Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P50750 (CDK9_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 161. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (7) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Alt products·Sequence annotation·Sequences·References·Web links·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Cyclin-dependent kinase 9

EC=2.7.11.22
EC=2.7.11.23
Alternative name(s):
C-2K
Cell division cycle 2-like protein kinase 4
Cell division protein kinase 9
Serine/threonine-protein kinase PITALRE
Tat-associated kinase complex catalytic subunit
Gene names
Name:CDK9
Synonyms:CDC2L4, TAK
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length372 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Protein kinase involved in the regulation of transcription. Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP. This complex is inactive when in the 7SK snRNP complex form. Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR, and the negative elongation factors DSIF and NELF. Regulates cytokine inducible transcription networks by facilitating promoter recognition of target transcription factors (e.g. TNF-inducible RELA/p65 activation and IL-6-inducible STAT3 signaling). Promotes RNA synthesis in genetic programs for cell growth, differentiation and viral pathogenesis. P-TEFb is also involved in cotranscriptional histone modification, mRNA processing and mRNA export. Modulates a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3; integrates phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing. The CDK9/cyclin-K complex has also a kinase activity towards CTD of RNAP II and can substitute for CDK9/cyclin-T P-TEFb in vitro. Replication stress response protein; the CDK9/cyclin-K complex is required for genome integrity maintenance, by promoting cell cycle recovery from replication arrest and limiting single-stranded DNA amount in response to replication stress, thus reducing the breakdown of stalled replication forks and avoiding DNA damage. In addition, probable function in DNA repair of isoform 2 via interaction with KU70/XRCC6. Promotes cardiac myocyte enlargement. RPB1/POLR2A phosphorylation on 'Ser-2' in CTD activates transcription. AR phosphorylation modulates AR transcription factor promoter selectivity and cell growth. DSIF and NELF phosphorylation promotes transcription by inhibiting their negative effect. The phosphorylation of MYOD1 enhances its transcriptional activity and thus promotes muscle differentiation. Ref.9 Ref.11 Ref.12 Ref.13 Ref.14 Ref.16 Ref.17 Ref.18 Ref.19 Ref.22 Ref.23 Ref.25 Ref.26 Ref.28 Ref.29 Ref.30 Ref.38 Ref.39 Ref.40 Ref.42 Ref.43 Ref.44 Ref.47 Ref.51

Catalytic activity

ATP + a protein = ADP + a phosphoprotein.

ATP + [DNA-directed RNA polymerase] = ADP + [DNA-directed RNA polymerase] phosphate.

Enzyme regulation

Inhibited by CDKI-71, CR8, GPC-286199, AG-024322, flavopiridol (alvocidib), RBG-286147, anilinopyrimidine 32, arylazopyrazole 31b, indirubin 3'-monoxime, meriolin 3,P276-00, olomoucine II, pyrazolotriazine, meriolin, variolin, thiazolyl-pyrimidine, thiazolyl-pyrimidine, indirubin-30-monoxime, ZK 304709, AG-012986, AT7519, R547, RGB-286638, imidazole pyrimidine, EXEL-3700, EXEL-8647, 5,6-dichloro-1-b-ribofur-anosyl-benzimidazole (DRB), P276-00, roscovitine (seliciclib, CYC202) and SNS-032 (BMS-387032). Activation by Thr-186 phosphorylation is calcium Ca2+ signaling pathway-dependent; actively inactivated by dephosphorylation mediated by PPP1CA, PPM1A and PPM1B. Reversibly repressed by acetylation at Lys-44 and Lys-48. Ref.33 Ref.37 Ref.50 Ref.52 Ref.58 Ref.64

Subunit structure

Associates with CCNT1/cyclin-T1, CCNT2/cyclin-T2 (isoform Aand isoform B)or CCNK/cyclin-K to form active P-TEFb. P-TEFb forms a complex with AFF4/AF5Q31 and is part of the super elongation complex (SEC). Component of a complex which is composed of at least 5 members: HTATSF1/Tat-SF1, P-TEFb complex, RNA pol II, SUPT5H, and NCL/nucleolin. Associates with UBR5 and forms a transcription regulatory complex composed of CDK9, RNAP II, UBR5 and TFIIS/TCEA1 that can stimulate target gene transcription (e.g. gamma fibrinogen/FGG) by recruiting their promoters. Component of the 7SK snRNP inactive complex which is composed of at least 8 members: P-TEFb (composed of CDK9 and CCNT1/cyclin-T1), HEXIM1, HEXIM2, LARP7, BCDIN3, SART3 proteins and 7SK and U6 snRNAs. This inactive 7SK snRNP complex can also interact with NCOR1 and HDAC3, probably to regulate CDK9 acetylation. Release of P-TEFb from P-TEFb/7SK snRNP complex requires both PP2B to transduce calcium Ca2+ signaling in response to stimuli (e.g. UV or hexamethylene bisacetamide (HMBA)), and PPP1CA to dephosphorylate Thr-186. This released P-TEFb remains inactive in the preinitiation complex with BRD4 until new Thr-186 phosphorylation occurs after the synthesis of a short RNA. Interacts with BRD4, probably to target chromatin binding. Interacts with the acidic/proline-rich region of HIV-1 and HIV-2 Tat via T-loop region, and is thus required for HIV to hijack host transcription machinery during its replication through cooperative binding to viral TAR RNA. Interacts with activated nuclear STAT3 and RELA/p65. Binds to AR and MYOD1. Forms a complex composed of CDK9, CCNT1/cyclin-T1, EP300 and GATA4 that stimulates hypertrophy in cardiomyocytes. Isoform 3binds to KU70/XRCC6. Ref.8 Ref.10 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.23 Ref.24 Ref.27 Ref.28 Ref.29 Ref.30 Ref.31 Ref.32 Ref.33 Ref.35 Ref.38 Ref.42 Ref.44 Ref.45 Ref.46 Ref.47 Ref.51

Subcellular location

Nucleus. Cytoplasm. NucleusPML body. Note: Accumulates on chromatin in response to replication stress. Complexed with CCNT1 in nuclear speckles, but uncomplexed form in the cytoplasm. The translocation from nucleus to cytoplasm is XPO1/CRM1-dependent. Associates with PML body when acetylated. Ref.21 Ref.37

Tissue specificity

Ubiquitous.

