Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P39940 (RSP5_YEAST) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 149. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (5) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
E3 ubiquitin-protein ligase RSP5

EC=6.3.2.-
Alternative name(s):
Reverses SPT-phenotype protein 5
Gene names
Name:RSP5
Synonyms:MDP1, NPI1
Ordered Locus Names:YER125W
ORF Names:SYGP-ORF41
OrganismSaccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [Reference proteome]
Taxonomic identifier559292 [NCBI]
Taxonomic lineageEukaryotaFungiDikaryaAscomycotaSaccharomycotinaSaccharomycetesSaccharomycetalesSaccharomycetaceaeSaccharomyces

Protein attributes

Sequence length809 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Component of a RSP5 ubiquitin ligase complex which specifies polyubiquitination and intracellular trafficking of the general amino acid permease GAP1 as well as other cell surface proteins like GAP1, FUR4, MAL61, PMA1 and STE2. The RSP5-BUL1/2 complex is also necessary for the heat-shock element (HSE)-mediated gene expression, nitrogen starvation GLN3-dependent transcription, pressure-induced differential regulation of the two tryptophan permeases TAT1 and TAT2 and sorting efficiency into multivesicular bodies. Also acts on RBP1. Plays a role in tolerance to o-dinitrobenzene. Involved in actin cytoskeleton organization and dynamics. Ubiquitinates the LAS17-binding proteins LSB1 and PIN3/LSB2 without directing them for degradation and affects LAS17 levels in a SLA1-dependent and LSB1/2-independent manner. Ref.5 Ref.8 Ref.9 Ref.10 Ref.11 Ref.12 Ref.13 Ref.14 Ref.16 Ref.17 Ref.19 Ref.21

Pathway

Protein modification; protein ubiquitination.

Subunit structure

Component of the RSP5-BUL1/2 ubiquitin ligase complex composed of at least RSP5 and BUL1 or BUL2. Forms also a ternary complex with RUP1 and UBP2. Interacts (via WW domains) with LSB1, PIN3/LSB2 and RCR1 (via PY motifs). Interacts with HSE1, LAS17, ROG3, ROD1 and RVS167. Ref.7 Ref.8 Ref.10 Ref.15 Ref.16 Ref.18 Ref.19 Ref.21

Subcellular location

Cytoplasm. Nucleus Potential. Cytoplasmcytoskeletonactin patch Ref.21.

Post-translational modification

The ubiquitination appears to be the result of an intramolecular transfer of ubiquitin.

Miscellaneous

A cysteine residue is required for ubiquitin-thioester formation.

Sequence similarities

Contains 1 C2 domain.

Contains 1 HECT (E6AP-type E3 ubiquitin-protein ligase) domain.

Contains 3 WW domains.

Ontologies

Keywords
   Biological processUbl conjugation pathway
   Cellular componentCytoplasm
Cytoskeleton
Nucleus
   DomainRepeat
   Molecular functionLigase
   PTMUbl conjugation
   Technical term3D-structure
Complete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processcellular response to UV

