Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P32944 (SWE1_YEAST) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 134. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (3) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Mitosis inhibitor protein kinase SWE1

EC=2.7.11.1
Alternative name(s):
Wee1 homolog
Gene names
Name:SWE1
Ordered Locus Names:YJL187C
ORF Names:J0406
OrganismSaccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [Reference proteome]
Taxonomic identifier559292 [NCBI]
Taxonomic lineageEukaryotaFungiDikaryaAscomycotaSaccharomycotinaSaccharomycetesSaccharomycetalesSaccharomycetaceaeSaccharomyces

Protein attributes

Sequence length819 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Protein kinase that acts as a negative regulator of entry into mitosis (G2 to M transition) by phosphorylating and inhibiting the mitosis-promoting cyclin B-bound CDC28 at 'Tyr-19'. SWE1-mediated inhibition of CDC28 acts in a cell size or morphogenesis checkpoint to delay mitosis in response to defects in growth, actin organization or bud formation. Inhibits the activity of B-type cyclins in replication initiation strongly for CLB2, moderately for CLB3 and CLB4, and there is no apparent inhibition for CLB5 and CLB6, correlating with the normal expression timing of those cyclins. Hyperphosphorylation and degradation of SWE1 when all checkpoint requirement are met releases CLB2-CDC28 from inhibition and allows for progression through the cell cycle. SWE1-dependent CDC28 phosphorylation is also required for pachytene arrest upon activation of the recombination checkpoint during meiosis. Also involved in the regulation of nitrogen starvation- and short chain alcohol-induced filamentous growth, or filamentous differentiation in response to slowed DNA synthesis. Can act both on serines and on tyrosines. Ref.1 Ref.5 Ref.6 Ref.8 Ref.9 Ref.10 Ref.11 Ref.13 Ref.16 Ref.17 Ref.18 Ref.20 Ref.21 Ref.26 Ref.27 Ref.28 Ref.29 Ref.30

Catalytic activity

ATP + a protein = ADP + a phosphoprotein.

Subunit structure

Interacts with CLB2-CDC28. Partial hyperphosphorylation of SWE1 by CLB2-CDC28 stabilizes the ternary complex of SWE1 and CLB2-CDC28 and stimulates kinase activity of SWE1 in a positive feedback loop, maintaining CLB2-CDC28 in the tyrosine-phosphorylated state. Fully hyperphosphorylated SWE1 dissociates from CLB2-CDC28. Interacts with HSL7, KCC4 and MET30. Ref.7 Ref.10 Ref.11 Ref.14 Ref.15 Ref.19 Ref.26

Subcellular location

Bud neck. Nucleus. Note: When SWE1 first accumulates in G1, it is localized to the nucleus. After bud emergence, a subpopulation is recruited to the daughter side of the mother-bud neck through HSL1 and its adapter HSL7, where it is susceptible to hyperphosphorylation and degradation. Ref.12 Ref.15 Ref.17 Ref.25

Induction

Expressed periodically during the cell cycle, with a peak in late G1. Transcriptional repression requires ZDS1. Protein accumulation is also periodic, peaking during S/G2 and declining prior to and during nuclear division of the unperturbed cell cycle. Stabilized during a checkpoint response in G2. Induced during meiosis. Induced by ethanol (at protein level). Ref.4 Ref.5 Ref.6 Ref.8 Ref.23

Post-translational modification

Phosphorylated progressively by CLA4, CLB2-CDC28 and CDC5. CLA4-dependent phosphorylation occurs in late S phase, followed by phosphorylation by CLB2-CDC28 in early G2, when the levels of mitotic CLB2 increases. This phosphorylation is critical for triggering subsequent SWE1-CDC5 interaction and CDC5-dependent phosphorylation. The resulting cumulative hyperphosphorylation down-regulates SWE1 by targeting it for ubiquitin-mediated degradation. This stepwise phosphorylation is thought to be a mechanism to integrate the different checkpoint requirements before entry into mitosis. Ref.1 Ref.6 Ref.22 Ref.24 Ref.26 Ref.28 Ref.31

Sequence similarities

Belongs to the protein kinase superfamily. Ser/Thr protein kinase family. WEE1 subfamily.

Contains 1 protein kinase domain.

