ID ERG9_SCHPO Reviewed; 460 AA. AC P36596; DT 01-JUN-1994, integrated into UniProtKB/Swiss-Prot. DT 01-JUN-1994, sequence version 1. DT 27-MAR-2024, entry version 169. DE RecName: Full=Squalene synthase {ECO:0000303|PubMed:8474436}; DE Short=SQS {ECO:0000303|PubMed:8474436}; DE Short=SS {ECO:0000303|PubMed:8474436}; DE EC=2.5.1.21 {ECO:0000305|PubMed:8474436}; DE AltName: Full=FPP:FPP farnesyltransferase {ECO:0000303|PubMed:8474436}; DE AltName: Full=Farnesyl-diphosphate farnesyltransferase {ECO:0000303|PubMed:8474436}; GN Name=erg9 {ECO:0000303|PubMed:8474436}; ORFNames=SPBC646.05c; OS Schizosaccharomyces pombe (strain 972 / ATCC 24843) (Fission yeast). OC Eukaryota; Fungi; Dikarya; Ascomycota; Taphrinomycotina; OC Schizosaccharomycetes; Schizosaccharomycetales; Schizosaccharomycetaceae; OC Schizosaccharomyces. OX NCBI_TaxID=284812; RN [1] RP NUCLEOTIDE SEQUENCE [MRNA], FUNCTION, AND PATHWAY. RC STRAIN=972 / ATCC 24843; RX PubMed=8474436; DOI=10.1128/mcb.13.5.2706-2717.1993; RA Robinson G.W., Tsay Y.H., Kienzle B.K., Smith-Monroy C.A., Bishop R.W.; RT "Conservation between human and fungal squalene synthetases: similarities RT in structure, function, and regulation."; RL Mol. Cell. Biol. 13:2706-2717(1993). RN [2] RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA]. RC STRAIN=972 / ATCC 24843; RX PubMed=11859360; DOI=10.1038/nature724; RA Wood V., Gwilliam R., Rajandream M.A., Lyne M.H., Lyne R., Stewart A., RA Sgouros J.G., Peat N., Hayles J., Baker S.G., Basham D., Bowman S., RA Brooks K., Brown D., Brown S., Chillingworth T., Churcher C.M., Collins M., RA Connor R., Cronin A., Davis P., Feltwell T., Fraser A., Gentles S., RA Goble A., Hamlin N., Harris D.E., Hidalgo J., Hodgson G., Holroyd S., RA Hornsby T., Howarth S., Huckle E.J., Hunt S., Jagels K., James K.D., RA Jones L., Jones M., Leather S., McDonald S., McLean J., Mooney P., RA Moule S., Mungall K.L., Murphy L.D., Niblett D., Odell C., Oliver K., RA O'Neil S., Pearson D., Quail M.A., Rabbinowitsch E., Rutherford K.M., RA Rutter S., Saunders D., Seeger K., Sharp S., Skelton J., Simmonds M.N., RA Squares R., Squares S., Stevens K., Taylor K., Taylor R.G., Tivey A., RA Walsh S.V., Warren T., Whitehead S., Woodward J.R., Volckaert G., Aert R., RA Robben J., Grymonprez B., Weltjens I., Vanstreels E., Rieger M., RA Schaefer M., Mueller-Auer S., Gabel C., Fuchs M., Duesterhoeft A., RA Fritzc C., Holzer E., Moestl D., Hilbert H., Borzym K., Langer I., Beck A., RA Lehrach H., Reinhardt R., Pohl T.M., Eger P., Zimmermann W., Wedler H., RA Wambutt R., Purnelle B., Goffeau A., Cadieu E., Dreano S., Gloux S., RA Lelaure V., Mottier S., Galibert F., Aves S.J., Xiang Z., Hunt C., RA Moore K., Hurst S.M., Lucas M., Rochet M., Gaillardin C., Tallada V.A., RA Garzon A., Thode G., Daga R.R., Cruzado L., Jimenez J., Sanchez M., RA del Rey F., Benito J., Dominguez A., Revuelta J.L., Moreno S., RA Armstrong J., Forsburg S.L., Cerutti L., Lowe T., McCombie W.R., RA Paulsen I., Potashkin J., Shpakovski G.V., Ussery D., Barrell B.G., RA Nurse P.; RT "The genome sequence of Schizosaccharomyces pombe."; RL Nature 415:871-880(2002). RN [3] RP FUNCTION. RX PubMed=8586261; DOI=10.1111/j.1574-6968.1995.tb07929.x; RA Harmouch N., Coulon J., Bonaly R.; RT "Identification of 