Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P32657 (CHD1_YEAST) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 146. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (4) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Chromo domain-containing protein 1

EC=3.6.4.-
Alternative name(s):
ATP-dependent helicase CHD1
Gene names
Name:CHD1
Ordered Locus Names:YER164W
ORF Names:SYGP-ORF4
OrganismSaccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [Reference proteome]
Taxonomic identifier559292 [NCBI]
Taxonomic lineageEukaryotaFungiDikaryaAscomycotaSaccharomycotinaSaccharomycetesSaccharomycetalesSaccharomycetaceaeSaccharomyces

Protein attributes

Sequence length1468 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complexes SAGA and SLIK. It recognizes H3K4me. SAGA is involved in RNA polymerase II-dependent transcriptional regulation of approximately 10% of yeast genes. At the promoters, SAGA is required for recruitment of the basal transcription machinery. It influences RNA polymerase II transcriptional activity through different activities such as TBP interaction (SPT3, SPT8 and SPT20) and promoter selectivity, interaction with transcription activators (GCN5, ADA2, ADA3 and TRA1), and chromatin modification through histone acetylation (GCN5) and deubiquitination (UBP8). SAGA acetylates nucleosomal histone H3 to some extent (to form H3K9ac, H3K14ac, H3K18ac and H3K23ac). SAGA interacts with DNA via upstream activating sequences (UASs). SLIK is proposed to have partly overlapping functions with SAGA. It preferentially acetylates methylated histone H3, at least after activation at the GAL1-10 locus. Acts in opposition to the FACT complex in regulating polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the pol I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Ref.3 Ref.4 Ref.7 Ref.8 Ref.11 Ref.12 Ref.13 Ref.14 Ref.17 Ref.18 Ref.20

Subunit structure

Component of the 1.8 MDa SAGA complex, which consists of at least of TRA1, CHD1, SPT7, TAF5, ADA3, SGF73, SPT20/ADA5, SPT8, TAF12, TAF6, HFI1/ADA1, UBP8, GCN5, ADA2, SPT3, SGF29, TAF10, TAF9, SGF11 and SUS1. TAF5, TAF6, TAF9, TAF19, TAF12 and ADA1 seem to be present in 2 copies. SAGA is built of 5 distinct domains with specialized functions. Domain I (containing TRA1) probably represents the activator interaction surface. Domain II (containing TAF5 and TAF6, and probably TAF9 and TAF10), domain III (containing GCN5, TAF10, SPT7, TAF5 and ADA1, and probably ADA2, ADA3 and TAF12), and domain IV (containing HFI1/ADA1 and TAF6, and probably TAF9) are believed to play primarily an architectural role. Domain III also harbors the HAT activity. Domain V (containing SPT3 and SPT20, and probably SPT8) represents the TBP-interacting module, which may be associated transiently with SAGA. Component of the SLIK complex, which consists of at least TRA1, CHD1, SPT7, TAF5, ADA3, SPT20, RTG2, TAF12, TAF6, HFI1, UBP8, GCN5, ADA2, SPT3, SGF29, TAF10 and TAF9. Interacts with RTF1, SPT5 and with the FACT subunits POB3 and SPT16. Ref.5 Ref.6 Ref.7 Ref.11 Ref.16 Ref.26

Subcellular location

Nucleus Probable Ref.7.

Miscellaneous

Present with 1620 molecules/cell in log phase SD medium.

Sequence similarities

Belongs to the SNF2/RAD54 helicase family.

Contains 2 chromo domains.

Contains 1 helicase ATP-binding domain.

Contains 1 helicase C-terminal domain.