Inferred from mutant phenotype PubMed 10490634. Source: SGD

chromatin assembly or disassembly

Inferred from mutant phenotype PubMed 12399376. Source: SGD

late endosome to vacuole transport via multivesicular body sorting pathway

Inferred from mutant phenotype PubMed 17182849. Source: SGD

mitochondrion organization

Inferred from mutant phenotype PubMed 10366593. Source: SGD

positive regulation of endocytosis

Inferred from mutant phenotype PubMed 12654912. Source: SGD

positive regulation of fatty acid biosynthetic process

Inferred from mutant phenotype PubMed 11007476. Source: SGD

positive regulation of receptor-mediated endocytosis

Inferred from mutant phenotype PubMed 11179425. Source: SGD

positive regulation of transcription from RNA polymerase II promoter

Inferred from mutant phenotype PubMed 11007476. Source: SGD

proteasome-mediated ubiquitin-dependent protein catabolic process

Inferred from physical interaction PubMed 15713680. Source: SGD

protein autoubiquitination

Inferred from genetic interaction PubMed 24069405. Source: SGD

protein monoubiquitination

Inferred from direct assay PubMed 19176477PubMed 21685393. Source: SGD

protein polyubiquitination

Inferred from direct assay PubMed 9108033. Source: SGD

protein ubiquitination involved in ubiquitin-dependent protein catabolic process

Inferred from mutant phenotype PubMed 9614172. Source: SGD

regulation of actin cytoskeleton organization

Inferred from genetic interaction PubMed 15855235. Source: SGD

regulation of dolichol biosynthetic process

Inferred from mutant phenotype PubMed 18771750. Source: SGD

regulation of ergosterol biosynthetic process

Inferred from mutant phenotype PubMed 18771750. Source: SGD

regulation of initiation of mating projection growth

Inferred from mutant phenotype PubMed 21685393. Source: SGD

regulation of mRNA export from nucleus

Inferred from mutant phenotype PubMed 14608372. Source: SGD

regulation of multivesicular body size

Inferred from mutant phenotype PubMed 17182850. Source: SGD

regulation of nitrogen utilization

Inferred from genetic interaction Ref.13. Source: SGD

regulation of phosphate metabolic process

Inferred from genetic interaction PubMed 18165238. Source: SGD

regulation of protein localization

Inferred from mutant phenotype PubMed 12867034. Source: SGD

regulation of rRNA processing

Inferred from mutant phenotype PubMed 14608372. Source: SGD

regulation of ribosomal large subunit export from nucleus

Inferred from mutant phenotype PubMed 14608372. Source: SGD

regulation of tRNA export from nucleus

Inferred from mutant phenotype PubMed 14608372. Source: SGD

regulation of tRNA processing

Inferred from mutant phenotype PubMed 14608372. Source: SGD

regulation of ubiquinone biosynthetic process

Inferred from mutant phenotype PubMed 18771750. Source: SGD

response to drug

Inferred from mutant phenotype Ref.10. Source: SGD

ribophagy

Inferred from genetic interaction PubMed 18670191. Source: SGD

ubiquitin-dependent endocytosis

Inferred from mutant phenotype PubMed 17344478. Source: SGD

ubiquitin-dependent protein catabolic process

Inferred from direct assay PubMed 9462742. Source: MGI

ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway

Inferred from mutant phenotype PubMed 17344478. Source: SGD

   Cellular_componentGolgi apparatus

Inferred from direct assay PubMed 14657247. Source: SGD

actin cortical patch

Inferred from electronic annotation. Source: UniProtKB-SubCell

cellular bud tip

Inferred from direct assay PubMed 14608372. Source: SGD

cytoplasm

Inferred from direct assay PubMed 14657247PubMed 15078904. Source: SGD

endosome membrane

Inferred from direct assay PubMed 14657247. Source: SGD

extrinsic component of cytoplasmic side of plasma membrane

Inferred from direct assay PubMed 15078904. Source: SGD

nucleus

Inferred from direct assay PubMed 14608372. Source: SGD

ubiquitin ligase complex

Inferred from physical interaction Ref.8. Source: SGD

   Molecular_functionphosphatidylinositol binding

Inferred from direct assay PubMed 15078904. Source: SGD

protein binding

Inferred from physical interaction PubMed 11283351Ref.10PubMed 16429126PubMed 16456538PubMed 16606443Ref.18PubMed 18719252PubMed 18976803PubMed 20489023. Source: IntAct

ubiquitin binding

Inferred from direct assay PubMed 19252184. Source: SGD

ubiquitin-protein transferase activity

Inferred from direct assay PubMed 21685393PubMed 9108033. Source: SGD

Complete GO annotation...

Binary interactions

With

Entry

#Exp.