Induction

By replication stress, in chromatin. Probably degraded by the proteasome upon Thr-186 dephosphorylation. Ref.33 Ref.37 Ref.50 Ref.52 Ref.58 Ref.64

Post-translational modification

Autophosphorylation at Thr-186, Ser-347, Thr-350, Ser-353, Thr-354 and Ser-357 triggers kinase activity by promoting cyclin and substrate binding (e.g. HIV TAT) upon conformational changes. Thr-186 phosphorylation requires the calcium Ca2+ signaling pathway, including CaMK1D and calmodulin. This inhibition is relieved by Thr-29 dephosphorylation. However, phosphorylation at Thr-29 is inhibitory within the HIV transcription initiation complex. Phosphorylation at Ser-175 inhibits kinase activity. Can be phosphorylated on either Thr-362 or Thr-363 but not on both simultaneously (Ref.62). Ref.15 Ref.27 Ref.33 Ref.34 Ref.52 Ref.53 Ref.61 Ref.62 Ref.63 Ref.64

Dephosphorylation of Thr-186 by PPM1A and PPM1B blocks CDK9 activity and may lead to CDK9 proteasomal degradation. However, PPP1CA-mediated Thr-186 dephosphorylation is required to release P-TEFb from its inactive P-TEFb/7SK snRNP complex. Dephosphorylation of C-terminus Thr and Ser residues by protein phosphatase-1 (PP1) triggers CDK9 activity, contributing to the activation of HIV-1 transcription.

N6-acetylation of Lys-44 by CBP/p300 promotes kinase activity, whereas acetylation of both Lys-44 and Lys-48 mediated by PCAF/KAT2B and GCN5/KAT2A reduces kinase activity. The acetylated form associates with PML bodies in the nuclear matrix and with the transcriptionally silent HIV-1 genome; deacetylated upon transcription stimulation. Ref.32 Ref.37

Polyubiquitinated and thus activated by UBR5. This ubiquitination is promoted by TFIIS/TCEA1 and favors 'Ser-2' phosphorylation of RPB1/POLR2A CTD.

Involvement in disease

Chronic activation of CDK9 causes cardiac myocyte enlargement leading to cardiac hypertrophy, and confers predisposition to heart failure.

Miscellaneous

CDK9 inhibition contributes to the anticancer activity of most CDK inhibitors under clinical investigation (Ref.57 and Ref.64). As a retroviruses target during the hijack of host transcription (e.g. HIV), CDK9 inhibitors might become specific antiretroviral agents (Ref.57). May be a target for cardiac hypertrophy future treatments (Ref.59 and Ref.57). May also be a target in anti-inflammatory therapy in innate immunity and systemic inflammation (Ref.55).

Sequence similarities

Belongs to the protein kinase superfamily. CMGC Ser/Thr protein kinase family. CDC2/CDKX subfamily.

Contains 1 protein kinase domain.

Sequence caution

The sequence CAI39767.1 differs from that shown. Reason: Erroneous gene model prediction.

Ontologies

Keywords
   Biological processDNA damage
DNA repair
Transcription
Transcription regulation
   Cellular componentCytoplasm
Nucleus
   Coding sequence diversityAlternative splicing
Polymorphism
   LigandATP-binding
Nucleotide-binding
   Molecular functionKinase
Serine/threonine-protein kinase
Transferase
   PTMAcetylation
Phosphoprotein
Ubl conjugation
   Technical term3D-structure
Complete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processDNA repair

