Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P49711 (CTCF_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 143. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (6) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Alt products·Sequence annotation·Sequences·References·Web links·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Transcriptional repressor CTCF
Alternative name(s):
11-zinc finger protein
CCCTC-binding factor
CTCFL paralog
Gene names
Name:CTCF
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length727 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Chromatin binding factor that binds to DNA sequence specific sites. Involved in transcriptional regulation by binding to chromatin insulators and preventing interaction between promoter and nearby enhancers and silencers. Acts as transcriptional repressor binding to promoters of vertebrate MYC gene and BAG1 gene. Also binds to the PLK and PIM1 promoters. Acts as a transcriptional activator of APP. Regulates APOA1/C3/A4/A5 gene cluster and controls MHC class II gene expression. Plays an essential role in oocyte and preimplantation embryo development by activating or repressing transcription. Seems to act as tumor suppressor. Plays a critical role in the epigenetic regulation. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, binding within the H19 imprinting control region (ICR) mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to IGF2. Plays a critical role in gene silencing over considerable distances in the genome. Preferentially interacts with unmethylated DNA, preventing spreading of CpG methylation and maintaining methylation-free zones. Inversely, binding to target sites is prevented by CpG methylation. Plays a important role in chromatin remodeling. Can dimerize when it is bound to different DNA sequences, mediating long-range chromatin looping. Mediates interchromosomal association between IGF2/H19 and WSB1/NF1 and may direct distant DNA segments to a common transcription factory. Causes local loss of histone acetylation and gain of histone methylation in the beta-globin locus, without affecting transcription. When bound to chromatin, it provides an anchor point for nucleosomes positioning. Seems to be essential for homologous X-chromosome pairing. May participate with Tsix in establishing a regulatable epigenetic switch for X chromosome inactivation. May play a role in preventing the propagation of stable methylation at the escape genes from X- inactivation. Involved in sister chromatid cohesion. Associates with both centromeres and chromosomal arms during metaphase and required for cohesin localization to CTCF sites. Regulates asynchronous replication of IGF2/H19. Ref.1 Ref.2 Ref.11 Ref.15 Ref.16 Ref.17 Ref.18 Ref.19 Ref.21 Ref.22

Subunit structure

Interacts with CHD8. Ref.14

Subcellular location

Nucleusnucleoplasm. Chromosome. Chromosomecentromere. Note: May translocate to the nucleolus upon cell differentiation. Associates with both centromeres and chromosomal arms during metaphase. Associates with the H19 ICR in mitotic chromosomes. May be preferentially excluded from heterochromatin during interphase. Ref.1 Ref.12 Ref.13 Ref.21

Tissue specificity

Ubiquitous. Absent in primary spermatocytes. Ref.2

Domain

The 11 zinc fingers are highly conserved among vertebrates, exhibiting almost identical amino acid sequences. Different subsets or combination of individual zinc fingers gives the ability to CTCF to recognize multiple DNA target sites.

Post-translational modification

Sumoylated on Lys-74 and Lys-689; sumoylation of CTCF contributes to the repressive function of CTCF on the MYC P2 promoter By similarity.

Involvement in disease

Mental retardation, autosomal dominant 21 (MRD21) [MIM:615502]: A disorder characterized by significantly below average general intellectual functioning associated with impairments in adaptive behavior and manifested during the developmental period. Additional MRD21 features include short stature, microcephaly, and developmental delay.
Note: The disease is caused by mutations affecting the gene represented in this entry. Ref.30

Miscellaneous

More than 13'00 CTCF-binding sites in potential insulators were identified in the human genome.

Sequence similarities

Belongs to the CTCF zinc-finger protein family.

Contains 11 C2H2-type zinc fingers.

Sequence caution

The sequence BAD93030.1 differs from that shown. Reason: Erroneous initiation. Translation N-terminally shortened.