IntAct

Notes

ACK1Q076222EBI-16219,EBI-38674
ADE12P802102EBI-16219,EBI-14267
ALY1P361174EBI-16219,EBI-26358
ALY2P470295EBI-16219,EBI-25974
ART10P186344EBI-16219,EBI-27197
ART5P532444EBI-16219,EBI-23201
BNA5Q059792EBI-16219,EBI-10016
CDC14Q006842EBI-16219,EBI-4192
CSR2Q127342EBI-16219,EBI-32379
CTA1P152022EBI-16219,EBI-4061
DIA1P540054EBI-16219,EBI-27668
DUS1P537592EBI-16219,EBI-27885
ECM21P381672EBI-16219,EBI-21359
ENO2P009252EBI-16219,EBI-6475
FMP46P361412EBI-16219,EBI-26445
GPH1P067382EBI-16219,EBI-13389
HEM12P323472EBI-16219,EBI-5711
IMA1P530512EBI-16219,EBI-10464
IPP1P008172EBI-16219,EBI-9338
LDB19Q125023EBI-16219,EBI-2113927
LYS1P389983EBI-16219,EBI-10264
LYS4P493672EBI-16219,EBI-10276
MCR1P360602EBI-16219,EBI-10565
MLS1P309523EBI-16219,EBI-10428
NPL3Q015602EBI-16219,EBI-12114
NPT1P396832EBI-16219,EBI-12218
PCK1P109632EBI-16219,EBI-13770
PFK2P168623EBI-16219,EBI-9435
PMU1P360692EBI-16219,EBI-26862
PTP1P250442EBI-16219,EBI-14183
PYC1P111542EBI-16219,EBI-14358
RCR1P382123EBI-16219,EBI-21381
RCR2Q034462EBI-16219,EBI-18180
RGM1Q004532EBI-16219,EBI-15073
ROD1Q028053EBI-16219,EBI-15679
ROG3P436023EBI-16219,EBI-22976
RPB8P204363EBI-16219,EBI-15794
SNA3P143592EBI-16219,EBI-26122
SNA4Q075492EBI-16219,EBI-22078
STM1P390153EBI-16219,EBI-11238
THI13Q077482EBI-16219,EBI-36080
THI5P435342EBI-16219,EBI-19221
TKL1P232542EBI-16219,EBI-19291
TRE1Q089193EBI-16219,EBI-31915
TY1A-PLQ121622EBI-16219,EBI-36658
TY2B-DR1Q124722EBI-16219,EBI-35737
UBC6P332962EBI-16219,EBI-19745
YBR056WP380813EBI-16219,EBI-21453
YCL021WP255613EBI-16219,EBI-21696
YHR131CP388353EBI-16219,EBI-24724
YIP5P531082EBI-16219,EBI-24051
YJL218WP408922EBI-16219,EBI-26263
YJR096WP471373EBI-16219,EBI-25572
YKR047WP361402EBI-16219,EBI-26441

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 809809E3 ubiquitin-protein ligase RSP5
PRO_0000120335

Regions

Domain1 – 8888C2
Domain229 – 26234WW 1
Domain331 – 36434WW 2
Domain387 – 42034WW 3
Domain705 – 809105HECT
Compositional bias315 – 3228Poly-Ala

Sites

Active site7771Glycyl thioester intermediate

Experimental info

Mutagenesis5161Y → A: Has subtle defects on both initial ubiquitination and chain elongation of substrate proteins.
Mutagenesis5211Y → A: Has defects on both initial ubiquitination and chain elongation of substrate proteins.
Mutagenesis5371I → D: Has defects on both initial ubiquitination and chain elongation of substrate proteins.
Mutagenesis6181F → D: Has defects on both initial ubiquitination and chain elongation of substrate proteins.
Mutagenesis7331L → S in RSP5-1; impairs ubiquitin-thioester formation and catalysis of substrate ubiquitination. Ref.9
Mutagenesis7771C → A: Loss of ubiquitination. Ref.9

Secondary structure

........................................................................... 809
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
P39940 [UniParc].