Inferred from electronic annotation. Source: UniProtKB-KW

cell proliferation

Traceable author statement Ref.1. Source: ProtInc

cellular response to cytokine stimulus

Inferred from direct assay Ref.30. Source: UniProtKB

gene expression

Traceable author statement. Source: Reactome

negative regulation of cell cycle arrest

Inferred from direct assay Ref.43. Source: UniProtKB

positive regulation of transcription from RNA polymerase II promoter

Traceable author statement. Source: Reactome

positive regulation of viral transcription

Traceable author statement. Source: Reactome

protein phosphorylation

Inferred from direct assay Ref.28. Source: MGI

regulation of DNA repair

Inferred from direct assay Ref.42. Source: UniProtKB

regulation of histone modification

Inferred from direct assay Ref.39. Source: UniProtKB

replication fork arrest

Inferred from direct assay Ref.43. Source: UniProtKB

transcription elongation from RNA polymerase II promoter

Traceable author statement. Source: Reactome

transcription from RNA polymerase II promoter

Traceable author statement. Source: Reactome

transcription initiation from RNA polymerase II promoter

Traceable author statement. Source: Reactome

transcription, DNA-templated

Traceable author statement. Source: Reactome

transforming growth factor beta receptor signaling pathway

Traceable author statement. Source: Reactome

viral process

Traceable author statement. Source: Reactome

   Cellular_componentPML body

Inferred from direct assay Ref.37. Source: UniProtKB

cytoplasm

Inferred from electronic annotation. Source: UniProtKB-SubCell

intracellular membrane-bounded organelle

Inferred from direct assay. Source: HPA

nucleoplasm

Traceable author statement. Source: Reactome

nucleus

Inferred from direct assay. Source: HPA

positive transcription elongation factor complex b

Inferred from direct assay PubMed 15905409. Source: UniProtKB

transcription elongation factor complex

Traceable author statement PubMed 10866664. Source: ProtInc

   Molecular_functionATP binding

Inferred from electronic annotation. Source: UniProtKB-KW

DNA binding

Inferred from direct assay Ref.28. Source: MGI

RNA polymerase II carboxy-terminal domain kinase activity

Inferred from direct assay PubMed 12721286. Source: UniProtKB

chromatin binding

Inferred from electronic annotation. Source: Ensembl

cyclin-dependent protein serine/threonine kinase activity

Traceable author statement PubMed 10866664. Source: ProtInc

protein kinase activity

Traceable author statement Ref.1. Source: ProtInc

snRNA binding

Inferred from electronic annotation. Source: Ensembl

transcription regulatory region DNA binding

Inferred from electronic annotation. Source: Ensembl

Complete GO annotation...

Alternative products

This entry describes 2 isoforms produced by alternative splicing. [Align] [Select]
Isoform 1 (identifier: P50750-1)

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Isoform 2 (identifier: P50750-2)

The sequence of this isoform differs from the canonical sequence as follows:
     1-1: M → MQRDAPPRAP...GGGGALEAAM
Note: Contains a phosphoserine at position 27. Contains a phosphoserine at position 52. Contains a phosphothreonine at position 54. Contains a phosphothreonine at position 55. Contains a phosphoserine at position 56. Contains a phosphoserine at position 35.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 372372Cyclin-dependent kinase 9
PRO_0000085800

Regions

Domain19 – 315297Protein kinase
Nucleotide binding25 – 339ATP By similarity
Nucleotide binding104 – 1063ATP
Region166 – 19126T-loop

Sites

Active site1491Proton acceptor By similarity
Binding site481ATP
Binding site1671ATP

Amino acid modifications

Modified residue291Phosphothreonine
Modified residue441N6-acetyllysine; by P300/CBP, PCAF/KAT2B and GCN5/KAT2A Ref.32 Ref.37
Modified residue481N6-acetyllysine; by PCAF/KAT2B and GCN5/KAT2A Ref.37
Modified residue1751Phosphoserine Ref.53
Modified residue1861Phosphothreonine; by CaMK1D Ref.27 Ref.33 Ref.34 Ref.49 Ref.52 Ref.61 Ref.62 Ref.63 Ref.64
Modified residue3471Phosphoserine; by CDK9 and PKA Ref.15 Ref.36 Ref.41
Modified residue3501Phosphothreonine; by CDK9 Ref.15 Ref.41
Modified residue3531Phosphoserine; by CDK9 Ref.15
Modified residue3541Phosphothreonine; by CDK9 Ref.15
Modified residue3571Phosphoserine; by CDK9 Ref.15
Modified residue3621Phosphothreonine; by CDK9
Modified residue3631Phosphothreonine; by CDK9

Natural variations

Alternative sequence11M → MQRDAPPRAPAPAPRLPAPP IGAAASSGGGGGGGSGGGGG GASAAPAPPGLSGTTSPRGP GGGRRAEEAGSAPRGRKWPW RRKWRGRGGAWSAAAAGPGA GAAAAATGGGGGALEAAM in isoform 2.
VSP_016288
Natural variant591F → L. Ref.65
Corresponds to variant rs55640715 [ dbSNP | Ensembl ].
VAR_041982
Natural variant2311G → A. Ref.2 Ref.3
VAR_013456

Experimental info

Mutagenesis441K → R: Impaired kinase and transcriptional elongation activities, but normal cyclin T1 and HEXIM1 binding. Ref.32
Mutagenesis1671D → N: Abrogates kinase activity. Ref.15 Ref.16
Mutagenesis1751S → A: Constitutive kinase activity. Ref.53
Mutagenesis1751S → D: Mimics phosphorylation, constitutive loss of kinase activity. Ref.53
Mutagenesis1861T → A: Abrogates autophosphorylation; no effect on kinase activity, but impaired CTD phosphorylation. Ref.16 Ref.52 Ref.62
Mutagenesis1861T → D: Mimics autophosphorylation; constitutive kinase activity, independently of calcium signaling. Ref.16 Ref.52 Ref.62
Mutagenesis347 – 35711SQITQQSTNQS → AQIAQQAANQA: Loss of autophosphorylation and impaired interaction with HIV TAT. Ref.15
Mutagenesis347 – 35711SQITQQSTNQS → EQIEQQEENQE: Mimics autophosphorylation and promotes interaction with HIV TAT. Ref.15
Sequence conflict1631L → P in AAV38706. Ref.4

Secondary structure

............................................................... 372
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Isoform 1 [UniParc].