Ontologies

Keywords
   Biological processChromosome partition
Transcription
Transcription regulation
   Cellular componentCentromere
Chromosome
Nucleus
   Coding sequence diversityAlternative splicing
Polymorphism
   DiseaseDisease mutation
Mental retardation
Tumor suppressor
   DomainRepeat
Zinc-finger
   LigandDNA-binding
Metal-binding
Zinc
   Molecular functionActivator
Chromatin regulator
Repressor
   PTMAcetylation
Isopeptide bond
Phosphoprotein
Ubl conjugation
   Technical term3D-structure
Complete proteome
Direct protein sequencing
Reference proteome
Gene Ontology (GO)
   Biological_processchromatin modification

Inferred from electronic annotation. Source: UniProtKB-KW

chromosome segregation

Inferred from electronic annotation. Source: UniProtKB-KW

maintenance of DNA methylation

Inferred from electronic annotation. Source: Ensembl

negative regulation of transcription, DNA-templated

Inferred from direct assay Ref.17Ref.1. Source: UniProtKB

nucleosome positioning

Inferred from direct assay Ref.19. Source: UniProtKB

positive regulation of gene expression

Inferred from mutant phenotype Ref.18. Source: UniProtKB

positive regulation of transcription, DNA-templated

Inferred from direct assay Ref.9. Source: UniProtKB

regulation of centromeric sister chromatid cohesion

Non-traceable author statement Ref.21. Source: UniProtKB

regulation of gene expression by genetic imprinting

Inferred from electronic annotation. Source: Ensembl

regulation of gene expression, epigenetic

Inferred from mutant phenotype Ref.15. Source: UniProtKB

regulation of histone acetylation

Inferred from electronic annotation. Source: Ensembl

regulation of histone methylation

Inferred from electronic annotation. Source: Ensembl

regulation of molecular function, epigenetic

Inferred from mutant phenotype Ref.15. Source: UniProtKB

transcription, DNA-templated

Inferred from electronic annotation. Source: UniProtKB-KW

   Cellular_componentchromosome, centromeric region

Inferred from direct assay Ref.21. Source: UniProtKB

condensed chromosome

Inferred from direct assay Ref.12. Source: UniProtKB

nucleolus

Inferred from direct assay Ref.13. Source: UniProtKB

nucleoplasm

Inferred from direct assay Ref.12Ref.13. Source: UniProtKB

nucleus

Inferred from direct assay Ref.9. Source: UniProtKB

   Molecular_functionchromatin insulator sequence binding

Inferred from direct assay Ref.16. Source: UniProtKB

protein binding

Inferred from physical interaction PubMed 19505873. Source: UniProtKB

sequence-specific DNA binding

Inferred from direct assay Ref.16. Source: UniProtKB

sequence-specific DNA binding transcription factor activity

Inferred from direct assay Ref.1Ref.2. Source: UniProtKB

transcription corepressor activity

Traceable author statement Ref.1. Source: ProtInc

transcription regulatory region DNA binding

Inferred from direct assay Ref.17. Source: UniProtKB

zinc ion binding

Traceable author statement Ref.1. Source: UniProtKB

Complete GO annotation...

Alternative products

This entry describes 2 isoforms produced by alternative splicing. [Align] [Select]
Isoform 1 (identifier: P49711-1)

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Isoform 2 (identifier: P49711-2)

The sequence of this isoform differs from the canonical sequence as follows:
     1-328: Missing.
Note: No experimental confirmation available.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 727727Transcriptional repressor CTCF
PRO_0000047228

Regions

Zinc finger266 – 28823C2H2-type 1
Zinc finger294 – 31623C2H2-type 2
Zinc finger322 – 34524C2H2-type 3
Zinc finger351 – 37323C2H2-type 4
Zinc finger379 – 40123C2H2-type 5
Zinc finger407 – 43024C2H2-type 6
Zinc finger437 – 46024C2H2-type 7
Zinc finger467 – 48923C2H2-type 8
Zinc finger495 – 51723C2H2-type 9
Zinc finger523 – 54624C2H2-type 10
Zinc finger555 – 57723C2H2-type 11; atypical

Amino acid modifications

Modified residue11N-acetylmethionine Ref.28
Modified residue2891Phosphothreonine Ref.25
Modified residue3171Phosphothreonine Ref.25
Modified residue3741Phosphothreonine Ref.20
Modified residue4021Phosphoserine Ref.20
Modified residue6091Phosphoserine Ref.20 Ref.25 Ref.27
Modified residue6101Phosphoserine Ref.20 Ref.25 Ref.27
Modified residue6121Phosphoserine Ref.20 Ref.25 Ref.27
Cross-link74Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO) By similarity
Cross-link689Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO) By similarity