Last modified February 1, 1995. Version 1.
Checksum: 6F1836384479E70F

FASTA80991,816
        10         20         30         40         50         60 
MPSSISVKLV AAESLYKRDV FRSPDPFAVL TIDGYQTKST SAAKKTLNPY WNETFKFDDI 

        70         80         90        100        110        120 
NENSILTIQV FDQKKFKKKD QGFLGVVNVR VGDVLGHLDE DTATSSGRPR EETITRDLKK 

       130        140        150        160        170        180 
SNDGMAVSGR LIVVLSKLPS SSPHSQAPSG HTASSSTNTS STTRTNGHST SSTRNHSTSH 

       190        200        210        220        230        240 
PSRGTAQAVE STLQSGTTAA TNTATTSHRS TNSTSSATRQ YSSFEDQYGR LPPGWERRTD 

       250        260        270        280        290        300 
NFGRTYYVDH NTRTTTWKRP TLDQTEAERG NQLNANTELE RRQHRGRTLP GGSSDNSSVT 

       310        320        330        340        350        360 
VQVGGGSNIP PVNGAAAAAF AATGGTTSGL GELPSGWEQR FTPEGRAYFV DHNTRTTTWV 

       370        380        390        400        410        420 
DPRRQQYIRT YGPTNTTIQQ QPVSQLGPLP SGWEMRLTNT ARVYFVDHNT KTTTWDDPRL 

       430        440        450        460        470        480 
PSSLDQNVPQ YKRDFRRKVI YFRSQPALRI LPGQCHIKVR RKNIFEDAYQ EIMRQTPEDL 

       490        500        510        520        530        540 
KKRLMIKFDG EEGLDYGGVS REFFFLLSHE MFNPFYCLFE YSAYDNYTIQ INPNSGINPE 

       550        560        570        580        590        600 
HLNYFKFIGR VVGLGVFHRR FLDAFFVGAL YKMMLRKKVV LQDMEGVDAE VYNSLNWMLE 

       610        620        630        640        650        660 
NSIDGVLDLT FSADDERFGE VVTVDLKPDG RNIEVTDGNK KEYVELYTQW RIVDRVQEQF 

       670        680        690        700        710        720 
KAFMDGFNEL IPEDLVTVFD ERELELLIGG IAEIDIEDWK KHTDYRGYQE SDEVIQWFWK 

       730        740        750        760        770        780 
CVSEWDNEQR ARLLQFTTGT SRIPVNGFKD LQGSDGPRRF TIEKAGEVQQ LPKSHTCFNR 