Ontologies

Keywords
   Biological processCell cycle
Cell division
Meiosis
Mitosis
   Cellular componentNucleus
   LigandATP-binding
Magnesium
Metal-binding
Nucleotide-binding
   Molecular functionKinase
Serine/threonine-protein kinase
Transferase
Tyrosine-protein kinase
   PTMPhosphoprotein
   Technical termComplete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processG2/M transition of mitotic cell cycle

Inferred from direct assay Ref.1. Source: SGD

cytokinesis after mitosis checkpoint

Inferred from direct assay Ref.5. Source: SGD

meiotic nuclear division

Inferred from electronic annotation. Source: UniProtKB-KW

mitotic nuclear division

Inferred from electronic annotation. Source: UniProtKB-KW

negative regulation of spindle pole body separation

Inferred from mutant phenotype PubMed 8887667. Source: SGD

peptidyl-tyrosine phosphorylation

Inferred from direct assay Ref.1. Source: GOC

re-entry into mitotic cell cycle

Inferred from genetic interaction PubMed 15107621. Source: SGD

regulation of cyclin-dependent protein serine/threonine kinase activity

Inferred from direct assay Ref.1. Source: SGD

regulation of meiosis

Inferred from mutant phenotype Ref.8. Source: SGD

   Cellular_componentcellular bud neck

Inferred from direct assay Ref.12Ref.25. Source: SGD

nucleus

Inferred from direct assay Ref.12Ref.25. Source: SGD

   Molecular_functionATP binding

Inferred from electronic annotation. Source: UniProtKB-KW

metal ion binding

Inferred from electronic annotation. Source: UniProtKB-KW

protein binding

Inferred from physical interaction Ref.15PubMed 18719252PubMed 20489023. Source: IntAct

protein serine/threonine kinase activity

Inferred from electronic annotation. Source: UniProtKB-KW

protein tyrosine kinase activity

Inferred from direct assay Ref.1. Source: SGD

Complete GO annotation...

Binary interactions

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 819819Mitosis inhibitor protein kinase SWE1
PRO_0000086727

Regions

Domain444 – 794351Protein kinase
Nucleotide binding450 – 4589ATP By similarity
Compositional bias88 – 969Poly-Glu

Sites

Active site5791Proton acceptor By similarity
Metal binding5841Magnesium; via carbonyl oxygen By similarity
Metal binding5971Magnesium; via carbonyl oxygen By similarity
Binding site4731ATP By similarity

Amino acid modifications

Modified residue361Phosphoserine; by CDC5 Ref.24 Ref.26
Modified residue451Phosphothreonine; by CDC28 Ref.26
Modified residue561Phosphoserine; by CDC28 Ref.26
Modified residue631Phosphoserine; by CDC28 Ref.26
Modified residue701Phosphoserine Ref.26
Modified residue741Phosphothreonine; by CDC28 Ref.26
Modified residue1021Phosphoserine; by CDC5 Ref.24
Modified residue1051Phosphoserine; by CDC28 Ref.26
Modified residue1111Phosphoserine; by CDC5, CDC28 and CLA4 Ref.24 Ref.26
Modified residue1181Phosphoserine; by CDC5 Ref.24 Ref.26
Modified residue1211Phosphothreonine; by CDC28 Ref.26
Modified residue1241Phosphothreonine; by CDC28 Ref.26
Modified residue1271Phosphoserine; by CDC28 Ref.26
Modified residue1311Phosphothreonine; by CDC5 Ref.24
Modified residue1331Phosphoserine; by CDC28 Ref.26
Modified residue1361Phosphoserine; by CDC28 and CLA4 Ref.24 Ref.26
Modified residue1561Phosphoserine; by CDC5 Ref.24
Modified residue1691Phosphoserine; by CDC5 Ref.24
Modified residue1961Phosphothreonine; by CDC28 Ref.26
Modified residue2011Phosphoserine; by CDC28 Ref.26
Modified residue2251Phosphoserine; by CDC5 Ref.24
Modified residue2541Phosphoserine; by CDC5 Ref.24
Modified residue2621Phosphoserine Ref.26
Modified residue2631Phosphoserine; by CDC28 Ref.26
Modified residue2661Phosphoserine; by CDC28 Ref.26
Modified residue2801Phosphothreonine; by CDC5 Ref.24
Modified residue2841Phosphoserine Ref.26
Modified residue2941Phosphoserine Ref.26
Modified residue3121Phosphoserine; by CLA4 Ref.24
Modified residue3451Phosphoserine Ref.26
Modified residue3671Phosphothreonine; by CDC28 Ref.26
Modified residue3731Phosphothreonine; by CDC28 Ref.26
Modified residue3791Phosphoserine; by CDC5 and CLA4 Ref.24 Ref.26 Ref.33
Modified residue3841Phosphothreonine; by CDC28 Ref.26
Modified residue3951Phosphoserine; by CDC5 and CLA4 Ref.24
Modified residue4381Phosphoserine; by CDC5 and CLA4 Ref.24
Modified residue6101Phosphoserine; by CDC5 Ref.24 Ref.26
Modified residue6291Phosphothreonine; by CDC5 Ref.24
Modified residue6881Phosphothreonine; by CDC5 and CLA4 Ref.24
Modified residue6921Phosphothreonine Ref.26