Natural variations

Alternative sequence1 – 328328Missing in isoform 2.
VSP_045350
Natural variant3391R → W in a Wilms' tumor. Ref.3
VAR_013141
Natural variant3441K → E in a breast tumor. Ref.3
VAR_013142
Natural variant3451H → R in a prostate tumor. Ref.3
VAR_013143
Natural variant4481R → Q in a Wilms' tumor. Ref.3
VAR_013144
Natural variant5671R → W in MRD21. Ref.30
VAR_070776

Secondary structure

............................ 727
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Isoform 1 [UniParc].

Last modified October 1, 1996. Version 1.
Checksum: 2110538B65DC5706

FASTA72782,785
        10         20         30         40         50         60 
MEGDAVEAIV EESETFIKGK ERKTYQRRRE GGQEEDACHL PQNQTDGGEV VQDVNSSVQM 

        70         80         90        100        110        120 
VMMEQLDPTL LQMKTEVMEG TVAPEAEAAV DDTQIITLQV VNMEEQPINI GELQLVQVPV 

       130        140        150        160        170        180 
PVTVPVATTS VEELQGAYEN EVSKEGLAES EPMICHTLPL PEGFQVVKVG ANGEVETLEQ 

       190        200        210        220        230        240 
GELPPQEDPS WQKDPDYQPP AKKTKKTKKS KLRYTEEGKD VDVSVYDFEE EQQEGLLSEV 

       250        260        270        280        290        300 
NAEKVVGNMK PPKPTKIKKK GVKKTFQCEL CSYTCPRRSN LDRHMKSHTD ERPHKCHLCG 

       310        320        330        340        350        360 
RAFRTVTLLR NHLNTHTGTR PHKCPDCDMA FVTSGELVRH RRYKHTHEKP FKCSMCDYAS 

       370        380        390        400        410        420 
VEVSKLKRHI RSHTGERPFQ CSLCSYASRD TYKLKRHMRT HSGEKPYECY ICHARFTQSG 

       430        440        450        460        470        480 
TMKMHILQKH TENVAKFHCP HCDTVIARKS DLGVHLRKQH SYIEQGKKCR YCDAVFHERY 

       490        500        510        520        530        540 
ALIQHQKSHK NEKRFKCDQC DYACRQERHM IMHKRTHTGE KPYACSHCDK TFRQKQLLDM 

       550        560        570        580        590        600 
HFKRYHDPNF VPAAFVCSKC GKTFTRRNTM ARHADNCAGP DGVEGENGGE TKKSKRGRKR 

       610        620        630        640        650        660 
KMRSKKEDSS DSENAEPDLD DNEDEEEPAV EIEPEPEPQP VTPAPPPAKK RRGRPPGRTN 

       670        680        690        700        710        720 
QPKQNQPTAI IQVEDQNTGA IENIIVEVKK EPDAEPAEGE EEEAQPAATD APNGDLTPEM 


ILSMMDR 

« Hide

Isoform 2 [UniParc].

Checksum: FEB74DFBADCF586A
Show »