       790        800 
VDLPQYVDYD SMKQKLTLAV EETIGFGQE 

« Hide

References

« Hide 'large scale' references
[1]"The nucleotide sequence of Saccharomyces cerevisiae chromosome V."
Dietrich F.S., Mulligan J.T., Hennessy K.M., Yelton M.A., Allen E., Araujo R., Aviles E., Berno A., Brennan T., Carpenter J., Chen E., Cherry J.M., Chung E., Duncan M., Guzman E., Hartzell G., Hunicke-Smith S., Hyman R.W. expand/collapse author list , Kayser A., Komp C., Lashkari D., Lew H., Lin D., Mosedale D., Nakahara K., Namath A., Norgren R., Oefner P., Oh C., Petel F.X., Roberts D., Sehl P., Schramm S., Shogren T., Smith V., Taylor P., Wei Y., Botstein D., Davis R.W.
Nature 387:78-81(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: ATCC 204508 / S288c.
[2]"The reference genome sequence of Saccharomyces cerevisiae: Then and now."
Engel S.R., Dietrich F.S., Fisk D.G., Binkley G., Balakrishnan R., Costanzo M.C., Dwight S.S., Hitz B.C., Karra K., Nash R.S., Weng S., Wong E.D., Lloyd P., Skrzypek M.S., Miyasato S.R., Simison M., Cherry J.M.
G3 (Bethesda) 4:389-398(2014) [PubMed] [Europe PMC] [Abstract]
Cited for: GENOME REANNOTATION.
Strain: ATCC 204508 / S288c.
[3]Winston F.
Unpublished observations (FEB-1993)
Cited for: IDENTIFICATION.
[4]"NPI1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase."
Hein C., Springael J.-Y., Volland C., Haguenauer-Tsapis R., Andre B.
Mol. Microbiol. 18:77-87(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: CHARACTERIZATION.
Strain: Sigma 1278B.
[5]"A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase."
Huibregtse J.M., Scheffner M., Beaudenon S., Howley P.M.
Proc. Natl. Acad. Sci. U.S.A. 92:2563-2567(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[6]Erratum
Huibregtse J.M., Scheffner M., Beaudenon S., Howley P.M.
Proc. Natl. Acad. Sci. U.S.A. 92:5249-5249(1995) [PubMed] [Europe PMC] [Abstract]
[7]"Bul1, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae."
Yashiroda H., Oguchi T., Yasuda Y., Toh-e A., Kikuchi Y.
Mol. Cell. Biol. 16:3255-3263(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH BUL1.
[8]"The PY-motif of Bul1 protein is essential for growth of Saccharomyces cerevisiae under various stress conditions."
Yashiroda H., Kaida D., Toh-e A., Kikuchi Y.
Gene 225:39-46(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH BUL1 AND BUL2.
[9]"Functional domains of the rsp5 ubiquitin-protein ligase."
Wang G., Yang J., Huibregtse J.M.
Mol. Cell. Biol. 19:342-352(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, MUTAGENESIS OF LEU-733 AND CYS-777.
Strain: S288c / FY56.
[10]"PY motifs of Rod1 are required for binding to Rsp5 and for drug resistance."
Andoh T., Hirata Y., Kikuchi A.
FEBS Lett. 525:131-134(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH ROD1 AND ROG3.
[11]"Rsp5-Bul1/2 complex is necessary for the HSE-mediated gene expression in budding yeast."
Kaida D., Toh-e A., Kikuchi Y.
Biochem. Biophys. Res. Commun. 306:1037-1041(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION OF THE RSP5-BUL1/2 COMPLEX.
[12]"Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2."
Abe F., Iida H.
Mol. Cell. Biol. 23:7566-7584(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION OF THE RSP5-BUL1/2 COMPLEX.
[13]"NPR1 kinase and RSP5-BUL1/2 ubiquitin ligase control GLN3-dependent transcription in Saccharomyces cerevisiae."
Crespo J.L., Helliwell S.B., Wiederkehr C., Demougin P., Fowler B., Primig M., Hall M.N.
J. Biol. Chem. 279:37512-37517(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION OF THE RSP5-BUL1/2 COMPLEX.
[14]"Ubiquitin-mediated targeting of a mutant plasma membrane ATPase, Pma1-7, to the endosomal/vacuolar system in yeast."
Pizzirusso M., Chang A.
Mol. Biol. Cell 15:2401-2409(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION OF THE RSP5-BUL1/2 COMPLEX.
[15]"Protein-protein interactions of ESCRT complexes in the yeast Saccharomyces cerevisiae."
Bowers K., Lottridge J., Helliwell S.B., Goldthwaite L.M., Luzio J.P., Stevens T.H.
Traffic 5:194-210(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH HSE1.
[16]"The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme."
Kee Y., Lyon N., Huibregtse J.M.
EMBO J. 24:2414-2424(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH RUP1 AND UBP2.
[17]"Transduction of the nitrogen signal activating Gln3-mediated transcription is independent of Npr1 kinase and Rsp5-Bul1/2 ubiquitin ligase in Saccharomyces cerevisiae."
Feller A., Boeckstaens M., Marini A.-M., Dubois E.
J. Biol. Chem. 281:28546-28554(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION OF THE RSP5-BUL1/2 COMPLEX.
[18]"Peculiar protein-protein interactions of the novel endoplasmic reticulum membrane protein Rcr1 and ubiquitin ligase Rsp5."
Imai K., Noda Y., Adachi H., Yoda K.
Biosci. Biotechnol. Biochem. 71:249-252(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RCR1.
[19]"Hse1, a component of the yeast Hrs-STAM ubiquitin-sorting complex, associates with ubiquitin peptidases and a ligase to control sorting efficiency into multivesicular bodies."
Ren J., Kee Y., Huibregtse J.M., Piper R.C.
Mol. Biol. Cell 18:324-335(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH HSE1.
[20]"Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution."
Holt L.J., Tuch B.B., Villen J., Johnson A.D., Gygi S.P., Morgan D.O.
Science 325:1682-1686(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[21]"Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro."
Kaminska J., Spiess M., Stawiecka-Mirota M., Monkaityte R., Haguenauer-Tsapis R., Urban-Grimal D., Winsor B., Zoladek T.
Eur. J. Cell Biol. 90:1016-1028(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH LAS17; LSB1; LSB2 AND RVS167, SUBCELLULAR LOCATION.
[22]"Sites of ubiquitin attachment in Saccharomyces cerevisiae."
Starita L.M., Lo R.S., Eng J.K., von Haller P.D., Fields S.
Proteomics 12:236-240(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[23]"Structure and function of a HECT domain ubiquitin-binding site."
Kim H.C., Steffen A.M., Oldham M.L., Chen J., Huibregtse J.M.
EMBO Rep. 12:334-341(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.50 ANGSTROMS) OF 384-809 IN COMPLEX WITH UBIQUITIN.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
U18916 Genomic DNA. Translation: AAC03223.1.
BK006939 Genomic DNA. Translation: DAA07785.1.
PIRS43217.
RefSeqNP_011051.3. NM_001179015.3.