Biophysicochemical properties

Kinetic parameters:

KM=10.2 nM for ATP Ref.14

Ontologies

Keywords
   Biological processTranscription
Transcription regulation
   Cellular componentNucleus
   DomainRepeat
   LigandATP-binding
DNA-binding
Nucleotide-binding
   Molecular functionChromatin regulator
Helicase
Hydrolase
   PTMIsopeptide bond
Phosphoprotein
Ubl conjugation
   Technical term3D-structure
Complete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processATP catabolic process

Inferred from direct assay Ref.4. Source: GOC

ATP-dependent chromatin remodeling

Inferred from direct assay Ref.4. Source: SGD

histone H2B conserved C-terminal lysine ubiquitination

Inferred from mutant phenotype PubMed 22549955. Source: SGD

negative regulation of DNA-dependent DNA replication

Inferred from genetic interaction Ref.20. Source: SGD

negative regulation of histone H3-K14 acetylation

Inferred from mutant phenotype PubMed 19948887. Source: SGD

negative regulation of histone H3-K9 acetylation

Inferred from mutant phenotype PubMed 19948887. Source: SGD

negative regulation of histone exchange

Inferred from mutant phenotype PubMed 22922743. Source: SGD

nucleosome mobilization

Inferred from direct assay Ref.12. Source: SGD

nucleosome positioning

Inferred from direct assay Ref.14. Source: SGD

regulation of chromatin organization

Inferred from mutant phenotype PubMed 22922743. Source: SGD

regulation of transcription by chromatin organization

Inferred from mutant phenotype Ref.13. Source: SGD

regulation of transcriptional start site selection at RNA polymerase II promoter

Inferred from genetic interaction PubMed 19948887. Source: SGD

termination of RNA polymerase I transcription

Inferred from genetic interaction Ref.18. Source: SGD

termination of RNA polymerase II transcription

Inferred from mutant phenotype PubMed 12504018. Source: SGD

transcription elongation from RNA polymerase II promoter

Inferred from genetic interaction Ref.7. Source: SGD

   Cellular_componentSAGA complex

Inferred from direct assay Ref.11. Source: SGD

SLIK (SAGA-like) complex

Inferred from direct assay Ref.11. Source: SGD

nuclear chromatin

Inferred from direct assay PubMed 12504018Ref.7. Source: SGD

nucleolar chromatin

Inferred from direct assay Ref.18. Source: SGD

   Molecular_functionATP binding

Inferred from electronic annotation. Source: UniProtKB-KW

DNA binding

Inferred from direct assay PubMed 21623345. Source: SGD

DNA-dependent ATPase activity

Inferred from direct assay Ref.4. Source: SGD

chromatin DNA binding

Inferred from direct assay Ref.7. Source: SGD

helicase activity

Inferred from electronic annotation. Source: UniProtKB-KW

methylated histone residue binding

Inferred from direct assay Ref.11. Source: SGD

nucleosome-dependent ATPase activity

Inferred from direct assay Ref.4. Source: SGD

rDNA binding

Inferred from direct assay Ref.18. Source: SGD

Complete GO annotation...

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 14681468Chromo domain-containing protein 1
PRO_0000080237

Regions

Domain195 – 25763Chromo 1
Domain285 – 35066Chromo 2
Domain388 – 562175Helicase ATP-binding
Domain699 – 860162Helicase C-terminal
Nucleotide binding401 – 4088ATP Potential
Motif513 – 5164DEAH box

Amino acid modifications

Modified residue361Phosphoserine Ref.15 Ref.21 Ref.22
Modified residue721Phosphoserine Ref.22
Modified residue9871Phosphoserine Ref.21 Ref.22
Modified residue9891Phosphoserine Ref.21 Ref.22
Modified residue13361Phosphoserine Ref.21 Ref.22
Modified residue13641Phosphoserine Ref.19
Modified residue13721Phosphoserine Ref.21
Cross-link1144Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin) Ref.10

Experimental info

Mutagenesis2201E → L or W: No interaction with methylated histone H3 'K-4'. Ref.11 Ref.26
Mutagenesis2221H → Y: Confers interaction with methylated histone H3 'K-4'. Ref.11
Mutagenesis3141L → Y: No effect on interaction with methylated histone H3 'K-4'. Ref.11
Mutagenesis3161Y → E: Disrupts interaction with methylated histone H3 'K-4'; abrogates histone acetylation activity of SLIK. Ref.11

Secondary structure

.................................................................. 1468
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
P32657 [UniParc].