Experimental info

Mutagenesis318 – 32811Missing: Impairs interaction with HSL7 and prevents bud neck localization and degradation. Ref.17
Mutagenesis3201L → P or Q: Prevents degradation. Ref.17
Mutagenesis3241L → S: Prevents degradation. Ref.17
Mutagenesis3271F → S: Prevents degradation. Ref.17
Mutagenesis3281K → E: Prevents degradation. Ref.17
Mutagenesis3311L → I: Prevents degradation. Ref.17
Mutagenesis3321Y → C: Prevents degradation. Ref.17
Mutagenesis4731K → A or P: Loss of catalytic activity. Ref.9
Mutagenesis7971E → K, V or G: Prevents degradation. Ref.17
Mutagenesis8061I → T, A or N: Prevents degradation. Ref.17
Mutagenesis8071Q → R or E: Prevents degradation. Ref.17

Sequences

Sequence LengthMass (Da)Tools
P32944 [UniParc].

Last modified October 1, 1993. Version 1.
Checksum: F49FE73937958A02

FASTA81992,468
        10         20         30         40         50         60 
MSSLDEDEED FEMLDTENLQ FMGKKMFGKQ AGEDESDDFA IGGSTPTNKL KFYPYSNNKL 

        70         80         90        100        110        120 
TRSTGTLNLS LSNTALSEAN SKFLGKIEEE EEEEEEGKDE ESVDSRIKRW SPFHENESVT 

       130        140        150        160        170        180 
TPITKRSAEK TNSPISLKQW NQRWFPKNDA RTENTSSSSS YSVAKPNQSA FTSSGLVSKM 

       190        200        210        220        230        240 
SMDTSLYPAK LRIPETPVKK SPLVEGRDHK HVHLSSSKNA SSSLSVSPLN FVEDNNLQED 

       250        260        270        280        290        300 
LLFSDSPSSK ALPSIHVPTI DSSPLSEAKY HAHDRHNNQT NILSPTNSLV TNSSPQTLHS 

       310        320        330        340        350        360 
NKFKKIKRAR NSVILKNREL TNSLQQFKDD LYGTDENFPP PIIISSHHST RKNPQPYQFR 

       370        380        390        400        410        420 
GRYDNDTDEE ISTPTRRKSI IGATSQTHRE SRPLSLSSAI VTNTTSAETH SISSTDSSPL 

       430        440        450        460        470        480 
NSKRRLISSN KLSANPDSHL FEKFTNVHSI GKGQFSTVYQ VTFAQTNKKY AIKAIKPNKY 

       490        500        510        520        530        540 
NSLKRILLEI KILNEVTNQI TMDQEGKEYI IDYISSWKFQ NSYYIMTELC ENGNLDGFLQ 

       550        560        570        580        590        600 
EQVIAKKKRL EDWRIWKIIV ELSLALRFIH DSCHIVHLDL KPANVMITFE GNLKLGDFGM 

       610        620        630        640        650        660 
ATHLPLEDKS FENEGDREYI APEIISDCTY DYKADIFSLG LMIVEIAANV VLPDNGNAWH 

       670        680        690        700        710        720 
KLRSGDLSDA GRLSSTDIHS ESLFSDITKV DTNDLFDFER DNISGNSNNA GTSTVHNNSN 

       730        740        750        760        770        780 
INNPNMNNGN DNNNVNTAAT KNRLILHKSS KIPAWVPKFL IDGESLERIV RWMIEPNYER 