Last modified June 21, 2005. Version 3.
Checksum: 69E851CC6F7A0388

FASTA37242,778
        10         20         30         40         50         60 
MAKQYDSVEC PFCDEVSKYE KLAKIGQGTF GEVFKARHRK TGQKVALKKV LMENEKEGFP 

        70         80         90        100        110        120 
ITALREIKIL QLLKHENVVN LIEICRTKAS PYNRCKGSIY LVFDFCEHDL AGLLSNVLVK 

       130        140        150        160        170        180 
FTLSEIKRVM QMLLNGLYYI HRNKILHRDM KAANVLITRD GVLKLADFGL ARAFSLAKNS 

       190        200        210        220        230        240 
QPNRYTNRVV TLWYRPPELL LGERDYGPPI DLWGAGCIMA EMWTRSPIMQ GNTEQHQLAL 

       250        260        270        280        290        300 
ISQLCGSITP EVWPNVDNYE LYEKLELVKG QKRKVKDRLK AYVRDPYALD LIDKLLVLDP 

       310        320        330        340        350        360 
AQRIDSDDAL NHDFFWSDPM PSDLKGMLST HLTSMFEYLA PPRRKGSQIT QQSTNQSRNP 

       370 
ATTNQTEFER VF 

« Hide

Isoform 2 [UniParc].

Checksum: A0437DC909235A20
Show »

