1323 – 13242Cleavage; by autolysis
Site1423 – 14242Cleavage; by autolysis

Amino acid modifications

Modified residue21N-acetylalanine Ref.33 Ref.42 Ref.45 Ref.46 Ref.47
Modified residue61Phosphoserine Ref.42 Ref.45
Modified residue2881N6-acetyllysine Ref.39
Modified residue4111Phosphoserine Ref.38
Modified residue6661Phosphoserine Ref.26 Ref.28 Ref.32 Ref.42 Ref.45
Modified residue6691Phosphoserine Ref.42
Modified residue8131N6-acetyllysine Ref.39
Modified residue12051Phosphoserine Ref.32
Modified residue14911Phosphothreonine Ref.26
Modified residue15071Phosphoserine Ref.26 Ref.32 Ref.38 Ref.42 Ref.45
Modified residue20051N6-acetyllysine Ref.39
Cross-link105Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin) Ref.35
Cross-link163Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin) Ref.35
Cross-link244Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin) Ref.35
Cross-link363Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin) Ref.35
Cross-link1807Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin) Ref.36
Cross-link1808Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin) Ref.36

Natural variations

Alternative sequence382 – 45069Missing in isoform 2.
VSP_002815
Alternative sequence4281P → L in isoform 3.
VSP_012984
Alternative sequence429 – 20351607Missing in isoform 3.
VSP_012985
Alternative sequence14991P → PKISSMTETAPRALTTEVPI PAKITVTIANTETSDMPFSA VDILQ in isoform 4.
VSP_047138
Natural variant2251S → N in MRX3. Ref.49
Corresponds to variant rs318240758 [ dbSNP | Ensembl ].
VAR_069098
Natural variant11641S → P. Ref.5
Corresponds to variant rs1051152 [ dbSNP | Ensembl ].
VAR_019813
Natural variant20041S → I.
Corresponds to variant rs6643651 [ dbSNP | Ensembl ].
VAR_050043