FASTA39945,998

References

« Hide 'large scale' references
[1]"An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes."
Filippova G.N., Fagerlie S., Klenova E.M., Myers C., Dehner Y., Goodwin G., Neiman P.E., Collins S.J., Lobanenkov V.V.
Mol. Cell. Biol. 16:2802-2813(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), FUNCTION, SUBCELLULAR LOCATION.
[2]"A widely expressed transcription factor with multiple DNA sequence specificity, CTCF, is localized at chromosome segment 16q22.1 within one of the smallest regions of overlap for common deletions in breast and prostate cancers."
Filippova G.N., Lindblom A., Meincke L.J., Klenova E.M., Neiman P.E., Collins S.J., Doggett N.A., Lobanenkov V.V.
Genes Chromosomes Cancer 22:26-36(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], FUNCTION, TISSUE SPECIFICITY.
[3]"Tumor-associated zinc finger mutations in the CTCF transcription factor selectively alter its DNA-binding specificity."
Filippova G.N., Qi C.-F., Ulmer J.E., Moore J.M., Ward M.D., Hu Y.J., Loukinov D.I., Pugacheva E.M., Klenova E.M., Grundy P.E., Feinberg A.P., Cleton-Jansen A.-M., Moerland E.W., Cornelisse C.J., Suzuki H., Komiya A., Lindblom A., Dorion-Bonnet F. expand/collapse author list , Neiman P.E., Morse H.C. III, Collins S.J., Lobanenkov V.V.
Cancer Res. 62:48-52(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], VARIANTS WILMS TUMOR TRP-339 AND GLN-448, VARIANT BREAST TUMOR GLU-344, VARIANT PROSTATE TUMOR ARG-345.
[4]"Cloning of human full-length CDSs in BD Creator(TM) system donor vector."
Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S., Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y., Phelan M., Farmer A.
Submitted (AUG-2003) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
[5]"Homo sapiens protein coding cDNA."
Totoki Y., Toyoda A., Takeda T., Sakaki Y., Tanaka A., Yokoyama S., Ohara O., Nagase T., Kikuno R.F.
Submitted (MAR-2005) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2).
Tissue: Brain.
[6]"The sequence and analysis of duplication-rich human chromosome 16."
Martin J., Han C., Gordon L.A., Terry A., Prabhakar S., She X., Xie G., Hellsten U., Chan Y.M., Altherr M., Couronne O., Aerts A., Bajorek E., Black S., Blumer H., Branscomb E., Brown N.C., Bruno W.J. expand/collapse author list , Buckingham J.M., Callen D.F., Campbell C.S., Campbell M.L., Campbell E.W., Caoile C., Challacombe J.F., Chasteen L.A., Chertkov O., Chi H.C., Christensen M., Clark L.M., Cohn J.D., Denys M., Detter J.C., Dickson M., Dimitrijevic-Bussod M., Escobar J., Fawcett J.J., Flowers D., Fotopulos D., Glavina T., Gomez M., Gonzales E., Goodstein D., Goodwin L.A., Grady D.L., Grigoriev I., Groza M., Hammon N., Hawkins T., Haydu L., Hildebrand C.E., Huang W., Israni S., Jett J., Jewett P.B., Kadner K., Kimball H., Kobayashi A., Krawczyk M.-C., Leyba T., Longmire J.L., Lopez F., Lou Y., Lowry S., Ludeman T., Manohar C.F., Mark G.A., McMurray K.L., Meincke L.J., Morgan J., Moyzis R.K., Mundt M.O., Munk A.C., Nandkeshwar R.D., Pitluck S., Pollard M., Predki P., Parson-Quintana B., Ramirez L., Rash S., Retterer J., Ricke D.O., Robinson D.L., Rodriguez A., Salamov A., Saunders E.H., Scott D., Shough T., Stallings R.L., Stalvey M., Sutherland R.D., Tapia R., Tesmer J.G., Thayer N., Thompson L.S., Tice H., Torney D.C., Tran-Gyamfi M., Tsai M., Ulanovsky L.E., Ustaszewska A., Vo N., White P.S., Williams A.L., Wills P.L., Wu J.-R., Wu K., Yang J., DeJong P., Bruce D., Doggett N.A., Deaven L., Schmutz J., Grimwood J., Richardson P., Rokhsar D.S., Eichler E.E., Gilna P., Lucas S.M., Myers R.M., Rubin E.M., Pennacchio L.A.
Nature 432:988-994(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[7]Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L., Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R., Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V., Hannenhalli S., Turner R. expand/collapse author list , Yooseph S., Lu F., Nusskern D.R., Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H., Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G., Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W., Venter J.C.
Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[8]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
Tissue: Placenta.
[9]"The zinc finger protein CTCF binds to the APBbeta domain of the amyloid beta-protein precursor promoter. Evidence for a role in transcriptional activation."
Vostrov A.A., Quitschke W.W.
J. Biol. Chem. 272:33353-33359(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 471-479 AND 483-487, TRANSCRIPTIONAL ACTIVATION OF APP.
[10]"The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer."
Klenova E.M., Morse H.C. III, Ohlsson R., Lobanenkov V.V.
Semin. Cancer Biol. 12:399-414(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW.
[11]"CTCF, a candidate trans-acting factor for X-inactivation choice."
Chao W., Huynh K.D., Spencer R.J., Davidow L.S., Lee J.T.
Science 295:345-347(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[12]"CTCF binding and higher order chromatin structure of the H19 locus are maintained in mitotic chromatin."
Burke L.J., Zhang R., Bartkuhn M., Tiwari V.K., Tavoosidana G., Kurukuti S., Weth C., Leers J., Galjart N., Ohlsson R., Renkawitz R.
EMBO J. 24:3291-3300(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION, ASSOCIATION WITH H19 ICR.
[13]"Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism."
Torrano V., Navascues J., Docquier F., Zhang R., Burke L.J., Chernukhin I., Farrar D., Leon J., Berciano M.T., Renkawitz R., Klenova E., Lafarga M., Delgado M.D.