FASTA48953,365

References

« Hide 'large scale' references
[1]"PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro."
Grana X., de Luca A., Sang N., Fu Y., Claudio P.P., Rosenblatt J., Morgan D.O., Giordano A.
Proc. Natl. Acad. Sci. U.S.A. 91:3834-3838(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
[2]"Cloning of a full-length cDNA sequence encoding a cdc2-related protein kinase from human endothelial cells."
Best J.L., Presky D.H., Swerlick R.A., Burns D.K., Chu W.
Biochem. Biophys. Res. Commun. 208:562-568(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), VARIANT ALA-231.
[3]"Genomic organization and characterization of promoter function of the human CDK9 gene."
Liu H., Rice A.P.
Gene 252:51-59(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], VARIANT ALA-231.
[4]"Cloning of human full-length CDSs in BD Creator(TM) system donor vector."
Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S., Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y., Phelan M., Farmer A.
Submitted (OCT-2004) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
[5]NIEHS SNPs program
Submitted (JUN-2002) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
[6]"DNA sequence and analysis of human chromosome 9."
Humphray S.J., Oliver K., Hunt A.R., Plumb R.W., Loveland J.E., Howe K.L., Andrews T.D., Searle S., Hunt S.E., Scott C.E., Jones M.C., Ainscough R., Almeida J.P., Ambrose K.D., Ashwell R.I.S., Babbage A.K., Babbage S., Bagguley C.L. expand/collapse author list , Bailey J., Banerjee R., Barker D.J., Barlow K.F., Bates K., Beasley H., Beasley O., Bird C.P., Bray-Allen S., Brown A.J., Brown J.Y., Burford D., Burrill W., Burton J., Carder C., Carter N.P., Chapman J.C., Chen Y., Clarke G., Clark S.Y., Clee C.M., Clegg S., Collier R.E., Corby N., Crosier M., Cummings A.T., Davies J., Dhami P., Dunn M., Dutta I., Dyer L.W., Earthrowl M.E., Faulkner L., Fleming C.J., Frankish A., Frankland J.A., French L., Fricker D.G., Garner P., Garnett J., Ghori J., Gilbert J.G.R., Glison C., Grafham D.V., Gribble S., Griffiths C., Griffiths-Jones S., Grocock R., Guy J., Hall R.E., Hammond S., Harley J.L., Harrison E.S.I., Hart E.A., Heath P.D., Henderson C.D., Hopkins B.L., Howard P.J., Howden P.J., Huckle E., Johnson C., Johnson D., Joy A.A., Kay M., Keenan S., Kershaw J.K., Kimberley A.M., King A., Knights A., Laird G.K., Langford C., Lawlor S., Leongamornlert D.A., Leversha M., Lloyd C., Lloyd D.M., Lovell J., Martin S., Mashreghi-Mohammadi M., Matthews L., McLaren S., McLay K.E., McMurray A., Milne S., Nickerson T., Nisbett J., Nordsiek G., Pearce A.V., Peck A.I., Porter K.M., Pandian R., Pelan S., Phillimore B., Povey S., Ramsey Y., Rand V., Scharfe M., Sehra H.K., Shownkeen R., Sims S.K., Skuce C.D., Smith M., Steward C.A., Swarbreck D., Sycamore N., Tester J., Thorpe A., Tracey A., Tromans A., Thomas D.W., Wall M., Wallis J.M., West A.P., Whitehead S.L., Willey D.L., Williams S.A., Wilming L., Wray P.W., Young L., Ashurst J.L., Coulson A., Blocker H., Durbin R.M., Sulston J.E., Hubbard T., Jackson M.J., Bentley D.R., Beck S., Rogers J., Dunham I.
Nature 429:369-374(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[7]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
Tissue: Cervix.
[8]"A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA."
Wei P., Garber M.E., Fang S.-M., Fischer W.H., Jones K.A.
Cell 92:451-462(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH HIV TAT.
[9]"Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro."
Wada T., Takagi T., Yamaguchi Y., Watanabe D., Handa H.
EMBO J. 17:7395-7403(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[10]"Identification of multiple cyclin subunits of human P-TEFb."
Peng J.-M., Zhu Y., Milton J.T., Price D.H.
Genes Dev. 12:755-762(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN A COMPLEX WITH CCNT1 AND CCNT2.
[11]"A novel RNA polymerase II-containing complex potentiates Tat-enhanced HIV-1 transcription."
Parada C.A., Roeder R.G.
EMBO J. 18:3688-3701(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, IDENTIFICATION IN A COMPLEX WITH HTATSF1; CCNT1; RNA POL II; SUPT5H AND NCL.
[12]"Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription."
Fu T.J., Peng J., Lee G., Price D.H., Flores O.
J. Biol. Chem. 274:34527-34530(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH CCNK.
[13]"FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH."
Wada T., Orphanides G., Hasegawa J., Kim D.-K., Shima D., Yamaguchi Y., Fukuda A., Hisatake K., Oh S., Reinberg D., Handa H.
Mol. Cell 5:1067-1072(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[14]"Domains in the SPT5 protein that modulate its transcriptional regulatory properties."
Ivanov D., Kwak Y.T., Guo J., Gaynor R.B.
Mol. Cell. Biol. 20:2970-2983(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[15]"CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA."
Garber M.E., Mayall T.P., Suess E.M., Meisenhelder J., Thompson N.E., Jones K.A.
Mol. Cell. Biol. 20:6958-6969(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION BY PKA, AUTOPHOSPHORYLATION, PHOSPHORYLATION AT SER-347; THR-350; SER-353; THR-354 AND SER-357, INTERACTION WITH HIV TAT, MUTAGENESIS OF 347-SER--SER-357 AND ASP-167.
[16]"Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase."
Kim J.B., Sharp P.A.
J. Biol. Chem. 276:12317-12323(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, MUTAGENESIS OF ASP-167 AND THR-186.
[17]"DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation."
Ping Y.-H., Rana T.M.
J. Biol. Chem. 276:12951-12958(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[18]"The peptidyl-prolyl isomerase Pin1 interacts with hSpt5 phosphorylated by Cdk9."
Lavoie S.B., Albert A.L., Handa H., Vincent M., Bensaude O.
J. Mol. Biol. 312:675-685(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[19]"P-TEFb containing cyclin K and Cdk9 can activate transcription via RNA."
Lin X., Taube R., Fujinaga K., Peterlin B.M.
J. Biol. Chem. 277:16873-16878(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH CCNK/CYCLIN K.
[20]"MCEF, the newest member of the AF4 family of transcription factors involved in leukemia, is a positive transcription elongation factor-b-associated protein."
Estable M.C., Naghavi M.H., Kato H., Xiao H., Qin J., Vahlne A., Roeder R.G.
J. Biomed. Sci. 9:234-245(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH AFF4.
[21]"CDK9 has the intrinsic property to shuttle between nucleus and cytoplasm, and enhanced expression of cyclin T1 promotes its nuclear localization."
Napolitano G., Licciardo P., Carbone R., Majello B., Lania L.
J. Cell. Physiol. 192:209-215(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION.
[22]"Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences."
Bourgeois C.F., Kim Y.K., Churcher M.J., West M.J., Karn J.