Experimental info

Mutagenesis301P → S: Severely reduces VP16-induced complex (VIC) formation, but retains association with VP16. Unable to rescue proliferation in temperature-sensitive arrested cells. Abolishes interaction with CREB3. Ref.14
Mutagenesis791P → S: Severely reduces VIC formation, but retains association with VP16. Severely reduces association with CREB3. Unable to rescue proliferation in temperature-sensitive arrested cells. Ref.14
Mutagenesis821C → D: Moderately reduces VIC formation and association with VP16 and CREB3. Unable to rescue proliferation in temperature-sensitive arrested cells. Ref.14
Mutagenesis1051K → D: Minor reduction in VIC formation and association with VP16 and CREB3. Able to rescue proliferation in temperature-sensitive arrested cells. Ref.14
Mutagenesis1341P → S: Eliminates VIC formation and association with VP16. Weak association with POU2F1. Unable to associate with CREBZF and BAP1. Unable to rescue proliferation in temperature-sensitive arrested cells. Ref.8 Ref.14 Ref.35
Mutagenesis1371R → D: Eliminates VIC formation. Unable to rescue proliferation in temperature-sensitive arrested cells. Ref.14
Mutagenesis1971P → S: Eliminates VIC formation and association with VP16. Unable to rescue proliferation in temperature-sensitive arrested cells. Ref.14
Mutagenesis2001R → D: Eliminates VIC formation. Unable to rescue proliferation in temperature-sensitive arrested cells. Ref.14
Mutagenesis2281R → D: Eliminates VIC formation and association with VP16. Unable to rescue proliferation in temperature-sensitive arrested cells. Ref.14
Mutagenesis2521P → S: Minor reduction in VIC formation, but retains association with VP16. Unable to rescue proliferation in temperature-sensitive arrested cells. Ref.14
Mutagenesis2551R → D: Eliminates VIC formation. Unable to rescue proliferation in temperature-sensitive arrested cells. Ref.14
Mutagenesis289 – 2913EWK → AAA: Minor reduction in VIC formation and association with VP16. Weak association with POU2F1. Severely reduces association with CREB3. Able to rescue proliferation in temperature-sensitive arrested cells. Ref.14
Mutagenesis3191P → S: Eliminates VIC formation and association with VP16. Unable to rescue proliferation in temperature-sensitive arrested cells. Ref.14
Mutagenesis3221R → D: Eliminates VIC formation. Unable to rescue proliferation in temperature-sensitive arrested cells. Ref.14
Mutagenesis3381S → A: Moderately reduces association with VP16 and CREB3. Able to rescue proliferation in temperature-sensitive arrested cells. Ref.14
Mutagenesis344 – 3452RK → AA: Eliminates VIC formation, but only minor reduction in association with VP16. Unable to associate with POU2F1, but only minor reduction in association with CREB3. Able to rescue proliferation in temperature-sensitive arrested cells.
Mutagenesis1017 – 10215PCETH → AAAAA: Reduces and disrupts cleavage at HCF repeat. Ref.7
Mutagenesis10721V → A: No effect on cleavage at HCF repeat.
Mutagenesis10731R → A: No effect on cleavage at HCF repeat.
Mutagenesis10741V → A: No effect on cleavage at HCF repeat.
Mutagenesis10751C → A: No effect on cleavage at HCF repeat.
Mutagenesis10761S → A: No effect on cleavage at HCF repeat.
Mutagenesis10771N → A: No effect on cleavage at HCF repeat.
Mutagenesis10781P → A: Inactivates cleavage at HCF repeat.
Mutagenesis1079 – 10835PCETH → AAAAA: Reduces and disrupts cleavage at HCF repeat.
Mutagenesis10791P → A: Inactivates cleavage at HCF repeat.
Mutagenesis10801C → A: Inactivates cleavage at HCF repeat.
Mutagenesis10811E → A: Inactivates cleavage at HCF repeat.
Mutagenesis10811E → D: Inactivates cleavage at HCF repeat.
Mutagenesis10821T → A: Inactivates cleavage at HCF repeat.
Mutagenesis10821T → F: Reduces cleavage at HCF repeat.
Mutagenesis10821T → S: Reduces cleavage at HCF repeat.
Mutagenesis10831H → A: Reduces cleavage at HCF repeat.
Mutagenesis10841E → A: No effect on cleavage at HCF repeat.
Mutagenesis10851T → A: Inactivates cleavage at HCF repeat.
Mutagenesis10861G → A: No effect on cleavage at HCF repeat.
Mutagenesis10871T → A: Inactivates cleavage at HCF repeat.
Mutagenesis10881T → A: Inactivates cleavage at HCF repeat.
Mutagenesis10891N → A: Reduces cleavage at HCF repeat.
Mutagenesis10901T → A: Inactivates cleavage at HCF repeat.
Mutagenesis10921T → A: Inactivates cleavage at HCF repeat.
Mutagenesis10931T → A: Inactivates cleavage at HCF repeat.
Mutagenesis10951T → A: Reduces cleavage at HCF repeat.
Mutagenesis10961S → A: No effect on cleavage at HCF repeat.
Mutagenesis10971N → A: No effect on cleavage at HCF repeat.
Sequence conflict5641A → R in CAA55790. Ref.5
Sequence conflict6031S → SVS in CAA55790. Ref.5
Sequence conflict6651K → T no nucleotide entry Ref.2
Sequence conflict16381V → E no nucleotide entry Ref.2
Sequence conflict16851V → A no nucleotide entry Ref.2
Sequence conflict17351E → Q no nucleotide entry Ref.2
Sequence conflict18731G → A in CAA55790. Ref.5

Secondary structure

................................ 2035
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Isoform 1 [UniParc].

Last modified November 13, 2007. Version 2.
Checksum: 0B0C581E2454631E

FASTA2,035208,732
        10         20         30         40         50         60 
MASAVSPANL PAVLLQPRWK RVVGWSGPVP RPRHGHRAVA IKELIVVFGG GNEGIVDELH 

        70         80         90        100        110        120 
VYNTATNQWF IPAVRGDIPP GCAAYGFVCD GTRLLVFGGM VEYGKYSNDL YELQASRWEW 

       130        140        150        160        170        180 
KRLKAKTPKN GPPPCPRLGH SFSLVGNKCY LFGGLANDSE DPKNNIPRYL NDLYILELRP 

       190        200        210        220        230        240 
GSGVVAWDIP ITYGVLPPPR ESHTAVVYTE KDNKKSKLVI YGGMSGCRLG DLWTLDIDTL 

       250        260        270        280        290        300 
TWNKPSLSGV APLPRSLHSA TTIGNKMYVF GGWVPLVMDD VKVATHEKEW KCTNTLACLN 

       310        320        330        340        350        360 
LDTMAWETIL MDTLEDNIPR ARAGHCAVAI NTRLYIWSGR DGYRKAWNNQ VCCKDLWYLE 

       370        380        390        400        410        420 
TEKPPPPARV QLVRANTNSL EVSWGAVATA DSYLLQLQKY DIPATAATAT SPTPNPVPSV 

       430        440        450        460        470        480 
PANPPKSPAP AAAAPAVQPL TQVGITLLPQ AAPAPPTTTT IQVLPTVPGS SISVPTAART 