J. Cell Sci. 119:1746-1759(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION.
[14]"CTCF-dependent chromatin insulator is linked to epigenetic remodeling."
Ishihara K., Oshimura M., Nakao M.
Mol. Cell 23:733-742(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CHD8.
[15]"CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2."
Kurukuti S., Tiwari V.K., Tavoosidana G., Pugacheva E., Murrell A., Zhao Z., Lobanenkov V., Reik W., Ohlsson R.
Proc. Natl. Acad. Sci. U.S.A. 103:10684-10689(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[16]"Critical DNA binding interactions of the insulator protein CTCF: a small number of zinc fingers mediate strong binding, and a single finger-DNA interaction controls binding at imprinted loci."
Renda M., Baglivo I., Burgess-Beusse B., Esposito S., Fattorusso R., Felsenfeld G., Pedone P.V.
J. Biol. Chem. 282:33336-33345(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[17]"DNA methyltransferase 1 and 3B activate BAG-1 expression via recruitment of CTCFL/BORIS and modulation of promoter histone methylation."
Sun L., Huang L., Nguyen P., Bisht K.S., Bar-Sela G., Ho A.S., Bradbury C.M., Yu W., Cui H., Lee S., Trepel J.B., Feinberg A.P., Gius D.
Cancer Res. 68:2726-2735(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[18]"The insulator factor CTCF controls MHC class II gene expression and is required for the formation of long-distance chromatin interactions."
Majumder P., Gomez J.A., Chadwick B.P., Boss J.M.
J. Exp. Med. 205:785-798(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[19]"The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome."
Fu Y., Sinha M., Peterson C.L., Weng Z.
PLoS Genet. 4:E1000138-E1000138(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[20]"A quantitative atlas of mitotic phosphorylation."
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E., Elledge S.J., Gygi S.P.
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-374; SER-402; SER-609; SER-610 AND SER-612, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[21]"CTCF physically links cohesin to chromatin."
Rubio E.D., Reiss D.J., Welcsh P.L., Disteche C.M., Filippova G.N., Baliga N.S., Aebersold R., Ranish J.A., Krumm A.
Proc. Natl. Acad. Sci. U.S.A. 105:8309-8314(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION.
[22]"Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster."
Mishiro T., Ishihara K., Hino S., Tsutsumi S., Aburatani H., Shirahige K., Kinoshita Y., Nakao M.
EMBO J. 28:1234-1245(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[23]"Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions."
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K., Rodionov V., Han D.K.
Sci. Signal. 2:RA46-RA46(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Leukemic T-cell.
[24]"Lysine acetylation targets protein complexes and co-regulates major cellular functions."
Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M., Walther T.C., Olsen J.V., Mann M.
Science 325:834-840(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[25]"Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis."
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L., Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.
Sci. Signal. 3:RA3-RA3(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-289; THR-317; SER-609; SER-610 AND SER-612, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[26]"Initial characterization of the human central proteome."
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17-17(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[27]"System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation."
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J., Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V., Blagoev B.
Sci. Signal. 4:RS3-RS3(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-609; SER-610 AND SER-612, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[28]"N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB."
Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A., Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E., Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K., Aldabe R.
Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[29]"Solution structure of zinc finger domains of transcriptional repressor CTCF protein."
RIKEN structural genomics initiative (RSGI)
Submitted (NOV-2005) to the PDB data bank
Cited for: STRUCTURE BY NMR OF 399-589.
[30]"De novo mutations in the genome organizer CTCF cause intellectual disability."
Gregor A., Oti M., Kouwenhoven E.N., Hoyer J., Sticht H., Ekici A.B., Kjaergaard S., Rauch A., Stunnenberg H.G., Uebe S., Vasileiou G., Reis A., Zhou H., Zweier C.
Am. J. Hum. Genet. 93:124-131(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT MRD21 TRP-567.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
U25435 mRNA. Translation: AAB07788.1.
AF145477 expand/collapse EMBL AC list , AF145468, AF145469, AF145470, AF145471, AF145472, AF145473, AF145474, AF145475, AF145476 Genomic DNA. Translation: AAF31318.1.
BT009915 mRNA. Translation: AAP88917.1.
AB209793 mRNA. Translation: BAD93030.1. Different initiation.
AC009095 Genomic DNA. No translation available.
AC027682 Genomic DNA. No translation available.
CH471092 Genomic DNA. Translation: EAW83142.1.
BC014267 mRNA. Translation: AAH14267.1.
CCDSCCDS10841.1. [P49711-1]
CCDS54029.1. [P49711-2]
PIRG01792.
RefSeqNP_001177951.1. NM_001191022.1. [P49711-2]
NP_006556.1. NM_006565.3. [P49711-1]
UniGeneHs.368367.