24-methylene-24,25-dihydrolanosterol as a precursor of RT ergosterol in the yeasts Schizosaccharomyces pombe and Schizosaccharomyces RT octosporus."; RL FEMS Microbiol. Lett. 134:147-152(1995). RN [4] RP SUBCELLULAR LOCATION, AND INTERACTION WITH POF14. RX PubMed=17016471; DOI=10.1038/sj.emboj.7601329; RA Tafforeau L., Le Blastier S., Bamps S., Dewez M., Vandenhaute J., RA Hermand D.; RT "Repression of ergosterol level during oxidative stress by fission yeast F- RT box protein Pof14 independently of SCF."; RL EMBO J. 25:4547-4556(2006). RN [5] RP SUBCELLULAR LOCATION [LARGE SCALE ANALYSIS]. RX PubMed=16823372; DOI=10.1038/nbt1222; RA Matsuyama A., Arai R., Yashiroda Y., Shirai A., Kamata A., Sekido S., RA Kobayashi Y., Hashimoto A., Hamamoto M., Hiraoka Y., Horinouchi S., RA Yoshida M.; RT "ORFeome cloning and global analysis of protein localization in the fission RT yeast Schizosaccharomyces pombe."; RL Nat. Biotechnol. 24:841-847(2006). RN [6] RP FUNCTION. RX PubMed=18310029; DOI=10.1099/mic.0.2007/011155-0; RA Iwaki T., Iefuji H., Hiraga Y., Hosomi A., Morita T., Giga-Hama Y., RA Takegawa K.; RT "Multiple functions of ergosterol in the fission yeast Schizosaccharomyces RT pombe."; RL Microbiology 154:830-841(2008). CC -!- FUNCTION: Squalene synthase; part of the third module of ergosterol CC biosynthesis pathway that includes by the late steps of the pathway CC (PubMed:8474436). Erg9 produces squalene from 2 farnesyl pyrophosphate CC moieties (PubMed:8474436). The third module or late pathway involves CC the ergosterol synthesis itself through consecutive reactions that CC mainly occur in the endoplasmic reticulum (ER) membrane. Firstly, the CC squalene synthase erg9 catalyzes the condensation of 2 farnesyl CC pyrophosphate moieties to form squalene, which is the precursor of all CC steroids. Secondly, squalene is converted into lanosterol by the CC consecutive action of the squalene epoxidase erg1 and the lanosterol CC synthase erg7. The lanosterol 14-alpha-demethylase erg11/cyp1 catalyzes CC C14-demethylation of lanosterol to produce 4,4'-dimethyl CC cholesta-8,14,24-triene-3-beta-ol. In the next steps, a complex process CC involving various demethylation, reduction and desaturation reactions CC catalyzed by the C-14 reductase erg24 and the C-4 demethylation complex CC erg25-erg26-erg27 leads to the production of zymosterol. Erg28 likely CC functions in the C-4 demethylation complex reaction by tethering erg26 CC and Erg27 to the endoplasmic reticulum or to facilitate interaction CC between these proteins. Then, the sterol 24-C-methyltransferase erg6 CC catalyzes the methyl transfer from S-adenosyl-methionine to the C-24 of CC zymosterol to form fecosterol. The C-8 sterol isomerase erg2 catalyzes CC the reaction which results in unsaturation at C-7 in the B ring of CC sterols and thus converts fecosterol to episterol. The sterol-C5- CC desaturases erg31 and erg32 then catalyze the introduction of a C-5 CC double bond in the B ring to produce 5-dehydroepisterol. The C-22 CC sterol desaturase erg5 further converts 5-dehydroepisterol into CC ergosta-5,7,22,24(28)-tetraen-3beta-ol by forming the C-22(23) double CC bond in the sterol side chain. Finally, ergosta-5,7,22,24(28)-tetraen- CC 3beta-ol is substrate of the C-24(28) sterol reductase erg4 to produce CC ergosterol (PubMed:18310029) (Probable). In the genus CC Schizosaccharomyces, a second route exists between lanosterol and CC fecosterol, via the methylation of lanosterol to eburicol by erg6, CC followed by C14-demethylation by erg11/cyp1 and C4-demethylation by the CC demethylation complex erg25-erg26-erg27 (PubMed:8586261) (Probable). CC {ECO:0000269|PubMed:8474436, ECO:0000305|PubMed:18310029, CC ECO:0000305|PubMed:8586261}. CC -!