       490        500        510        520        530        540 
QGVPAVLKVT GPQATTGTPL VTMRPASQAG KAPVTVTSLP AGVRMVVPTQ SAQGTVIGSS 

       550        560        570        580        590        600 
PQMSGMAALA AAAAATQKIP PSSAPTVLSV PAGTTIVKTM AVTPGTTTLP ATVKVASSPV 

       610        620        630        640        650        660 
MVSNPATRML KTAAAQVGTS VSSATNTSTR PIITVHKSGT VTVAQQAQVV TTVVGGVTKT 

       670        680        690        700        710        720 
ITLVKSPISV PGGSALISNL GKVMSVVQTK PVQTSAVTGQ ASTGPVTQII QTKGPLPAGT 

       730        740        750        760        770        780 
ILKLVTSADG KPTTIITTTQ ASGAGTKPTI LGISSVSPST TKPGTTTIIK TIPMSAIITQ 

       790        800        810        820        830        840 
AGATGVTSSP GIKSPITIIT TKVMTSGTGA PAKIITAVPK IATGHGQQGV TQVVLKGAPG 

       850        860        870        880        890        900 
QPGTILRTVP MGGVRLVTPV TVSAVKPAVT TLVVKGTTGV TTLGTVTGTV STSLAGAGGH 

       910        920        930        940        950        960 
STSASLATPI TTLGTIATLS SQVINPTAIT VSAAQTTLTA AGGLTTPTIT MQPVSQPTQV 

       970        980        990       1000       1010       1020 
TLITAPSGVE AQPVHDLPVS ILASPTTEQP TATVTIADSG QGDVQPGTVT LVCSNPPCET 

      1030       1040       1050       1060       1070       1080 
HETGTTNTAT TTVVANLGGH PQPTQVQFVC DRQEAAASLV TSTVGQQNGS VVRVCSNPPC 

      1090       1100       1110       1120       1130       1140 
ETHETGTTNT ATTATSNMAG QHGCSNPPCE THETGTTNTA TTAMSSVGAN HQRDARRACA 

      1150       1160       1170       1180       1190       1200 
AGTPAVIRIS VATGALEAAQ GSKSQCQTRQ TSATSTTMTV MATGAPCSAG PLLGPSMARE 

      1210       1220       1230       1240       1250       1260 
PGGRSPAFVQ LAPLSSKVRL SSPSIKDLPA GRHSHAVSTA AMTRSSVGAG EPRMAPVCES 

      1270       1280       1290       1300       1310       1320 
LQGGSPSTTV TVTALEALLC PSATVTQVCS NPPCETHETG TTNTATTSNA GSAQRVCSNP 

      1330       1340       1350       1360       1370       1380 
PCETHETGTT HTATTATSNG GTGQPEGGQQ PPAGRPCETH QTTSTGTTMS VSVGALLPDA 

      1390       1400       1410       1420       1430       1440 
TSSHRTVESG LEVAAAPSVT PQAGTALLAP FPTQRVCSNP PCETHETGTT HTATTVTSNM 

      1450       1460       1470       1480       1490       1500 
SSNQDPPPAA SDQGEVESTQ GDSVNITSSS AITTTVSSTL TRAVTTVTQS TPVPGPSVPP 

      1510       1520       1530       1540       1550       1560 
PEELQVSPGP RQQLPPRQLL QSASTALMGE SAEVLSASQT PELPAAVDLS STGEPSSGQE 

      1570       1580       1590       1600       1610       1620 
SAGSAVVATV VVQPPPPTQS EVDQLSLPQE LMAEAQAGTT TLMVTGLTPE ELAVTAAAEA 

      1630       1640       1650       1660       1670       1680 
AAQAAATEEA QALAIQAVLQ AAQQAVMGTG EPMDTSEAAA TVTQAELGHL SAEGQEGQAT 

      1690       1700       1710       1720       1730       1740 
TIPIVLTQQE LAALVQQQQL QEAQAQQQHH HLPTEALAPA DSLNDPAIES NCLNELAGTV 

      1750       1760       1770       1780       1790       1800 
PSTVALLPST ATESLAPSNT FVAPQPVVVA SPAKLQAAAT LTEVANGIES LGVKPDLPPP 

      1810       1820       1830       1840       1850       1860 
PSKAPMKKEN QWFDVGVIKG TNVMVTHYFL PPDDAVPSDD DLGTVPDYNQ LKKQELQPGT 

      1870       1880       1890       1900       1910       1920 
AYKFRVAGIN ACGRGPFSEI SAFKTCLPGF PGAPCAIKIS KSPDGAHLTW EPPSVTSGKI 

      1930       1940       1950       1960       1970       1980 
IEYSVYLAIQ SSQAGGELKS STPAQLAFMR VYCGPSPSCL VQSSSLSNAH IDYTTKPAII 

      1990       2000       2010       2020       2030 
FRIAARNEKG YGPATQVRWL QETSKDSSGT KPANKRPMSS PEMKSAPKKS KADGQ 

« Hide

Isoform 2 [UniParc].

