Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P40073 (SHO1_YEAST) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 123. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (4) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
High osmolarity signaling protein SHO1
Alternative name(s):
Osmosensor SHO1
Suppressor of SUA8-1 mutation
Synthetic high osmolarity-sensitive protein 1
Gene names
Name:SHO1
Synonyms:SSU81
Ordered Locus Names:YER118C
OrganismSaccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [Reference proteome]
Taxonomic identifier559292 [NCBI]
Taxonomic lineageEukaryotaFungiDikaryaAscomycotaSaccharomycotinaSaccharomycetesSaccharomycetalesSaccharomycetaceaeSaccharomyces

Protein attributes

Sequence length367 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Plasma membrane osmosensor that activates the high osmolarity glycerol (HOG) MAPK signaling pathway in response to high osmolarity. Detects changes in external osmolarity and activates PBS2 through the stimulation of STE11 and targets PBS2 to the plasma membrane. PBS2 activation leads to changes in glycerol production that helps to balance the intracellular and external osmotic pressures. Activates also HOG1 in response to heat stress and mediates resistance to oxidative stress. Involved in the regulation of the mating pathway. May be a receptor that feeds into the pseudohyphal growth pathway. Ref.2 Ref.5 Ref.6 Ref.7 Ref.8 Ref.9 Ref.10 Ref.11 Ref.12 Ref.13 Ref.17 Ref.18 Ref.19 Ref.20 Ref.21 Ref.22 Ref.24 Ref.28 Ref.29 Ref.30

Subunit structure

Forms homooligomers. Interacts (via the SH3 domain) with PBS2. Interacts with FUS1, STE11, STE50 and RNA polymerase II. Ref.5 Ref.7 Ref.16 Ref.18 Ref.19 Ref.21 Ref.22 Ref.24 Ref.26

Subcellular location

Cell membrane; Multi-pass membrane protein. Bud. Bud neck. Cell projection. Note: Localizes at the tip of the mating projection during conjugation. Ref.7 Ref.11 Ref.14 Ref.24

Miscellaneous

Present with 2330 molecules/cell in log phase SD medium.

Sequence similarities

Belongs to the SHO1 family.

Contains 1 SH3 domain.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 367367High osmolarity signaling protein SHO1
PRO_0000072231

Regions

Topological domain1 – 3232Cytoplasmic Potential
Transmembrane33 – 5321Helical; Potential
Topological domain54 – 6512Extracellular Potential
Transmembrane66 – 8621Helical; Potential
Topological domain87 – 937Cytoplasmic Potential
Transmembrane94 – 11421Helical; Potential
Topological domain115 – 1228Extracellular Potential
Transmembrane123 – 14321Helical; Potential
Topological domain144 – 367224Cytoplasmic Potential
Domain300 – 36162SH3

Amino acid modifications

Modified residue1661Phosphoserine Ref.26
Glycosylation591N-linked (GlcNAc...) Potential

Experimental info

Mutagenesis1661S → E: Diminishes the formation of oligomers, dampens activation of the HOG1 kinase, and impairs growth in high-salt or sorbitol conditions. Ref.26
Mutagenesis3091Y → A: Decreases the interaction with PBS2 and leads to decreased HOG pathway response and increased aberrant mating pathway activation. Ref.21
Mutagenesis3171D → I or H: Decreases the interaction with PBS2 and leads to decreased HOG pathway response and increased aberrant mating pathway activation. Ref.21
Mutagenesis3551Y → A, F, I or M: Decreases the interaction with PBS2 and leads to decreased HOG pathway response and increased aberrant mating pathway activation. Ref.21

Secondary structure

............. 367
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
P40073 [UniParc].

Last modified February 1, 1995. Version 1.
Checksum: E467A4D50AA3EDB6

FASTA36741,126
        10         20         30         40         50         60 
MSISSKIRPT PRKPSRMATD HSFKMKKFYA DPFAISSISL AIVSWVIAIG GSISSASTNE 

        70         80         90        100        110        120 
SFPRFTWWGI VYQFLIICSL MLFYCFDLVD HYRIFITTSI AVAFVYNTNS ATNLVYADGP 

       130        140        150        160        170        180 
KKAAASAGVI LLSIINLIWI LYYGGDNASP TNRWIDSFSI KGIRPSPLEN SLHRARRRGN 

       190        200        210        220        230        240 
RNTTPYQNNV YNDAIRDSGY ATQFDGYPQQ QPSHTNYVSS TALAGFENTQ PNTSEAVNLH 

       250        260        270        280        290        300 
LNTLQQRINS ASNAKETNDN SNNQTNTNIG NTFDTDFSNG NTETTMGDTL GLYSDIGDDN 

       310        320        330        340        350        360 
FIYKAKALYP YDADDDDAYE ISFEQNEILQ VSDIEGRWWK ARRANGETGI IPSNYVQLID 