- CATALYTIC ACTIVITY: CC Reaction=2 (2E,6E)-farnesyl diphosphate + H(+) + NADPH = 2 diphosphate CC + NADP(+) + squalene; Xref=Rhea:RHEA:32295, ChEBI:CHEBI:15378, CC ChEBI:CHEBI:15440, ChEBI:CHEBI:33019, ChEBI:CHEBI:57783, CC ChEBI:CHEBI:58349, ChEBI:CHEBI:175763; EC=2.5.1.21; CC Evidence={ECO:0000305|PubMed:8474436}; CC PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:32296; CC Evidence={ECO:0000305|PubMed:8474436}; CC -!- CATALYTIC ACTIVITY: CC Reaction=2 (2E,6E)-farnesyl diphosphate + H(+) + NADH = 2 diphosphate + CC NAD(+) + squalene; Xref=Rhea:RHEA:32299, ChEBI:CHEBI:15378, CC ChEBI:CHEBI:15440, ChEBI:CHEBI:33019, ChEBI:CHEBI:57540, CC ChEBI:CHEBI:57945, ChEBI:CHEBI:175763; EC=2.5.1.21; CC Evidence={ECO:0000305|PubMed:8474436}; CC PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:32300; CC Evidence={ECO:0000305|PubMed:8474436}; CC -!- COFACTOR: CC Name=Mg(2+); Xref=ChEBI:CHEBI:18420; CC Evidence={ECO:0000250|UniProtKB:P29704}; CC -!- PATHWAY: Terpene metabolism; lanosterol biosynthesis; lanosterol from CC farnesyl diphosphate: step 1/3. {ECO:0000269|PubMed:8474436}. CC -!- PATHWAY: Steroid metabolism; ergosterol biosynthesis. CC {ECO:0000269|PubMed:8474436}. CC -!- SUBUNIT: Interacts with pof14. {ECO:0000269|PubMed:17016471}. CC -!- INTERACTION: CC P36596; Q10223: pof14; NbExp=5; IntAct=EBI-1794119, EBI-1793014; CC -!- SUBCELLULAR LOCATION: Endoplasmic reticulum membrane CC {ECO:0000269|PubMed:16823372, ECO:0000269|PubMed:17016471}; Single-pass CC membrane protein {ECO:0000269|PubMed:16823372, CC ECO:0000269|PubMed:17016471}. CC -!- MISCELLANEOUS: In Aspergillus, the biosynthesis pathway of the sterol CC precursors leading to the prevalent sterol ergosterol differs from CC yeast. The ringsystem of lanosterol in S.cerevisiae is firstly CC demethylised in three enzymatic steps leading to the intermediate CC zymosterol and secondly a methyl group is added to zymosterol by the CC sterol 24-C-methyltransferase to form fecosterol. In Aspergillus, CC lanosterol is firstly transmethylated by the sterol 24-C- CC methyltransferase leading to the intermediate eburicol and secondly CC demethylated in three steps to form fecosterol. In the genus CC Schizosaccharomyces, 2 routes exist from lanosterol to erposterol: the CC classical one via zymosterol and the second one via the formation of CC eburicol followed by demethylation. {ECO:0000269|PubMed:8586261}. CC -!