3D structure databases

PDBe
RCSB-PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1X6HNMR-A515-587[»]
2CT1NMR-A399-462[»]
ProteinModelPortalP49711.
SMRP49711. Positions 263-591.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid115906. 37 interactions.
DIPDIP-35252N.
IntActP49711. 9 interactions.
STRING9606.ENSP00000264010.

PTM databases

PhosphoSiteP49711.

Polymorphism databases

DMDM1706179.

Proteomic databases

MaxQBP49711.
PaxDbP49711.
PRIDEP49711.

Protocols and materials databases

DNASU10664.
StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000264010; ENSP00000264010; ENSG00000102974. [P49711-1]
ENST00000401394; ENSP00000384707; ENSG00000102974. [P49711-2]
GeneID10664.
KEGGhsa:10664.
UCSCuc002etl.3. human. [P49711-1]
uc002etm.1. human.

Organism-specific databases

CTD10664.
GeneCardsGC16P067596.
HGNCHGNC:13723. CTCF.
HPACAB062550.
HPA004122.
MIM604167. gene.
615502. phenotype.
neXtProtNX_P49711.
Orphanet363611. Intellectual disability-feeding difficulties-developmental delay-microcephaly syndrome.
PharmGKBPA26998.
GenAtlasSearch...

Phylogenomic databases

eggNOGCOG5048.
HOGENOMHOG000276534.
HOVERGENHBG000350.
InParanoidP49711.
OMAPPNQADG.
OrthoDBEOG71K632.
PhylomeDBP49711.
TreeFamTF106430.

Enzyme and pathway databases

SignaLinkP49711.

Gene expression databases

BgeeP49711.
CleanExHS_CTCF.
GenevestigatorP49711.

Family and domain databases

Gene3D3.30.160.60. 9 hits.
InterProIPR007087. Znf_C2H2.
IPR015880. Znf_C2H2-like.
IPR013087. Znf_C2H2/integrase_DNA-bd.
[Graphical view]
PfamPF00096. zf-C2H2. 1 hit.
[Graphical view]
SMARTSM00355. ZnF_C2H2. 11 hits.
[Graphical view]
PROSITEPS00028. ZINC_FINGER_C2H2_1. 8 hits.
PS50157. ZINC_FINGER_C2H2_2. 11 hits.
[Graphical view]
ProtoNetSearch...

Other

EvolutionaryTraceP49711.
GeneWikiCTCF.
GenomeRNAi10664.
NextBio40551.
PROP49711.
SOURCESearch...

Entry information

Entry nameCTCF_HUMAN
AccessionPrimary (citable) accession number: P49711
Secondary accession number(s): B5MC38, Q53XI7, Q59EL8
Entry history
Integrated into UniProtKB/Swiss-Prot: October 1, 1996
Last sequence update: October 1, 1996
Last modified: July 9, 2014
This is version 143 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 16

Human chromosome 16: entries, gene names and cross-references to MIM