Mol. Cell. Biol. 22:1079-1093(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[23]"Activation of MyoD-dependent transcription by cdk9/cyclin T2."
Simone C., Stiegler P., Bagella L., Pucci B., Bellan C., De Falco G., De Luca A., Guanti G., Puri P.L., Giordano A.
Oncogene 21:4137-4148(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS MYOD1 KINASE, INTERACTION WITH MYOD1 AND CCNT2.
[24]"Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties."
Kwak Y.T., Guo J., Prajapati S., Park K.-J., Surabhi R.M., Miller B., Gehrig P., Gaynor R.B.
Mol. Cell 11:1055-1066(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SUPT5H.
[25]"Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription."
Zhou M., Deng L., Lacoste V., Park H.U., Pumfery A., Kashanchi F., Brady J.N., Kumar A.
J. Virol. 78:13522-13533(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[26]"Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element."
Fujinaga K., Irwin D., Huang Y., Taube R., Kurosu T., Peterlin B.M.
Mol. Cell. Biol. 24:787-795(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[27]"Analysis of the large inactive P-TEFb complex indicates that it contains one 7SK molecule, a dimer of HEXIM1 or HEXIM2, and two P-TEFb molecules containing Cdk9 phosphorylated at threonine 186."
Li Q., Price J.P., Byers S.A., Cheng D., Peng J., Price D.H.
J. Biol. Chem. 280:28819-28826(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN INACTIVE 7SK SNRNP COMPLEX, PHOSPHORYLATION AT THR-186.
[28]"The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription."
Jang M.K., Mochizuki K., Zhou M., Jeong H.S., Brady J.N., Ozato K.
Mol. Cell 19:523-534(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH BRD4.
[29]"Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4."
Yang Z., Yik J.H., Chen R., He N., Jang M.K., Ozato K., Zhou Q.
Mol. Cell 19:535-545(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH BRD4.
[30]"The functional role of an interleukin 6-inducible CDK9.STAT3 complex in human gamma-fibrinogen gene expression."
Hou T., Ray S., Brasier A.R.
J. Biol. Chem. 282:37091-37102(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN CYTOKINE SIGNALING, INTERACTION WITH STAT3.
[31]"Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme."
Jeronimo C., Forget D., Bouchard A., Li Q., Chua G., Poitras C., Therien C., Bergeron D., Bourassa S., Greenblatt J., Chabot B., Poirier G.G., Hughes T.R., Blanchette M., Price D.H., Coulombe B.
Mol. Cell 27:262-274(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN THE 7SK SNRNP COMPLEX.
[32]"Regulation of P-TEFb elongation complex activity by CDK9 acetylation."
Fu J., Yoon H.-G., Qin J., Wong J.
Mol. Cell. Biol. 27:4641-4651(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION AT LYS-44 BY P300/CBP, IDENTIFICATION IN COMPLEX WITH NCOR1; HEXIM1 AND HDAC3, MUTAGENESIS OF LYS-44.
[33]"PP2B and PP1alpha cooperatively disrupt 7SK snRNP to release P-TEFb for transcription in response to Ca2+ signaling."
Chen R., Liu M., Li H., Xue Y., Ramey W.N., He N., Ai N., Luo H., Zhu Y., Zhou N., Zhou Q.
Genes Dev. 22:1356-1368(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT THR-186, DEPHOSPHORYLATION BY PPP1CA, P-TEFB/7SK SNRNP COMPLEX, SUBUNIT, INTERACTION WITH BRD4, ENZYME REGULATION.
[34]"Phosphatase PPM1A regulates phosphorylation of Thr-186 in the Cdk9 T-loop."
Wang Y., Dow E.C., Liang Y.Y., Ramakrishnan R., Liu H., Sung T.L., Lin X., Rice A.P.
J. Biol. Chem. 283:33578-33584(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT THR-186, DEPHOSPHORYLATION BY PPM1A AND PPM1B.
[35]"A La-related protein modulates 7SK snRNP integrity to suppress P-TEFb-dependent transcriptional elongation and tumorigenesis."
He N., Jahchan N.S., Hong E., Li Q., Bayfield M.A., Maraia R.J., Luo K., Zhou Q.
Mol. Cell 29:588-599(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN COMPLEX WITH LARP7 IN 7SK SNRNP COMPLEX.
[36]"Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle."
Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R., Greff Z., Keri G., Stemmann O., Mann M.
Mol. Cell 31:438-448(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-347, PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-35 (ISOFORM 2), IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[37]"Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription."
Sabo A., Lusic M., Cereseto A., Giacca M.
Mol. Cell. Biol. 28:2201-2212(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION AT LYS-44 AND LYS-48 BY PCAF/KAT2B AND GCN5/KAT2A, ENZYME REGULATION BY ACETYLATION, SUBCELLULAR LOCATION.
[38]"RelA Ser276 phosphorylation is required for activation of a subset of NF-kappaB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes."
Nowak D.E., Tian B., Jamaluddin M., Boldogh I., Vergara L.A., Choudhary S., Brasier A.R.
Mol. Cell. Biol. 28:3623-3638(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN CYTOKINE SIGNALING, INTERACTION WITH RELA/P65.
[39]"Insights into the function of the human P-TEFb component CDK9 in the regulation of chromatin modifications and co-transcriptional mRNA processing."
Pirngruber J., Shchebet A., Johnsen S.A.
Cell Cycle 8:3636-3642(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN HISTONE REGULATION.
[40]"CDK9 directs H2B monoubiquitination and controls replication-dependent histone mRNA 3'-end processing."
Pirngruber J., Shchebet A., Schreiber L., Shema E., Minsky N., Chapman R.D., Eick D., Aylon Y., Oren M., Johnsen S.A.
EMBO Rep. 10:894-900(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN HISTONE H2B UBIQUITINATION.
[41]"Large-scale proteomics analysis of the human kinome."
Oppermann F.S., Gnad F., Olsen J.V., Hornberger R., Greff Z., Keri G., Mann M., Daub H.
Mol. Cell. Proteomics 8:1751-1764(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-347 AND THR-350, PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-35 (ISOFORM 2), IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[42]"55K isoform of CDK9 associates with Ku70 and is involved in DNA repair."
Liu H., Herrmann C.H., Chiang K., Sung T.L., Moon S.H., Donehower L.A., Rice A.P.
Biochem. Biophys. Res. Commun. 397:245-250(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DNA REPAIR, INTERACTION WITH KU70/XRCC6.
[43]"Cyclin-dependent kinase 9-cyclin K functions in the replication stress response."
Yu D.S., Zhao R., Hsu E.L., Cayer J., Ye F., Guo Y., Shyr Y., Cortez D.
EMBO Rep. 11:876-882(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN CDK9/CYCLIN K COMPLEX DURING REPLICATION STRESS.
[44]"Cyclin-dependent kinase-9 is a component of the p300/GATA4 complex required for phenylephrine-induced hypertrophy in cardiomyocytes."
Sunagawa Y., Morimoto T., Takaya T., Kaichi S., Wada H., Kawamura T., Fujita M., Shimatsu A., Kita T., Hasegawa K.