Checksum: A20A8EA295A5D9B5
Show »

FASTA1,966201,850
Isoform 3 [UniParc].

Checksum: F8514EA1A9FD8D49
Show »

FASTA42847,189
Isoform 4 [UniParc].

Checksum: F4C85542EA495848
Show »

FASTA2,079213,405

References

« Hide 'large scale' references
[1]"The VP16 accessory protein HCF is a family of polypeptides processed from a large precursor protein."
Wilson A.C., Lamarco K., Peterson M.G., Herr W.
Cell 74:115-125(1993) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 1 AND 2), PARTIAL PROTEIN SEQUENCE.
Tissue: Hepatoma.
[2]"The cellular C1 factor of the herpes simplex virus enhancer complex is a family of polypeptides."
Kristie T.M., Pomerantz J.L., Twomey T.C., Parent S.A., Sharp P.A.
J. Biol. Chem. 270:4387-4394(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
[3]"The DNA sequence of the human X chromosome."
Ross M.T., Grafham D.V., Coffey A.J., Scherer S., McLay K., Muzny D., Platzer M., Howell G.R., Burrows C., Bird C.P., Frankish A., Lovell F.L., Howe K.L., Ashurst J.L., Fulton R.S., Sudbrak R., Wen G., Jones M.C. expand/collapse author list , Hurles M.E., Andrews T.D., Scott C.E., Searle S., Ramser J., Whittaker A., Deadman R., Carter N.P., Hunt S.E., Chen R., Cree A., Gunaratne P., Havlak P., Hodgson A., Metzker M.L., Richards S., Scott G., Steffen D., Sodergren E., Wheeler D.A., Worley K.C., Ainscough R., Ambrose K.D., Ansari-Lari M.A., Aradhya S., Ashwell R.I., Babbage A.K., Bagguley C.L., Ballabio A., Banerjee R., Barker G.E., Barlow K.F., Barrett I.P., Bates K.N., Beare D.M., Beasley H., Beasley O., Beck A., Bethel G., Blechschmidt K., Brady N., Bray-Allen S., Bridgeman A.M., Brown A.J., Brown M.J., Bonnin D., Bruford E.A., Buhay C., Burch P., Burford D., Burgess J., Burrill W., Burton J., Bye J.M., Carder C., Carrel L., Chako J., Chapman J.C., Chavez D., Chen E., Chen G., Chen Y., Chen Z., Chinault C., Ciccodicola A., Clark S.Y., Clarke G., Clee C.M., Clegg S., Clerc-Blankenburg K., Clifford K., Cobley V., Cole C.G., Conquer J.S., Corby N., Connor R.E., David R., Davies J., Davis C., Davis J., Delgado O., Deshazo D., Dhami P., Ding Y., Dinh H., Dodsworth S., Draper H., Dugan-Rocha S., Dunham A., Dunn M., Durbin K.J., Dutta I., Eades T., Ellwood M., Emery-Cohen A., Errington H., Evans K.L., Faulkner L., Francis F., Frankland J., Fraser A.E., Galgoczy P., Gilbert J., Gill R., Gloeckner G., Gregory S.G., Gribble S., Griffiths C., Grocock R., Gu Y., Gwilliam R., Hamilton C., Hart E.A., Hawes A., Heath P.D., Heitmann K., Hennig S., Hernandez J., Hinzmann B., Ho S., Hoffs M., Howden P.J., Huckle E.J., Hume J., Hunt P.J., Hunt A.R., Isherwood J., Jacob L., Johnson D., Jones S., de Jong P.J., Joseph S.S., Keenan S., Kelly S., Kershaw J.K., Khan Z., Kioschis P., Klages S., Knights A.J., Kosiura A., Kovar-Smith C., Laird G.K., Langford C., Lawlor S., Leversha M., Lewis L., Liu W., Lloyd C., Lloyd D.M., Loulseged H., Loveland J.E., Lovell J.D., Lozado R., Lu J., Lyne R., Ma J., Maheshwari M., Matthews L.H., McDowall J., McLaren S., McMurray A., Meidl P., Meitinger T., Milne S., Miner G., Mistry S.L., Morgan M., Morris S., Mueller I., Mullikin J.C., Nguyen N., Nordsiek G., Nyakatura G., O'dell C.N., Okwuonu G., Palmer S., Pandian R., Parker D., Parrish J., Pasternak S., Patel D., Pearce A.V., Pearson D.M., Pelan S.E., Perez L., Porter K.M., Ramsey Y., Reichwald K., Rhodes S., Ridler K.A., Schlessinger D., Schueler M.G., Sehra H.K., Shaw-Smith C., Shen H., Sheridan E.M., Shownkeen R., Skuce C.D., Smith M.L., Sotheran E.C., Steingruber H.E., Steward C.A., Storey R., Swann R.M., Swarbreck D., Tabor P.E., Taudien S., Taylor T., Teague B., Thomas K., Thorpe A., Timms K., Tracey A., Trevanion S., Tromans A.C., d'Urso M., Verduzco D., Villasana D., Waldron L., Wall M., Wang Q., Warren J., Warry G.L., Wei X., West A., Whitehead S.L., Whiteley M.N., Wilkinson J.E., Willey D.L., Williams G., Williams L., Williamson A., Williamson H., Wilming L., Woodmansey R.L., Wray P.W., Yen J., Zhang J., Zhou J., Zoghbi H., Zorilla S., Buck D., Reinhardt R., Poustka A., Rosenthal A., Lehrach H., Meindl A., Minx P.J., Hillier L.W., Willard H.F., Wilson R.K., Waterston R.H., Rice C.M., Vaudin M., Coulson A., Nelson D.L., Weinstock G., Sulston J.E., Durbin R.M., Hubbard T., Gibbs R.A., Beck S., Rogers J., Bentley D.R.
Nature 434:325-337(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[4]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 3).
Tissue: Mammary gland.
[5]"Genomic organization of the human VP16 accessory protein, a housekeeping gene (HCFC1) mapping to Xq28."
Frattini A., Faranda S., Redolfi E., Zucchi I., Villa A., Patrosso M.C., Strina D., Susani L., Vezzoni P.