       790        800        810 
RPTANQILQT EECLYVEMTR NAGAIIQEDD FGPKPKFFI 

« Hide

References

« Hide 'large scale' references
[1]"Properties of Saccharomyces cerevisiae wee1 and its differential regulation of p34CDC28 in response to G1 and G2 cyclins."
Booher R.N., Deshaies R.J., Kirschner M.W.
EMBO J. 12:3417-3426(1993) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], FUNCTION, PHOSPHORYLATION OF CDC28.
[2]"Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X."
Galibert F., Alexandraki D., Baur A., Boles E., Chalwatzis N., Chuat J.-C., Coster F., Cziepluch C., de Haan M., Domdey H., Durand P., Entian K.-D., Gatius M., Goffeau A., Grivell L.A., Hennemann A., Herbert C.J., Heumann K. expand/collapse author list , Hilger F., Hollenberg C.P., Huang M.-E., Jacq C., Jauniaux J.-C., Katsoulou C., Kirchrath L., Kleine K., Kordes E., Koetter P., Liebl S., Louis E.J., Manus V., Mewes H.-W., Miosga T., Obermaier B., Perea J., Pohl T.M., Portetelle D., Pujol A., Purnelle B., Ramezani Rad M., Rasmussen S.W., Rose M., Rossau R., Schaaff-Gerstenschlaeger I., Smits P.H.M., Scarcez T., Soriano N., To Van D., Tzermia M., Van Broekhoven A., Vandenbol M., Wedler H., von Wettstein D., Wambutt R., Zagulski M., Zollner A., Karpfinger-Hartl L.
EMBO J. 15:2031-2049(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: ATCC 204508 / S288c.
[3]"The reference genome sequence of Saccharomyces cerevisiae: Then and now."
Engel S.R., Dietrich F.S., Fisk D.G., Binkley G., Balakrishnan R., Costanzo M.C., Dwight S.S., Hitz B.C., Karra K., Nash R.S., Weng S., Wong E.D., Lloyd P., Skrzypek M.S., Miyasato S.R., Simison M., Cherry J.M.
G3 (Bethesda) 4:389-398(2014) [PubMed] [Europe PMC] [Abstract]
Cited for: GENOME REANNOTATION.
Strain: ATCC 204508 / S288c.
[4]"A search for proteins that interact genetically with histone H3 and H4 amino termini uncovers novel regulators of the Swe1 kinase in Saccharomyces cerevisiae."
Ma X.-J., Lu Q., Grunstein M.
Genes Dev. 10:1327-1340(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: INDUCTION.
[5]"Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast."
Sia R.A.L., Herald H.A., Lew D.J.
Mol. Biol. Cell 7:1657-1666(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INDUCTION.
[6]"Control of Swe1p degradation by the morphogenesis checkpoint."
Sia R.A.L., Bardes E.S.G., Lew D.J.
EMBO J. 17:6678-6688(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, PHOSPHORYLATION, INDUCTION.
[7]"Cdc34 and the F-box protein Met30 are required for degradation of the Cdk-inhibitory kinase Swe1."
Kaiser P., Sia R.A.L., Bardes E.S.G., Lew D.J., Reed S.I.
Genes Dev. 12:2587-2597(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH MET30, DEGRADATION.
[8]"The pachytene checkpoint in S. cerevisiae depends on Swe1-mediated phosphorylation of the cyclin-dependent kinase Cdc28."
Leu J.-Y., Roeder G.S.
Mol. Cell 4:805-814(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN MEIOSIS, INDUCTION.
[9]"Phosphorylation-independent inhibition of Cdc28p by the tyrosine kinase Swe1p in the morphogenesis checkpoint."
McMillan J.N., Sia R.A.L., Bardes E.S.G., Lew D.J.
Mol. Cell. Biol. 19:5981-5990(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, MUTAGENESIS OF LYS-473.
[10]"The morphogenesis checkpoint in Saccharomyces cerevisiae: cell cycle control of Swe1p degradation by Hsl1p and Hsl7p."
McMillan J.N., Longtine M.S., Sia R.A.L., Theesfeld C.L., Bardes E.S.G., Pringle J.R., Lew D.J.
Mol. Cell. Biol. 19:6929-6939(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH HSL7.
[11]"Hsl7 localizes to a septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae."
Shulewitz M.J., Inouye C.J., Thorner J.
Mol. Cell. Biol. 19:7123-7137(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH HSL7.
[12]"Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae."
Longtine M.S., Theesfeld C.L., McMillan J.N., Weaver E., Pringle J.R., Lew D.J.
Mol. Cell. Biol. 20:4049-4061(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION.
[13]"A role for the Swe1 checkpoint kinase during filamentous growth of Saccharomyces cerevisiae."
La Valle R., Wittenberg C.
Genetics 158:549-562(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[14]"Dynamic localization of the Swe1 regulator Hsl7 during the Saccharomyces cerevisiae cell cycle."
Cid V.J., Shulewitz M.J., McDonald K.L., Thorner J.
Mol. Biol. Cell 12:1645-1669(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH HSL7.
[15]"Cdc5 interacts with the Wee1 kinase in budding yeast."
Bartholomew C.R., Woo S.H., Chung Y.S., Jones C., Hardy C.F.
Mol. Cell. Biol. 21:4949-4959(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CDC5, SUBCELLULAR LOCATION.
[16]"A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint."
Harrison J.C., Bardes E.S.G., Ohya Y., Lew D.J.
Nat. Cell Biol. 3:417-420(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[17]"Determinants of Swe1p degradation in Saccharomyces cerevisiae."
McMillan J.N., Theesfeld C.L., Harrison J.C., Bardes E.S.G., Lew D.J.