Last modified October 1, 1993. Version 1.
Checksum: 78BDB74C7FEC6BE5

FASTA1,468168,241
        10         20         30         40         50         60 
MAAKDISTEV LQNPELYGLR RSHRAAAHQQ NYFNDSDDED DEDNIKQSRR KRMTTIEDDE 

        70         80         90        100        110        120 
DEFEDEEGEE DSGEDEDEED FEEDDDYYGS PIKQNRSKPK SRTKSKSKSK PKSQSEKQST 

       130        140        150        160        170        180 
VKIPTRFSNR QNKTVNYNID YSDDDLLESE DDYGSEEALS EENVHEASAN PQPEDFHGID 

       190        200        210        220        230        240 
IVINHRLKTS LEEGKVLEKT VPDLNNCKEN YEFLIKWTDE SHLHNTWETY ESIGQVRGLK 

       250        260        270        280        290        300 
RLDNYCKQFI IEDQQVRLDP YVTAEDIEIM DMERERRLDE FEEFHVPERI IDSQRASLED 

       310        320        330        340        350        360 
GTSQLQYLVK WRRLNYDEAT WENATDIVKL APEQVKHFQN RENSKILPQY SSNYTSQRPR 

       370        380        390        400        410        420 
FEKLSVQPPF IKGGELRDFQ LTGINWMAFL WSKGDNGILA DEMGLGKTVQ TVAFISWLIF 

       430        440        450        460        470        480 
ARRQNGPHII VVPLSTMPAW LDTFEKWAPD LNCICYMGNQ KSRDTIREYE FYTNPRAKGK 

       490        500        510        520        530        540 
KTMKFNVLLT TYEYILKDRA ELGSIKWQFM AVDEAHRLKN AESSLYESLN SFKVANRMLI 

       550        560        570        580        590        600 
TGTPLQNNIK ELAALVNFLM PGRFTIDQEI DFENQDEEQE EYIHDLHRRI QPFILRRLKK 

       610        620        630        640        650        660 
DVEKSLPSKT ERILRVELSD VQTEYYKNIL TKNYSALTAG AKGGHFSLLN IMNELKKASN 

       670        680        690        700        710        720 
HPYLFDNAEE RVLQKFGDGK MTRENVLRGL IMSSGKMVLL DQLLTRLKKD GHRVLIFSQM 

       730        740        750        760        770        780 
VRMLDILGDY LSIKGINFQR LDGTVPSAQR RISIDHFNSP DSNDFVFLLS TRAGGLGINL 

       790        800        810        820        830        840 
MTADTVVIFD SDWNPQADLQ AMARAHRIGQ KNHVMVYRLV SKDTVEEEVL ERARKKMILE 

       850        860        870        880        890        900 
YAIISLGVTD GNKYTKKNEP NAGELSAILK FGAGNMFTAT DNQKKLEDLN LDDVLNHAED 

       910        920        930        940        950        960 
HVTTPDLGES HLGGEEFLKQ FEVTDYKADI DWDDIIPEEE LKKLQDEEQK RKDEEYVKEQ 

       970        980        990       1000       1010       1020 
LEMMNRRDNA LKKIKNSVNG DGTAANSDSD DDSTSRSSRR RARANDMDSI GESEVRALYK 

      1030       1040       1050       1060       1070       1080 
AILKFGNLKE ILDELIADGT LPVKSFEKYG ETYDEMMEAA KDCVHEEEKN RKEILEKLEK 

      1090       1100       1110       1120       1130       1140 
HATAYRAKLK SGEIKAENQP KDNPLTRLSL KKREKKAVLF NFKGVKSLNA ESLLSRVEDL 