Genomics 23:30-35(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 65-2035, VARIANT PRO-1164.
Tissue: Fetal brain.
[6]"Autocatalytic proteolysis of the transcription factor-coactivator C1 (HCF): a potential role for proteolytic regulation of coactivator function."
Vogel J.L., Kristie T.M.
Proc. Natl. Acad. Sci. U.S.A. 97:9425-9430(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 1324-1336; 1424-1436 AND 1446-1457, FUNCTION, AUTOCATALYTIC CLEAVAGE.
[7]"The HCF repeat is an unusual proteolytic cleavage signal."
Wilson A.C., Peterson M.G., Herr W.
Genes Dev. 9:2445-2458(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: AUTOCATALYTIC CLEAVAGE, MUTAGENESIS OF 1017-PRO--HIS-1021 AND 1072-VAL--ASN-1097.
[8]"Luman, a new member of the CREB/ATF family, binds to herpes simplex virus VP16-associated host cellular factor."
Lu R., Yang P., O'Hare P., Misra V.
Mol. Cell. Biol. 17:5117-5126(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CREB3 AND VP16, MUTAGENESIS OF PRO-134.
[9]"Viral mimicry: common mode of association with HCF by VP16 and the cellular protein LZIP."
Freiman R.N., Herr W.
Genes Dev. 11:3122-3127(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CREB3 AND VP16, TISSUE SPECIFICITY.
Tissue: Cervix carcinoma.
[10]"Nuclear localization of the C1 factor (host cell factor) in sensory neurons correlates with reactivation of herpes simplex virus from latency."
Kristie T.M., Vogel J.L., Sears A.E.
Proc. Natl. Acad. Sci. U.S.A. 96:1229-1233(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION.
[11]"The novel coactivator C1 (HCF) coordinates multiprotein enhancer formation and mediates transcription activation by GABP."
Vogel J.L., Kristie T.M.
EMBO J. 19:683-690(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH GABP2.
[12]"Potential role for luman, the cellular homologue of herpes simplex virus VP16 (alpha gene trans-inducing factor), in herpesvirus latency."
Lu R., Misra V.
J. Virol. 74:934-943(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION.
[13]"A set of proteins interacting with transcription factor Sp1 identified in a two-hybrid screening."
Gunther M., Laithier M., Brison O.
Mol. Cell. Biochem. 210:131-142(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SP1.
[14]"Mutations in host cell factor 1 separate its role in cell proliferation from recruitment of VP16 and LZIP."
Mahajan S.S., Wilson A.C.
Mol. Cell. Biol. 20:919-928(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH POU2F1; VP16 AND CREB3, MUTAGENESIS OF PRO-30; PRO-79; CYS-82; LYS-105; PRO-134; ARG-137; PRO-197; ARG-200; ARG-228; PRO-252; ARG-255; 289-GLU--LYS-291; PRO-319; ARG-322; SER-338 AND 344-ARG-LYS-345.
[15]"A novel 50-kilodalton fragment of host cell factor 1 (C1) in G(0) cells."
Scarr R.B., Smith M.R., Beddall M., Sharp P.A.
Mol. Cell. Biol. 20:3568-3575(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[16]"Zhangfei: a second cellular protein interacts with herpes simplex virus accessory factor HCF in a manner similar to Luman and VP16."
Lu R., Misra V.
Nucleic Acids Res. 28:2446-2454(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CREBZF.
[17]"N-terminal transcriptional activation domain of LZIP comprises two LxxLL motifs and the host cell factor-1 binding motif."
Luciano R.L., Wilson A.C.
Proc. Natl. Acad. Sci. U.S.A. 97:10757-10762(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CREB3.
[18]"Interaction of HCF-1 with a cellular nuclear export factor."
Mahajan S.S., Little M.M., Vazquez R., Wilson A.C.
J. Biol. Chem. 277:44292-44299(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION, DOMAIN, INTERACTION WITH HCFC1R1.
Tissue: Brain.
[19]"Host cell factor-1 interacts with and antagonizes transactivation by the cell cycle regulatory factor Miz-1."
Piluso D., Bilan P., Capone J.P.
J. Biol. Chem. 277:46799-46808(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH ZBTB17.
[20]"HCF-1 functions as a coactivator for the zinc finger protein Krox20."
Luciano R.L., Wilson A.C.
J. Biol. Chem. 278:51116-51124(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH EGR2 AND E2F4.
[21]"Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1."
Wysocka J., Myers M.P., Laherty C.D., Eisenman R.N., Herr W.
Genes Dev. 17:896-911(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH SIN3A; HDAC1; HDAC2; SUDS3; SAP30; SIN3B; OGT; SET1; ASH2 AND WDR5.
[22]"A protein sequestering system reveals control of cellular programs by the transcriptional coactivator HCF-1."
Khurana B., Kristie T.M.