Mol. Biol. Cell 13:3560-3575(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, MUTAGENESIS OF 318-ARG--LYS-328; LEU-320; LEU-324; PHE-327; LYS-328; LEU-331; TYR-332; GLU-797; ILE-806 AND GLN-807.
[18]"Conservation of mechanisms controlling entry into mitosis: budding yeast wee1 delays entry into mitosis and is required for cell size control."
Harvey S.L., Kellogg D.R.
Curr. Biol. 13:264-275(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[19]"The Saccharomyces cerevisiae bud-neck proteins Kcc4 and Gin4 have distinct but partially-overlapping cellular functions."
Okuzaki D., Watanabe T., Tanaka S., Nojima H.
Genes Genet. Syst. 78:113-126(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH KCC4.
[20]"In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint."
Martinez-Anaya C., Dickinson J.R., Sudbery P.E.
J. Cell Sci. 116:3423-3431(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[21]"Induction of S. cerevisiae filamentous differentiation by slowed DNA synthesis involves Mec1, Rad53 and Swe1 checkpoint proteins."
Jiang Y.W., Kang C.M.
Mol. Biol. Cell 14:5116-5124(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN FILAMENTOUS GROWTH REGULATION.
[22]"Targets of the cyclin-dependent kinase Cdk1."
Ubersax J.A., Woodbury E.L., Quang P.N., Paraz M., Blethrow J.D., Shah K., Shokat K.M., Morgan D.O.
Nature 425:859-864(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION BY CDC28.
[23]"Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol."
Kubota S., Takeo I., Kume K., Kanai M., Shitamukai A., Mizunuma M., Miyakawa T., Shimoi H., Iefuji H., Hirata D.
Biosci. Biotechnol. Biochem. 68:968-972(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: INDUCTION BY ETHANOL.
[24]"Coupling morphogenesis to mitotic entry."
Sakchaisri K., Asano S., Yu L.-R., Shulewitz M.J., Park C.J., Park J.-E., Cho Y.-W., Veenstra T.D., Thorner J., Lee K.S.
Proc. Natl. Acad. Sci. U.S.A. 101:4124-4129(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT SER-36; SER-102; SER-111; SER-118; THR-131; SER-136; SER-156; SER-169; SER-225; SER-254; THR-280; SER-312; SER-379; SER-395; SER-438; SER-610; THR-629 AND THR-688.
[25]"Localization of proteins that are coordinately expressed with Cln2 during the cell cycle."
Sundin B.A., Chiu C.-H., Riffle M., Davis T.N., Muller E.G.D.
Yeast 21:793-800(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION.
[26]"Cdk1-dependent regulation of the mitotic inhibitor Wee1."
Harvey S.L., Charlet A., Haas W., Gygi S.P., Kellogg D.R.
Cell 122:407-420(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, PHOSPHORYLATION AT SER-36; THR-45; SER-56; SER-63; SER-70; THR-74; SER-105; SER-111; SER-118; THR-121; THR-124; SER-127; SER-133; SER-136; THR-196; SER-201; SER-262; SER-263; SER-266; SER-284; SER-294; SER-345; THR-367; THR-373; SER-379; THR-384; SER-610 AND THR-692, INTERACTION WITH CLB2-CDC28.
[27]"Swe1p responds to cytoskeletal perturbation, not bud size, in S. cerevisiae."
McNulty J.J., Lew D.J.
Curr. Biol. 15:2190-2198(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[28]"Concerted mechanism of Swe1/Wee1 regulation by multiple kinases in budding yeast."
Asano S., Park J.-E., Sakchaisri K., Yu L.-R., Song S., Supavilai P., Veenstra T.D., Lee K.S.
EMBO J. 24:2194-2204(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, PHOSPHORYLATION BY CLB2-CDC28.
[29]"Swe1 regulation and transcriptional control restrict the activity of mitotic cyclins toward replication proteins in Saccharomyces cerevisiae."
Hu F., Aparicio O.M.
Proc. Natl. Acad. Sci. U.S.A. 102:8910-8915(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[30]"The function and regulation of budding yeast Swe1 in response to interrupted DNA synthesis."
Liu H., Wang Y.
Mol. Biol. Cell 17:2746-2756(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[31]"Differential susceptibility of yeast S and M phase CDK complexes to inhibitory tyrosine phosphorylation."
Keaton M.A., Bardes E.S.G., Marquitz A.R., Freel C.D., Zyla T.R., Rudolph J., Lew D.J.
Curr. Biol. 17:1181-1189(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION BY CLB-CDC28.
[32]"A multidimensional chromatography technology for in-depth phosphoproteome analysis."
Albuquerque C.P., Smolka M.B., Payne S.H., Bafna V., Eng J., Zhou H.
Mol. Cell. Proteomics 7:1389-1396(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[33]"Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution."
Holt L.J., Tuch B.B., Villen J., Johnson A.D., Gygi S.P., Morgan D.O.
Science 325:1682-1686(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-379, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[34]"Sites of ubiquitin attachment in Saccharomyces cerevisiae."
Starita L.M., Lo R.S., Eng J.K., von Haller P.D., Fields S.
Proteomics 12:236-240(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
X73966 Genomic DNA. Translation: CAA52150.1.
Z49462 Genomic DNA. Translation: CAA89482.1.
BK006943 Genomic DNA. Translation: DAA08619.1.
PIRS40400.
RefSeqNP_012348.1. NM_001181620.1.