      1150       1160       1170       1180       1190       1200 
KYLKNLINSN YKDDPLKFSL GNNTPKPVQN WSSNWTKEED EKLLIGVFKY GYGSWTQIRD 

      1210       1220       1230       1240       1250       1260 
DPFLGITDKI FLNEVHNPVA KKSASSSDTT PTPSKKGKGI TGSSKKVPGA IHLGRRVDYL 

      1270       1280       1290       1300       1310       1320 
LSFLRGGLNT KSPSADIGSK KLPTGPSKKR QRKPANHSKS MTPEITSSEP ANGPPSKRMK 

      1330       1340       1350       1360       1370       1380 
ALPKGPAALI NNTRLSPNSP TPPLKSKVSR DNGTRQSSNP SSGSAHEKEY DSMDEEDCRH 

      1390       1400       1410       1420       1430       1440 
TMSAIRTSLK RLRRGGKSLD RKEWAKILKT ELTTIGNHIE SQKGSSRKAS PEKYRKHLWS 

      1450       1460 
YSANFWPADV KSTKLMAMYD KITESQKK 

« Hide

References

« Hide 'large scale' references
[1]"The nucleotide sequence of Saccharomyces cerevisiae chromosome V."
Dietrich F.S., Mulligan J.T., Hennessy K.M., Yelton M.A., Allen E., Araujo R., Aviles E., Berno A., Brennan T., Carpenter J., Chen E., Cherry J.M., Chung E., Duncan M., Guzman E., Hartzell G., Hunicke-Smith S., Hyman R.W. expand/collapse author list , Kayser A., Komp C., Lashkari D., Lew H., Lin D., Mosedale D., Nakahara K., Namath A., Norgren R., Oefner P., Oh C., Petel F.X., Roberts D., Sehl P., Schramm S., Shogren T., Smith V., Taylor P., Wei Y., Botstein D., Davis R.W.
Nature 387:78-81(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: ATCC 204508 / S288c.
[2]Saccharomyces Genome Database
Submitted (DEC-2009) to the EMBL/GenBank/DDBJ databases
Cited for: GENOME REANNOTATION.
Strain: ATCC 204508 / S288c.
[3]"Expanded lysine acetylation specificity of Gcn5 in native complexes."
Grant P.A., Eberharter A., John S., Cook R.G., Turner B.M., Workman J.L.
J. Biol. Chem. 274:5895-5900(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN HISTONE ACETYLATION AT THE SAGA COMPLEX.
[4]"The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatin-modifying factor."
Tran H.G., Steger D.J., Iyer V.R., Johnson A.D.
EMBO J. 19:2323-2331(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[5]"RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach."
Krogan N.J., Kim M., Ahn S.H., Zhong G., Kobor M.S., Cagney G., Emili A., Shilatifard A., Buratowski S., Greenblatt J.F.
Mol. Cell. Biol. 22:6979-6992(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH POB3 AND SPT16.
[6]"The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway."
Pray-Grant M.G., Schieltz D., McMahon S.J., Wood J.M., Kennedy E.L., Cook R.G., Workman J.L., Yates J.R. III, Grant P.A.
Mol. Cell. Biol. 22:8774-8786(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN THE SLIK COMPLEX.
[7]"Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes."
Simic R., Lindstrom D.L., Tran H.G., Roinick K.L., Costa P.J., Johnson A.D., Hartzog G.A., Arndt K.M.
EMBO J. 22:1846-1856(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, INTERACTION WITH RTF1 AND SPT5.
[8]"Replication-independent assembly of nucleosome arrays in a novel yeast chromatin reconstitution system involves antisilencing factor Asf1p and chromodomain protein Chd1p."
Robinson K.M., Schultz M.C.
Mol. Cell. Biol. 23:7937-7946(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[9]"Global analysis of protein expression in yeast."
Ghaemmaghami S., Huh W.-K., Bower K., Howson R.W., Belle A., Dephoure N., O'Shea E.K., Weissman J.S.
Nature 425:737-741(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: LEVEL OF PROTEIN EXPRESSION [LARGE SCALE ANALYSIS].
[10]"A proteomics approach to understanding protein ubiquitination."
Peng J., Schwartz D., Elias J.E., Thoreen C.C., Cheng D., Marsischky G., Roelofs J., Finley D., Gygi S.P.
Nat. Biotechnol. 21:921-926(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: UBIQUITINATION [LARGE SCALE ANALYSIS] AT LYS-1144.
Strain: SUB592.
[11]"Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation."
Pray-Grant M.G., Daniel J.A., Schieltz D., Yates J.R. III, Grant P.A.
Nature 433:434-438(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN THE SAGA COMPLEX, IDENTIFICATION IN THE SLIK COMPLEX, FUNCTION IN SUBSTRATE RECOGNITION OF THE SLIK COMPLEX, INTERACTION WITH HISTONE H3, MUTAGENESIS OF GLU-220; HIS-222; LEU-314 AND TYR-316.
[12]"Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes."
Stockdale C., Flaus A., Ferreira H., Owen-Hughes T.