J. Biol. Chem. 279:33673-33683(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[23]"Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression."
Yokoyama A., Wang Z., Wysocka J., Sanyal M., Aufiero D.J., Kitabayashi I., Herr W., Cleary M.L.
Mol. Cell. Biol. 24:5639-5649(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN THE MLL1 COMPLEX.
[24]"Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF."
Dou Y., Milne T.A., Tackett A.J., Smith E.R., Fukuda A., Wysocka J., Allis C.D., Chait B.T., Hess J.L., Roeder R.G.
Cell 121:873-885(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN THE MLL1 COMPLEX.
[25]"Zhangfei is a potent and specific inhibitor of the host cell factor-binding transcription factor Luman."
Misra V., Rapin N., Akhova O., Bainbridge M., Korchinski P.
J. Biol. Chem. 280:15257-15266(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CREBZF AND CREB3.
[26]"A probability-based approach for high-throughput protein phosphorylation analysis and site localization."
Beausoleil S.A., Villen J., Gerber S.A., Rush J., Gygi S.P.
Nat. Biotechnol. 24:1285-1292(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-666; THR-1491 AND SER-1507, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[27]"Site-specific proteolysis of the transcriptional coactivator HCF-1 can regulate its interaction with protein cofactors."
Vogel J.L., Kristie T.M.
Proc. Natl. Acad. Sci. U.S.A. 103:6817-6822(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, AUTOCATALYTIC CLEAVAGE, INTERACTION WITH FHL2.
[28]"Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra."
Yu L.R., Zhu Z., Chan K.C., Issaq H.J., Dimitrov D.S., Veenstra T.D.
J. Proteome Res. 6:4150-4162(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-666, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[29]"The coactivator host cell factor-1 mediates Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection."
Narayanan A., Ruyechan W.T., Kristie T.M.
Proc. Natl. Acad. Sci. U.S.A. 104:10835-10840(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[30]"Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes."
Lee J.H., Skalnik D.G.
Mol. Cell. Biol. 28:609-618(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN SET1 COMPLEX, INTERACTION WITH SETD1A.
[31]"Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS."
Wu M., Wang P.F., Lee J.S., Martin-Brown S., Florens L., Washburn M., Shilatifard A.
Mol. Cell. Biol. 28:7337-7344(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN SET1 COMPLEX.
[32]"A quantitative atlas of mitotic phosphorylation."
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E., Elledge S.J., Gygi S.P.
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-666; SER-1205 AND SER-1507, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[33]"Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach."
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J., Mohammed S.
Anal. Chem. 81:4493-4501(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS], CLEAVAGE OF INITIATOR METHIONINE [LARGE SCALE ANALYSIS].
[34]"Identification and characterization of a novel nuclear protein complex involved in nuclear hormone receptor-mediated gene regulation."
Garapaty S., Xu C.F., Trojer P., Mahajan M.A., Neubert T.A., Samuels H.H.
J. Biol. Chem. 284:7542-7552(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN A COMPLEX WITH ZNF335; MKI67; C11ORF30; MATR3; HSPA8; TUBB2A; CCAR2; ASCL2; RBBP5 AND WDR5.
[35]"The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1."
Machida Y.J., Machida Y., Vashisht A.A., Wohlschlegel J.A., Dutta A.
J. Biol. Chem. 284:34179-34188(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: UBIQUITINATION AT LYS-105; LYS-163; LYS-244 AND LYS-363, DEUBIQUITINATION BY BAP1, MUTAGENESIS OF PRO-134.
[36]"Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1."
Misaghi S., Ottosen S., Izrael-Tomasevic A., Arnott D., Lamkanfi M., Lee J., Liu J., O'Rourke K., Dixit V.M., Wilson A.C.
Mol. Cell. Biol. 29:2181-2192(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: UBIQUITINATION AT LYS-1807 AND LYS-1808, DEUBIQUITINATION BY BAP1, SUBCELLULAR LOCATION.
[37]"GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis."
Fujiki R., Chikanishi T., Hashiba W., Ito H., Takada I., Roeder R.G., Kitagawa H., Kato S.
Nature 459:455-459(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN THE MLL5-L COMPLEX.
[38]"Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions."
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K., Rodionov V., Han D.K.
Sci. Signal. 2:RA46-RA46(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-411 AND SER-1507, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Leukemic T-cell.