GPEEMHR 

« Hide

References

« Hide 'large scale' references
[1]Berroteran R.W., Hampsey M.
Submitted (OCT-1994) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
[2]"Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor."
Maeda T., Takekawa M., Saito H.
Science 269:554-558(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], FUNCTION.
[3]"The nucleotide sequence of Saccharomyces cerevisiae chromosome V."
Dietrich F.S., Mulligan J.T., Hennessy K.M., Yelton M.A., Allen E., Araujo R., Aviles E., Berno A., Brennan T., Carpenter J., Chen E., Cherry J.M., Chung E., Duncan M., Guzman E., Hartzell G., Hunicke-Smith S., Hyman R.W. expand/collapse author list , Kayser A., Komp C., Lashkari D., Lew H., Lin D., Mosedale D., Nakahara K., Namath A., Norgren R., Oefner P., Oh C., Petel F.X., Roberts D., Sehl P., Schramm S., Shogren T., Smith V., Taylor P., Wei Y., Botstein D., Davis R.W.
Nature 387:78-81(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: ATCC 204508 / S288c.
[4]Saccharomyces Genome Database
Submitted (DEC-2009) to the EMBL/GenBank/DDBJ databases
Cited for: GENOME REANNOTATION.
Strain: ATCC 204508 / S288c.
[5]"Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK."
Posas F., Saito H.
Science 276:1702-1705(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH PBS2.
[6]"The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae."
O'Rourke S.M., Herskowitz I.
Genes Dev. 12:2874-2886(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[7]"Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway."
Raitt D.C., Posas F., Saito H.
EMBO J. 19:4623-4631(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, INTERACTION WITH PBS2.
[8]"The Saccharomyces cerevisiae Sln1p-Ssk1p two-component system mediates response to oxidative stress and in an oxidant-specific fashion."
Singh K.K.
Free Radic. Biol. Med. 29:1043-1050(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[9]"Calcofluor antifungal action depends on chitin and a functional high-osmolarity glycerol response (HOG) pathway: evidence for a physiological role of the Saccharomyces cerevisiae HOG pathway under noninducing conditions."
Garcia-Rodriguez L.J., Duran A., Roncero C.
J. Bacteriol. 182:2428-2437(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[10]"Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway."
Van Wuytswinkel O., Reiser V., Siderius M., Kelders M.C., Ammerer G., Ruis H., Mager W.H.
Mol. Microbiol. 37:382-397(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[11]"Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42."
Reiser V., Salah S.M., Ammerer G.
Nat. Cell Biol. 2:620-627(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION.
[12]"Defects in glycosylphosphatidylinositol (GPI) anchor synthesis activate Hog1 kinase and confer copper-resistance in Saccharomyces cerevisisae."
Toh-e A., Oguchi T.
Genes Genet. Syst. 76:393-410(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[13]"Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress."
Winkler A., Arkind C., Mattison C.P., Burkholder A., Knoche K., Ota I.M.
Eukaryot. Cell 1:163-173(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[14]"Cell surface polarization during yeast mating."
Bagnat M., Simons K.
Proc. Natl. Acad. Sci. U.S.A. 99:14183-14188(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION.
[15]"Global analysis of protein expression in yeast."
Ghaemmaghami S., Huh W.-K., Bower K., Howson R.W., Belle A., Dephoure N., O'Shea E.K., Weissman J.S.
Nature 425:737-741(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: LEVEL OF PROTEIN EXPRESSION [LARGE SCALE ANALYSIS].
[16]"Optimization of specificity in a cellular protein interaction network by negative selection."
Zarrinpar A., Park S.H., Lim W.A.
Nature 426:676-680(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: DOMAIN, INTERACTION WITH PBS2.
[17]"Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms."
Park S.H., Zarrinpar A., Lim W.A.
Science 299:1061-1064(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[18]"A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast."
Cullen P.J., Sabbagh W. Jr., Graham E., Irick M.M., van Olden E.K., Neal C., Delrow J., Bardwell L., Sprague G.F. Jr.
Genes Dev. 18:1695-1708(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH MSB2.
[19]"Fus1p interacts with components of the Hog1p mitogen-activated protein kinase and Cdc42p morphogenesis signaling pathways to control cell fusion during yeast mating."
Nelson B., Parsons A.B., Evangelista M., Schaefer K., Kennedy K., Ritchie S., Petryshen T.L., Boone C.
Genetics 166:67-77(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH FUS1.
[20]"Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis."
O'Rourke S.M., Herskowitz I.
Mol. Biol. Cell 15:532-542(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[21]"Protein-protein interaction affinity plays a crucial role in controlling the Sho1p-mediated signal transduction pathway in yeast."
Marles J.A., Dahesh S., Haynes J., Andrews B.J., Davidson A.R.
Mol. Cell 14:813-823(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH PBS2, DOMAIN, MUTAGENESIS OF TYR-309; ASP-317 AND TYR-355.
[22]"Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway."
Zarrinpar A., Bhattacharyya R.P., Nittler M.P., Lim W.A.
Mol. Cell 14:825-832(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH STE11.
[23]"Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway."
Gruhler A., Olsen J.V., Mohammed S., Mortensen P., Faergeman N.J., Mann M., Jensen O.N.
Mol. Cell. Proteomics 4:310-327(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Strain: YAL6B.
[24]"Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway."
Tatebayashi K., Yamamoto K., Tanaka K., Tomida T., Maruoka T., Kasukawa E., Saito H.
EMBO J. 25:3033-3044(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, INTERACTION WITH STE11 AND STE50.
[25]"A global topology map of the Saccharomyces cerevisiae membrane proteome."
Kim H., Melen K., Oesterberg M., von Heijne G.
Proc. Natl. Acad. Sci. U.S.A. 103:11142-11147(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: TOPOLOGY [LARGE SCALE ANALYSIS].
Strain: ATCC 208353 / W303-1A.
[26]"A systems-biology analysis of feedback inhibition in the Sho1 osmotic-stress-response pathway."
Hao N., Behar M., Parnell S.C., Torres M.P., Borchers C.H., Elston T.C., Dohlman H.G.
Curr. Biol. 17:659-667(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT SER-166, MUTAGENESIS OF SER-166, SUBUNIT.
[27]"A multidimensional chromatography technology for in-depth phosphoproteome analysis."
Albuquerque C.P., Smolka M.B., Payne S.H., Bafna V., Eng J., Zhou H.
Mol. Cell. Proteomics 7:1389-1396(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[28]"Signal processing by the HOG MAP kinase pathway."
Hersen P., McClean M.N., Mahadevan L., Ramanathan S.
Proc. Natl. Acad. Sci. U.S.A. 105:7165-7170(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[29]"The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response."
Pitoniak A., Birkaya B., Dionne H.M., Vadaie N., Cullen P.J.
Mol. Biol. Cell 20:3101-3114(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[30]"Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction."
Macia J., Regot S., Peeters T., Conde N., Sole R., Posas F.
Sci. Signal. 2:RA13-RA13(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[31]"Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution."
Holt L.J., Tuch B.B., Villen J., Johnson A.D., Gygi S.P., Morgan D.O.
Science 325:1682-1686(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[32]"Structural genomics of yeast SH3 domains."
Kursula P., Kursula I., Song Y.H., Paraskevopoulos M., Wilmanns M.
Submitted (FEB-2009) to the PDB data bank
Cited for: X-RAY CRYSTALLOGRAPHY (2.05 ANGSTROMS) OF 298-367.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
U15653 Genomic DNA. Translation: AAA61904.1.
L41926 Genomic DNA. Translation: AAC41664.1.
U18916 Genomic DNA. Translation: AAC03216.1.
BK006939 Genomic DNA. Translation: DAA07778.1.
PIRS50621.
RefSeqNP_011043.1. NM_001179008.1.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
2VKNX-ray2.05A298-367[»]
ProteinModelPortalP40073.
SMRP40073. Positions 299-364.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid36863. 134 interactions.
DIPDIP-2472N.
IntActP40073. 76 interactions.
MINTMINT-518897.
STRING4932.YER118C.