J. Biol. Chem. 281:16279-16288(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[13]"The ISWI and CHD1 chromatin remodelling activities influence ADH2 expression and chromatin organization."
Xella B., Goding C., Agricola E., Di Mauro E., Caserta M.
Mol. Microbiol. 59:1531-1541(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[14]"Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms."
Ferreira H., Flaus A., Owen-Hughes T.
J. Mol. Biol. 374:563-579(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, BIOPHYSICOCHEMICAL PROPERTIES.
[15]"Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae."
Li X., Gerber S.A., Rudner A.D., Beausoleil S.A., Haas W., Villen J., Elias J.E., Gygi S.P.
J. Proteome Res. 6:1190-1197(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-36, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Strain: ADR376.
[16]"Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification."
Warner M.H., Roinick K.L., Arndt K.M.
Mol. Cell. Biol. 27:6103-6115(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RTF1.
[17]"Chd1 and yFACT act in opposition in regulating transcription."
Biswas D., Dutta-Biswas R., Stillman D.J.
Mol. Cell. Biol. 27:6279-6287(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[18]"RNA polymerase I in yeast transcribes dynamic nucleosomal rDNA."
Jones H.S., Kawauchi J., Braglia P., Alen C.M., Kent N.A., Proudfoot N.J.
Nat. Struct. Mol. Biol. 14:123-130(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: ASSOCIATION WITH RDNA, FUNCTION.
[19]"Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry."
Chi A., Huttenhower C., Geer L.Y., Coon J.J., Syka J.E.P., Bai D.L., Shabanowitz J., Burke D.J., Troyanskaya O.G., Hunt D.F.
Proc. Natl. Acad. Sci. U.S.A. 104:2193-2198(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-1364, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[20]"A role for Chd1 and Set2 in negatively regulating DNA replication in Saccharomyces cerevisiae."
Biswas D., Takahata S., Xin H., Dutta-Biswas R., Yu Y., Formosa T., Stillman D.J.
Genetics 178:649-659(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[21]"A multidimensional chromatography technology for in-depth phosphoproteome analysis."
Albuquerque C.P., Smolka M.B., Payne S.H., Bafna V., Eng J., Zhou H.
Mol. Cell. Proteomics 7:1389-1396(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-36; SER-987; SER-989; SER-1336 AND SER-1372, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[22]"Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution."
Holt L.J., Tuch B.B., Villen J., Johnson A.D., Gygi S.P., Morgan D.O.
Science 325:1682-1686(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-36; SER-72; SER-987; SER-989 AND SER-1336, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[23]"N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB."
Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A., Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E., Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K., Aldabe R.
Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[24]"Molecular architecture of the S. cerevisiae SAGA complex."
Wu P.Y., Ruhlmann C., Winston F., Schultz P.
Mol. Cell 15:199-208(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: 3D-STRUCTURE MODELING OF THE SAGA COMPLEX.
[25]"Structural polymorphism of chromodomains in Chd1."
Okuda M., Horikoshi M., Nishimura Y.
J. Mol. Biol. 365:1047-1062(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY NMR OF 172-252, DOMAIN.
[26]"Molecular implications of evolutionary differences in CHD double chromodomains."
Flanagan J.F., Blus B.J., Kim D., Clines K.L., Rastinejad F., Khorasanizadeh S.
J. Mol. Biol. 369:334-342(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 174-339, DOMAIN, INTERACTION WITH HISTONE H3K4ME3, MUTAGENESIS OF GLU-220.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
U18917 Genomic DNA. Translation: AAB64691.1.
BK006939 Genomic DNA. Translation: DAA07826.1.
PIRS30818.
RefSeqNP_011091.1. NM_001179054.1.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
2DY7NMR-A172-252[»]
2DY8NMR-A279-347[»]
2H1EX-ray2.20A/B174-339[»]
2XB0X-ray2.00X1009-1274[»]
3MWYX-ray3.70W142-939[»]
3TEDX-ray2.00A1006-1274[»]
ProteinModelPortalP32657.
SMRP32657. Positions 175-922, 1006-1266.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid36917. 227 interactions.
DIPDIP-6362N.
IntActP32657. 38 interactions.
MINTMINT-618890.
STRING4932.YER164W.