[39]"Lysine acetylation targets protein complexes and co-regulates major cellular functions."
Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M., Walther T.C., Olsen J.V., Mann M.
Science 325:834-840(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-288; LYS-813 AND LYS-2005, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[40]"Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex."
Cai Y., Jin J., Swanson S.K., Cole M.D., Choi S.H., Florens L., Washburn M.P., Conaway J.W., Conaway R.C.
J. Biol. Chem. 285:4268-4272(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN HISTONE H4 ACETYLATION, IDENTIFICATION IN NSL COMPLEX, SUBCELLULAR LOCATION.
[41]"The THAP-zinc finger protein THAP1 associates with coactivator HCF-1 and O-GlcNAc transferase: a link between DYT6 and DYT3 dystonias."
Mazars R., Gonzalez-de-Peredo A., Cayrol C., Lavigne A.C., Vogel J.L., Ortega N., Lacroix C., Gautier V., Huet G., Ray A., Monsarrat B., Kristie T.M., Girard J.P.
J. Biol. Chem. 285:13364-13371(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY IN A THAP1/THAP3-HCFC1-OGT COMPLEX, INTERACTION WITH OGT; THAP1 AND THAP3, GLYCOSYLATION, FUNCTION.
[42]"Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis."
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L., Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.
Sci. Signal. 3:RA3-RA3(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-6; SER-666; SER-669 AND SER-1507, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[43]"Initial characterization of the human central proteome."
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17-17(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[44]"Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway."
Daou S., Mashtalir N., Hammond-Martel I., Pak H., Yu H., Sui G., Vogel J.L., Kristie T.M., Affar E.B.
Proc. Natl. Acad. Sci. U.S.A. 108:2747-2752(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: GLYCOSYLATION, SUBCELLULAR LOCATION, PROTEOLYTIC PROCESSING, INTERACTION WITH OGT.
[45]"System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation."
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J., Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V., Blagoev B.
Sci. Signal. 4:RS3-RS3(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-6; SER-666 AND SER-1507, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[46]"Comparative large-scale characterisation of plant vs. mammal proteins reveals similar and idiosyncratic N-alpha acetylation features."
Bienvenut W.V., Sumpton D., Martinez A., Lilla S., Espagne C., Meinnel T., Giglione C.
Mol. Cell. Proteomics 11:M111.015131-M111.015131(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[47]"N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB."
Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A., Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E., Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K., Aldabe R.
Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[48]"TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS."
Deplus R., Delatte B., Schwinn M.K., Defrance M., Mendez J., Murphy N., Dawson M.A., Volkmar M., Putmans P., Calonne E., Shih A.H., Levine R.L., Bernard O., Mercher T., Solary E., Urh M., Daniels D.L., Fuks F.
EMBO J. 32:645-655(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: GLYCOSYLATION, INTERACTION WITH OGT; TET2 AND TET3.
[49]"A noncoding, regulatory mutation implicates HCFC1 in nonsyndromic intellectual disability."
Huang L., Jolly L.A., Willis-Owen S., Gardner A., Kumar R., Douglas E., Shoubridge C., Wieczorek D., Tzschach A., Cohen M., Hackett A., Field M., Froyen G., Hu H., Haas S.A., Ropers H.H., Kalscheuer V.M., Corbett M.A., Gecz J.
Am. J. Hum. Genet. 91:694-702(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT MRX3 ASN-225.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
L20010 mRNA. No translation available.
U52112 Genomic DNA. No translation available.
BC063435 mRNA. Translation: AAH63435.1.
X79198 Genomic DNA. Translation: CAA55790.1. Different initiation.
PIRA40718.
RefSeqNP_005325.2. NM_005334.2.
UniGeneHs.83634.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
4GO6X-ray2.70A/C360-402[»]
B/D1806-2035[»]
4N39X-ray1.76B1082-1097[»]
4N3AX-ray1.88B1072-1097[»]
4N3BX-ray2.17B1072-1097[»]
4N3CX-ray2.55B1072-1097[»]
ProteinModelPortalP51610.
SMRP51610. Positions 276-302, 317-342, 360-400, 1811-2010.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid109304. 77 interactions.
DIPDIP-32955N.
IntActP51610. 42 interactions.
MINTMINT-144367.
STRING9606.ENSP00000309555.