- SIMILARITY: Belongs to the phytoene/squalene synthase family. CC {ECO:0000305}. CC --------------------------------------------------------------------------- CC Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms CC Distributed under the Creative Commons Attribution (CC BY 4.0) License CC --------------------------------------------------------------------------- DR EMBL; L06071; AAA35343.1; -; mRNA. DR EMBL; CU329671; CAA22809.1; -; Genomic_DNA. DR PIR; B48057; B48057. DR PIR; T40581; T40581. DR RefSeq; NP_595363.1; NM_001021271.2. DR AlphaFoldDB; P36596; -. DR SMR; P36596; -. DR BioGRID; 277625; 6. DR IntAct; P36596; 3. DR MINT; P36596; -. DR STRING; 284812.P36596; -. DR iPTMnet; P36596; -. DR MaxQB; P36596; -. DR PaxDb; 4896-SPBC646-05c-1; -. DR EnsemblFungi; SPBC646.05c.1; SPBC646.05c.1:pep; SPBC646.05c. DR GeneID; 2541110; -. DR KEGG; spo:SPBC646.05c; -. DR PomBase; SPBC646.05c; erg9. DR VEuPathDB; FungiDB:SPBC646.05c; -. DR eggNOG; KOG1459; Eukaryota. DR HOGENOM; CLU_031981_2_1_1; -. DR InParanoid; P36596; -. DR OMA; GEACQLM; -. DR PhylomeDB; P36596; -. DR Reactome; R-SPO-191273; Cholesterol biosynthesis. DR UniPathway; UPA00767; UER00751. DR UniPathway; UPA00768; -. DR PRO; PR:P36596; -. DR Proteomes; UP000002485; Chromosome II. DR GO; GO:0005783; C:endoplasmic reticulum; IGI:PomBase. DR GO; GO:0005789; C:endoplasmic reticulum membrane; IDA:PomBase. DR GO; GO:0042175; C:nuclear outer membrane-endoplasmic reticulum membrane network; IDA:PomBase. DR GO; GO:0004310; F:farnesyl-diphosphate farnesyltransferase activity; IGI:PomBase. DR GO; GO:0051996; F:squalene synthase activity; IBA:GO_Central. DR GO; GO:0006696; P:ergosterol biosynthetic process; IGI:PomBase. DR GO; GO:0045338; P:farnesyl diphosphate metabolic process; IBA:GO_Central. DR GO; GO:0008299; P:isoprenoid biosynthetic process; IEA:UniProtKB-KW. DR CDD; cd00683; Trans_IPPS_HH; 1. DR Gene3D; 1.10.600.10; Farnesyl Diphosphate Synthase; 1. DR InterPro; IPR008949; Isoprenoid_synthase_dom_sf. DR InterPro; IPR002060; Squ/phyt_synthse. DR InterPro; IPR006449; Squal_synth-like. DR InterPro; IPR019845; Squalene/phytoene_synthase_CS. DR InterPro; IPR044844; Trans_IPPS_euk-type. DR InterPro; IPR033904; Trans_IPPS_HH. DR NCBIfam; TIGR01559; squal_synth; 1. DR PANTHER; PTHR11626; FARNESYL-DIPHOSPHATE FARNESYLTRANSFERASE; 1. DR PANTHER; PTHR11626:SF2; SQUALENE SYNTHASE; 1. DR Pfam; PF00494; SQS_PSY; 1. DR SFLD; SFLDS00005; Isoprenoid_Synthase_Type_I; 1. DR SFLD; SFLDG01018; Squalene/Phytoene_Synthase_Lik; 1. DR SUPFAM; SSF48576; Terpenoid synthases; 1. DR PROSITE; PS01044; SQUALEN_PHYTOEN_SYN_1; 1. DR PROSITE; PS01045; SQUALEN_PHYTOEN_SYN_2; 1. PE 1: Evidence at protein level; KW Endoplasmic reticulum; Isoprene biosynthesis; Lipid biosynthesis; KW Lipid metabolism; Magnesium; Membrane; Multifunctional enzyme; NADP; KW Reference proteome; Steroid biosynthesis; Steroid metabolism; KW Sterol biosynthesis; Sterol metabolism; Transferase; Transmembrane; KW Transmembrane helix. FT CHAIN 1..460 FT /note="Squalene synthase" FT /id="PRO_0000067451" FT TRANSMEM 425..445 FT /note="Helical" FT /evidence="ECO:0000255" SQ SEQUENCE 460 AA; 53321 MW; BAEE7F24B6CE5D25 CRC64; MSLANRIEEI RCLCQYKLWN DLPSYGEDEN VPQNIRRCYQ LLDMTSRSFA VVIKELPNGI REAVMIFYLV LRGLDTVEDD MTLPLDKKLP ILRDFYKTIE VEGWTFNESG PNEKDRQLLV EFDVVIKEYL NLSEGYRNVI SNITKEMGDG MAYYASLAEK NDGFSVETIE DFNKYCHYVA GLVGIGLSRL FAQSKLEDPD LAHSQAISNS LGLFLQKVNI IRDYREDFDD NRHFWPREIW SKYTSSFGDL CLPDNSEKAL ECLSDMTANA LTHATDALVY LSQLKTQEIF NFCAIPQVMA IATLAAVFRN PDVFQTNVKI RKGQAVQIIL HSVNLKNVCD LFLRYTRDIH YKNTPKDPNF LKISIECGKI EQVSESLFPR RFREMYEKAY VSKLSEQKKG NGTQKAILND EQKELYRKDL QKLGISILFV FFIILVCLAV IFYVFNIRIH WSDFKELNLF //