Proteomic databases

PaxDbP32657.
PeptideAtlasP32657.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblFungiYER164W; YER164W; YER164W.
GeneID856911.
KEGGsce:YER164W.

Organism-specific databases

CYGDYER164w.
SGDS000000966. CHD1.

Phylogenomic databases

eggNOGCOG0553.
GeneTreeENSGT00560000076896.
HOGENOMHOG000207917.
KOK11367.
OMAMEDRSAD.
OrthoDBEOG7M98QM.

Enzyme and pathway databases

BioCycYEAST:G3O-30325-MONOMER.
SABIO-RKP32657.

Gene expression databases

GenevestigatorP32657.

Family and domain databases

Gene3D1.10.10.60. 1 hit.
3.40.50.300. 2 hits.
InterProIPR023780. Chromo_domain.
IPR000953. Chromo_domain/shadow.
IPR016197. Chromodomain-like.
IPR023779. Chromodomain_CS.
IPR025260. DUF4208.
IPR014001. Helicase_ATP-bd.
IPR001650. Helicase_C.
IPR009057. Homeodomain-like.
IPR027417. P-loop_NTPase.
IPR000330. SNF2_N.
[Graphical view]
PfamPF00385. Chromo. 2 hits.
PF13907. DUF4208. 1 hit.
PF00271. Helicase_C. 1 hit.
PF00176. SNF2_N. 1 hit.
[Graphical view]
SMARTSM00298. CHROMO. 2 hits.
SM00487. DEXDc. 1 hit.
SM00490. HELICc. 1 hit.
[Graphical view]
SUPFAMSSF46689. SSF46689. 1 hit.
SSF52540. SSF52540. 2 hits.
SSF54160. SSF54160. 2 hits.
PROSITEPS00598. CHROMO_1. 2 hits.
PS50013. CHROMO_2. 2 hits.
PS51192. HELICASE_ATP_BIND_1. 1 hit.
PS51194. HELICASE_CTER. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

EvolutionaryTraceP32657.
NextBio983353.
PROP32657.

Entry information

Entry nameCHD1_YEAST
AccessionPrimary (citable) accession number: P32657
Secondary accession number(s): D3DM72
Entry history
Integrated into UniProtKB/Swiss-Prot: October 1, 1993
Last sequence update: October 1, 1993
Last modified: April 16, 2014
This is version 146 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

Relevant documents

Yeast chromosome V

Yeast (Saccharomyces cerevisiae) chromosome V: entries and gene names

Yeast

Yeast (Saccharomyces cerevisiae): entries, gene names and cross-references to SGD

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references