PTM databases

PhosphoSiteP51610.

Polymorphism databases

DMDM160332311.

Proteomic databases

PaxDbP51610.
PRIDEP51610.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000310441; ENSP00000309555; ENSG00000172534. [P51610-1]
ENST00000354233; ENSP00000346174; ENSG00000172534. [P51610-2]
ENST00000596798; ENSP00000470486; ENSG00000268768. [P51610-1]
ENST00000599201; ENSP00000470791; ENSG00000268768. [P51610-2]
GeneID3054.
KEGGhsa:3054.
UCSCuc004fjp.3. human. [P51610-1]

Organism-specific databases

CTD3054.
GeneCardsGC0XM153213.
H-InvDBHIX0056221.
HGNCHGNC:4839. HCFC1.
HPAHPA018312.
MIM300019. gene.
309541. phenotype.
neXtProtNX_P51610.
Orphanet369962. Methylmalonic acidemia with homocystinuria, type cblX.
777. X-linked non-syndromic intellectual deficit.
PharmGKBPA29215.
GenAtlasSearch...

Phylogenomic databases

eggNOGNOG12793.
HOGENOMHOG000293192.
HOVERGENHBG051888.
KOK14966.
PhylomeDBP51610.
TreeFamTF314757.

Enzyme and pathway databases

ReactomeREACT_172623. Chromatin organization.

Gene expression databases

ArrayExpressP51610.
BgeeP51610.
CleanExHS_HCFC1.
GenevestigatorP51610.

Family and domain databases

Gene3D2.120.10.80. 1 hit.
2.130.10.80. 1 hit.
2.60.40.10. 2 hits.
InterProIPR003961. Fibronectin_type3.
IPR015916. Gal_Oxidase_b-propeller.
IPR013783. Ig-like_fold.
IPR015915. Kelch-typ_b-propeller.
IPR006652. Kelch_1.
[Graphical view]
PfamPF01344. Kelch_1. 1 hit.
[Graphical view]
SMARTSM00060. FN3. 3 hits.
[Graphical view]
SUPFAMSSF49265. SSF49265. 1 hit.
PROSITEPS50853. FN3. 3 hits.
[Graphical view]
ProtoNetSearch...

Other

ChiTaRSHCFC1. human.
GeneWikiHost_cell_factor_C1.
GenomeRNAi3054.
NextBio12089.
PROP51610.
SOURCESearch...

Entry information

Entry nameHCFC1_HUMAN
AccessionPrimary (citable) accession number: P51610
Secondary accession number(s): Q6P4G5
Entry history
Integrated into UniProtKB/Swiss-Prot: October 1, 1996
Last sequence update: November 13, 2007
Last modified: April 16, 2014
This is version 162 of the entry and version 2 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome X

Human chromosome X: entries, gene names and cross-references to MIM