J. Biol. Chem. 285:9556-9568(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN CARDIAC HYPERTROPHY, IDENTIFICATION IN COMPLEX WITH CCNT1/CYCLIN-T1; EP300 AND GATA4.
[45]"HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription."
He N., Liu M., Hsu J., Xue Y., Chou S., Burlingame A., Krogan N.J., Alber T., Zhou Q.
Mol. Cell 38:428-438(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN THE SEC COMPLEX.
[46]"AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia."
Lin C., Smith E.R., Takahashi H., Lai K.C., Martin-Brown S., Florens L., Washburn M.P., Conaway J.W., Conaway R.C., Shilatifard A.
Mol. Cell 37:429-437(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN THE SEC COMPLEX.
[47]"CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation."
Gordon V., Bhadel S., Wunderlich W., Zhang J., Ficarro S.B., Mollah S.A., Shabanowitz J., Hunt D.F., Xenarios I., Hahn W.C., Conaway M., Carey M.F., Gioeli D.
Mol. Endocrinol. 24:2267-2280(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN AR KINASE, INTERACTION WITH AR.
[48]"Initial characterization of the human central proteome."
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17-17(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[49]"System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation."
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J., Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V., Blagoev B.
Sci. Signal. 4:RS3-RS3(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-186, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[50]"CDKI-71, a novel CDK9 inhibitor, is preferentially cytotoxic to cancer cells compared to flavopiridol."
Liu X., Shi S., Lam F., Pepper C., Fischer P.M., Wang S.
Int. J. Cancer 130:1216-1226(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: ENZYME REGULATION BY CDKI-71.
[51]"Transcription factor IIS cooperates with the E3 ligase UBR5 to ubiquitinate the CDK9 subunit of the positive transcription elongation factor B."
Cojocaru M., Bouchard A., Cloutier P., Cooper J.J., Varzavand K., Price D.H., Coulombe B.
J. Biol. Chem. 286:5012-5022(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS RPB1/POLR2A CTD KINASE, POLYUBIQUITINATION BY UBR5, INTERACTION WITH UBR5 AND TFIIS/TCEA1.
[52]"Cdk9 T-loop phosphorylation is regulated by the calcium signaling pathway."
Ramakrishnan R., Rice A.P.
J. Cell. Physiol. 227:609-617(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT THR-186, ENZYME REGULATION, DEGRADATION BY THE PROTEASOME, MUTAGENESIS OF THR-186.
[53]"Protein phosphatase-1 activates CDK9 by dephosphorylating Ser175."
Ammosova T., Obukhov Y., Kotelkin A., Breuer D., Beullens M., Gordeuk V.R., Bollen M., Nekhai S.
PLoS ONE 6:E18985-E18985(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: DEPHOSPHORYLATION AT SER-175 BY PP1, MUTAGENESIS OF SER-175.
[54]"Controlling the elongation phase of transcription with P-TEFb."
Peterlin B.M., Price D.H.
Mol. Cell 23:297-305(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON NELF AND DSIF KINASE ACTIVITY.
[55]"Expanding role of cyclin dependent kinases in cytokine inducible gene expression."
Brasier A.R.
Cell Cycle 7:2661-2666(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON CYTOKINE SIGNALING.
[56]"Role of the cyclin-dependent kinase 9-related pathway in mammalian gene expression and human diseases."
Romano G., Giordano A.
Cell Cycle 7:3664-3668(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON TRANSCRIPTION REGULATION, INHIBITORS.
[57]"Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology."
Wang S., Fischer P.M.
Trends Pharmacol. Sci. 29:302-313(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON TRANSCRIPTION REGULATION, INHIBITORS.
[58]"Cell cycle, CDKs and cancer: a changing paradigm."
Malumbres M., Barbacid M.
Nat. Rev. Cancer 9:153-166(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: ENZYME REGULATION, GENE FAMILY.
[59]"Pharmacological targeting of CDK9 in cardiac hypertrophy."
Krystof V., Chamrad I., Jorda R., Kohoutek J.
Med. Res. Rev. 30:646-666(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON CARDIAC HYPERTROPHY, INHIBITORS.
[60]"A role for cdk9-cyclin k in maintaining genome integrity."
Yu D.S., Cortez D.
Cell Cycle 10:28-32(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON GENOME INTEGRITY MAINTENANCE.
[61]"Crystal structure of HIV-1 Tat complexed with human P-TEFb."
Tahirov T.H., Babayeva N.D., Varzavand K., Cooper J.J., Sedore S.C., Price D.H.
Nature 465:747-751(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.10 ANGSTROMS) OF 1-345 IN COMPLEX WITH HIV-1 TAT AND CCNT1, PHOSPHORYLATION AT THR-186.
[62]"The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation."
Baumli S., Lolli G., Lowe E.D., Troiani S., Rusconi L., Bullock A.N., Debreczeni J.E., Knapp S., Johnson L.N.
EMBO J. 27:1907-1918(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.48 ANGSTROMS) OF 2-330 IN COMPLEX WITH INHIBITOR FLAVOPIRIDOL; ATP AND CCNT1, PHOSPHORYLATION AT THR-186 SER347; THR362 AND THR363, AUTOPHOSPHORYLATION, MUTAGENESIS OF THR-186.
[63]"Halogen bonds form the basis for selective P-TEFb inhibition by DRB."
Baumli S., Endicott J.A., Johnson L.N.
Chem. Biol. 17:931-936(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.80 ANGSTROMS) OF 2-330 IN COMPLEX WITH INHIBITOR DRB, PHOSPHORYLATION AT THR-186.
[64]"CDK inhibitors roscovitine and CR8 trigger Mcl-1 down-regulation and apoptotic cell death in neuroblastoma cells."
Bettayeb K., Baunbaek D., Delehouze C., Loaec N., Hole A.J., Baumli S., Endicott J.A., Douc-Rasy S., Benard J., Oumata N., Galons H., Meijer L.
Genes Cancer 1:369-380(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (3.00 ANGSTROMS) OF 2-330 IN COMPLEX WITH CCNT1; INHIBITORS ROSCOVITINE AND CR8, PHOSPHORYLATION AT THR-186, ENZYME REGULATION.
[65]"Patterns of somatic mutation in human cancer genomes."
Greenman C., Stephens P., Smith R., Dalgliesh G.L., Hunter C., Bignell G., Davies H., Teague J., Butler A., Stevens C., Edkins S., O'Meara S., Vastrik I., Schmidt E.E., Avis T., Barthorpe S., Bhamra G., Buck G. expand/collapse author list , Choudhury B., Clements J., Cole J., Dicks E., Forbes S., Gray K., Halliday K., Harrison R., Hills K., Hinton J., Jenkinson A., Jones D., Menzies A., Mironenko T., Perry J., Raine K., Richardson D., Shepherd R., Small A., Tofts C., Varian J., Webb T., West S., Widaa S., Yates A., Cahill D.P., Louis D.N., Goldstraw P., Nicholson A.G., Brasseur F., Looijenga L., Weber B.L., Chiew Y.-E., DeFazio A., Greaves M.F., Green A.R., Campbell P., Birney E., Easton D.F., Chenevix-Trench G., Tan M.-H., Khoo S.K., Teh B.T., Yuen S.T., Leung S.Y., Wooster R., Futreal P.A., Stratton M.R.
Nature 446:153-158(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT [LARGE SCALE ANALYSIS] LEU-59.
+Additional computationally mapped references.