Proteomic databases

PaxDbP40073.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblFungiYER118C; YER118C; YER118C.
GeneID856854.
KEGGsce:YER118C.

Organism-specific databases

CYGDYER118c.
SGDS000000920. SHO1.

Phylogenomic databases

eggNOGNOG44108.
HOGENOMHOG000174182.
KOK11246.
OMADAYEISF.
OrthoDBEOG7MPRR4.

Enzyme and pathway databases

BioCycYEAST:G3O-30282-MONOMER.

Gene expression databases

GenevestigatorP40073.

Family and domain databases

InterProIPR001452. SH3_domain.
[Graphical view]
PfamPF00018. SH3_1. 1 hit.
[Graphical view]
PRINTSPR00452. SH3DOMAIN.
SMARTSM00326. SH3. 1 hit.
[Graphical view]
SUPFAMSSF50044. SSF50044. 1 hit.
PROSITEPS50002. SH3. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

EvolutionaryTraceP40073.
NextBio983195.

Entry information

Entry nameSHO1_YEAST
AccessionPrimary (citable) accession number: P40073
Secondary accession number(s): D3DM24
Entry history
Integrated into UniProtKB/Swiss-Prot: February 1, 1995
Last sequence update: February 1, 1995
Last modified: April 16, 2014
This is version 123 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

Relevant documents

Yeast chromosome V

Yeast (Saccharomyces cerevisiae) chromosome V: entries and gene names

Yeast

Yeast (Saccharomyces cerevisiae): entries, gene names and cross-references to SGD

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references