3D structure databases

ProteinModelPortalP32944.
SMRP32944. Positions 403-714.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid33575. 295 interactions.
DIPDIP-2410N.
IntActP32944. 31 interactions.
MINTMINT-532694.
STRING4932.YJL187C.

Proteomic databases

MaxQBP32944.
PaxDbP32944.
PeptideAtlasP32944.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblFungiYJL187C; YJL187C; YJL187C.
GeneID853252.
KEGGsce:YJL187C.

Organism-specific databases

CYGDYJL187c.
SGDS000003723. SWE1.

Phylogenomic databases

eggNOGCOG0515.
GeneTreeENSGT00530000063230.
HOGENOMHOG000057137.
KOK03114.
OMADFGMATH.
OrthoDBEOG7380FJ.

Enzyme and pathway databases

BioCycYEAST:G3O-31620-MONOMER.

Gene expression databases

GenevestigatorP32944.

Family and domain databases

InterProIPR011009. Kinase-like_dom.
IPR000719. Prot_kinase_dom.
IPR017441. Protein_kinase_ATP_BS.
IPR008271. Ser/Thr_kinase_AS.
[Graphical view]
PfamPF00069. Pkinase. 1 hit.
[Graphical view]
SUPFAMSSF56112. SSF56112. 2 hits.
PROSITEPS00107. PROTEIN_KINASE_ATP. 1 hit.
PS50011. PROTEIN_KINASE_DOM. 1 hit.
PS00108. PROTEIN_KINASE_ST. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

NextBio973496.
PROP32944.

Entry information

Entry nameSWE1_YEAST
AccessionPrimary (citable) accession number: P32944
Secondary accession number(s): D6VW03
Entry history
Integrated into UniProtKB/Swiss-Prot: October 1, 1993
Last sequence update: October 1, 1993
Last modified: July 9, 2014
This is version 134 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

Relevant documents

Yeast chromosome X

Yeast (Saccharomyces cerevisiae) chromosome X: entries and gene names

Yeast

Yeast (Saccharomyces cerevisiae): entries, gene names and cross-references to SGD

SIMILARITY comments

Index of protein domains and families