Web resources

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
L25676 mRNA. Translation: AAA35668.1.
X80230 mRNA. Translation: CAA56516.1.
AF255306 Genomic DNA. Translation: AAF72183.1.
BT019903 mRNA. Translation: AAV38706.1.
AF517840 Genomic DNA. Translation: AAM54039.1.
AL162586 Genomic DNA. Translation: CAI39767.1. Sequence problems.
AL162586 Genomic DNA. Translation: CAI39768.1.
BC001968 mRNA. Translation: AAH01968.1.
PIRA55262.
RefSeqNP_001252.1. NM_001261.3.
UniGeneHs.150423.
Hs.706809.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1PF6model-A1-372[»]
3BLHX-ray2.48A2-330[»]
3BLQX-ray2.90A2-330[»]
3BLRX-ray2.80A2-330[»]
3LQ5X-ray3.00A2-330[»]
3MI9X-ray2.10A1-345[»]
3MIAX-ray3.00A1-345[»]
3MY1X-ray2.80A2-330[»]
3TN8X-ray2.95A2-330[»]
3TNHX-ray3.20A2-330[»]
3TNIX-ray3.23A2-330[»]
4BCFX-ray3.01A2-330[»]
4BCGX-ray3.08A2-330[»]
4BCHX-ray2.96A2-330[»]
4BCIX-ray3.10A2-330[»]
4BCJX-ray3.16A2-330[»]
4EC8X-ray3.60A2-372[»]
4EC9X-ray3.21A2-372[»]
4IMYX-ray2.94A/C/E1-330[»]
ProteinModelPortalP50750.
SMRP50750. Positions 6-327.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid107459. 253 interactions.
DIPDIP-29016N.
IntActP50750. 54 interactions.
MINTMINT-1532814.
STRING9606.ENSP00000362361.

Chemistry

BindingDBP50750.
ChEMBLCHEMBL3116.
GuidetoPHARMACOLOGY1981.

PTM databases

PhosphoSiteP50750.

Polymorphism databases

DMDM68067660.

Proteomic databases

PaxDbP50750.
PRIDEP50750.

Protocols and materials databases

DNASU1025.
StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000373264; ENSP00000362361; ENSG00000136807. [P50750-1]
ENST00000373265; ENSP00000362362; ENSG00000136807. [P50750-2]
GeneID1025.
KEGGhsa:1025.
UCSCuc004bse.2. human. [P50750-1]

Organism-specific databases

CTD1025.
GeneCardsGC09P130547.
HGNCHGNC:1780. CDK9.
HPACAB004216.
HPA006738.
MIM603251. gene.
neXtProtNX_P50750.
PharmGKBPA26316.
GenAtlasSearch...

Phylogenomic databases

eggNOGCOG0515.
HOGENOMHOG000233024.
HOVERGENHBG014652.
InParanoidP50750.
KOK02211.
OMALMDNEKE.
OrthoDBEOG76DTSM.
PhylomeDBP50750.
TreeFamTF101039.

Enzyme and pathway databases

BRENDA2.7.11.22. 2681.
ReactomeREACT_111102. Signal Transduction.
REACT_116125. Disease.
REACT_1788. Transcription.
REACT_1892. Elongation arrest and recovery.
REACT_71. Gene Expression.
SignaLinkP50750.

Gene expression databases

BgeeP50750.
CleanExHS_CDK9.
GenevestigatorP50750.

Family and domain databases

InterProIPR011009. Kinase-like_dom.
IPR000719. Prot_kinase_dom.
IPR017441. Protein_kinase_ATP_BS.
IPR002290. Ser/Thr_dual-sp_kinase_dom.
IPR008271. Ser/Thr_kinase_AS.
[Graphical view]
PfamPF00069. Pkinase. 1 hit.
[Graphical view]
SMARTSM00220. S_TKc. 1 hit.
[Graphical view]
SUPFAMSSF56112. SSF56112. 1 hit.
PROSITEPS00107. PROTEIN_KINASE_ATP. 1 hit.
PS50011. PROTEIN_KINASE_DOM. 1 hit.
PS00108. PROTEIN_KINASE_ST. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

ChiTaRSCDK9. human.
EvolutionaryTraceP50750.
GeneWikiCDK9.
Cyclin-dependent_kinase_9.
GenomeRNAi1025.
NextBio4305.
PROP50750.
SOURCESearch...

Entry information

Entry nameCDK9_HUMAN
AccessionPrimary (citable) accession number: P50750
Secondary accession number(s): Q5JU24 expand/collapse secondary AC list , Q5JU25, Q5U006, Q96TF1
Entry history
Integrated into UniProtKB/Swiss-Prot: October 1, 1996
Last sequence update: June 21, 2005
Last modified: April 16, 2014
This is version 161 of the entry and version 3 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

Human and mouse protein kinases

Human and mouse protein kinases: classification and index

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 9

Human chromosome 9: entries, gene names and cross-references to MIM