3D structure databases

PDBe
RCSB-PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
3OLMX-ray2.50A384-809[»]
4LCDX-ray3.10A/B383-809[»]
ProteinModelPortalP39940.
SMRP39940. Positions 3-135, 227-291, 329-806.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid36869. 399 interactions.
DIPDIP-2238N.
IntActP39940. 172 interactions.
MINTMINT-520379.
STRING4932.YER125W.

Proteomic databases

MaxQBP39940.
PaxDbP39940.
PeptideAtlasP39940.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblFungiYER125W; YER125W; YER125W.
GeneID856862.
KEGGsce:YER125W.

Organism-specific databases

CYGDYER125w.
SGDS000000927. RSP5.

Phylogenomic databases

eggNOGCOG5021.
GeneTreeENSGT00570000078756.
HOGENOMHOG000208451.
KOK10591.
OMAMHTGATT.
OrthoDBEOG735453.

Enzyme and pathway databases

BioCycYEAST:G3O-30288-MONOMER.
UniPathwayUPA00143.

Gene expression databases

GenevestigatorP39940.

Family and domain databases

Gene3D2.60.40.150. 1 hit.
InterProIPR000008. C2_dom.
IPR024928. E3_ub_ligase_SMURF1.
IPR000569. HECT.
IPR001202. WW_dom.
[Graphical view]
PfamPF00168. C2. 1 hit.
PF00632. HECT. 1 hit.
PF00397. WW. 3 hits.
[Graphical view]
PIRSFPIRSF001569. E3_ub_ligase_SMURF1. 1 hit.
SMARTSM00239. C2. 1 hit.
SM00119. HECTc. 1 hit.
SM00456. WW. 3 hits.
[Graphical view]
SUPFAMSSF49562. SSF49562. 1 hit.
SSF51045. SSF51045. 3 hits.
SSF56204. SSF56204. 1 hit.
PROSITEPS50004. C2. 1 hit.
PS50237. HECT. 1 hit.
PS01159. WW_DOMAIN_1. 3 hits.
PS50020. WW_DOMAIN_2. 3 hits.
[Graphical view]
ProtoNetSearch...

Other

EvolutionaryTraceP39940.
NextBio983216.
PROP39940.

Entry information

Entry nameRSP5_YEAST
AccessionPrimary (citable) accession number: P39940
Secondary accession number(s): D3DM31
Entry history
Integrated into UniProtKB/Swiss-Prot: February 1, 1995
Last sequence update: February 1, 1995
Last modified: July 9, 2014
This is version 149 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

Relevant documents

Yeast chromosome V

Yeast (Saccharomyces cerevisiae) chromosome V: entries and gene names

Yeast

Yeast (Saccharomyces cerevisiae): entries, gene names and cross-references to SGD

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

PATHWAY comments

Index of metabolic and biosynthesis pathways