Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P32324 (EF2_YEAST) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 149. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (6) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Elongation factor 2

Short name=EF-2
Alternative name(s):
Eukaryotic elongation factor 2
Short name=eEF2
Ribosomal translocase
Translation elongation factor 2
Gene names
Name:EFT1
Ordered Locus Names:YOR133W
ORF Names:O3317, YOR3317W
AND
Name:EFT2
Ordered Locus Names:YDR385W
OrganismSaccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [Reference proteome]
Taxonomic identifier559292 [NCBI]
Taxonomic lineageEukaryotaFungiDikaryaAscomycotaSaccharomycotinaSaccharomycetesSaccharomycetalesSaccharomycetaceaeSaccharomyces

Protein attributes

Sequence length842 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. Ref.23

Enzyme regulation

Inhibited by fusidic acid and sordarin, which prevent the release of eEF2 from the ribosome after the translocation step. While fusidic acid acts on all eukaryotic eEF2, sordarin specifically binds and inhibits only selected fungal eEF2. Inhibited by diphtheria toxin and Pseudomonas aeruginosa exotoxin A (ETA), which ADP-ribosylate the diphthamide residue.

Pathway

Protein biosynthesis; polypeptide chain elongation.

Subunit structure

Binds to 80S ribosomes. Interacts directly with the 40S ribosomal subunit protein RPL9A, the 60S ribosomal subunit proteins RPL12A and RPS23A, as well as the 18S rRNA and the 25S rRNA. Interacts with RPL0. Ref.14 Ref.23

Subcellular location

Cytoplasm Ref.15.

Miscellaneous

Present with 160782 molecules/cell in log phase SD medium.

There are 2 genes for eEF2 in yeast.

Sequence similarities

Belongs to the GTP-binding elongation factor family. EF-G/EF-2 subfamily.

Biophysicochemical properties

Kinetic parameters:

KM=0.010 mM for GTP

Binary interactions

With

Entry

#Exp.

IntAct

Notes

RPP0P053172EBI-6333,EBI-15447
SKP1P522862EBI-6333,EBI-4090

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 842842Elongation factor 2
PRO_0000091024

Regions

Nucleotide binding26 – 338GTP By similarity
Nucleotide binding104 – 1085GTP By similarity
Nucleotide binding158 – 1614GTP By similarity

Amino acid modifications

Modified residue5791Phosphoserine Ref.18
Modified residue6991Diphthamide
Modified residue7131Phosphothreonine Ref.18
Modified residue7631Phosphothreonine Ref.18

Experimental info

Mutagenesis1801R → G: Causes resistance to fusidic acid and reduces sensitivity to sordarin. Ref.13
Mutagenesis1871V → F: Causes resistance to fusidic acid and reduces sensitivity to sordarin. Ref.13
Mutagenesis4901Q → E: Reduces sensitivity to sordarin. Ref.13
Mutagenesis5211Y → D, N or S: Reduces sensitivity to fusidic acid and sordarin. Ref.13
Mutagenesis5231S → F or P: Causes resistance to fusidic acid and sordarin. Ref.13
Mutagenesis5291I → T: Reduces sensitivity to sordarin. Ref.13
Mutagenesis5591P → L or R: Causes resistance to fusidic acid and sordarin. Ref.13
Mutagenesis5621A → P: Reduces sensitivity to fusidic acid and causes resistance to sordarin. Ref.13
Mutagenesis5801P → H: Causes impaired ribosomal translocation with an increased rate of -1 programmed ribosomal frameshift read-through during translation. Ref.19
Mutagenesis6991H → D, E, L or M: Prevents post-translational modification of this residue to diphthamide. Results in a functional protein that is resistant to diphtheria toxin. Ref.12
Mutagenesis7011G → R: Prevents ADP-ribosylation of the diphthamide by diphtheria toxin. Ref.11
Mutagenesis7271P → S: Causes resistance to sordarin. Ref.13
Mutagenesis7741V → F: Causes resistance to sordarin. Ref.13
Mutagenesis7901Missing: Causes resistance to fusidic acid and sordarin. Ref.13

Secondary structure

.............................................................................................................................................................. 842
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
P32324 [UniParc].

Last modified October 1, 1993. Version 1.
Checksum: FD2F8073CB9B66AA

FASTA84293,289
        10         20         30         40         50         60 
MVAFTVDQMR SLMDKVTNVR NMSVIAHVDH GKSTLTDSLV QRAGIISAAK AGEARFTDTR 

        70         80         90        100        110        120 
KDEQERGITI KSTAISLYSE MSDEDVKEIK QKTDGNSFLI NLIDSPGHVD FSSEVTAALR 

       130        140        150        160        170        180 
VTDGALVVVD TIEGVCVQTE TVLRQALGER IKPVVVINKV DRALLELQVS KEDLYQTFAR 

       190        200        210        220        230        240 
TVESVNVIVS TYADEVLGDV QVYPARGTVA FGSGLHGWAF TIRQFATRYA KKFGVDKAKM 

       250        260        270        280        290        300 
MDRLWGDSFF NPKTKKWTNK DTDAEGKPLE RAFNMFILDP IFRLFTAIMN FKKDEIPVLL 

       310        320        330        340        350        360 
EKLEIVLKGD EKDLEGKALL KVVMRKFLPA ADALLEMIVL HLPSPVTAQA YRAEQLYEGP 

       370        380        390        400        410        420 
ADDANCIAIK NCDPKADLML YVSKMVPTSD KGRFYAFGRV FAGTVKSGQK VRIQGPNYVP 

       430        440        450        460        470        480 
GKKDDLFIKA IQRVVLMMGR FVEPIDDCPA GNIIGLVGID QFLLKTGTLT TSETAHNMKV 

       490        500        510        520        530        540 
MKFSVSPVVQ VAVEVKNAND LPKLVEGLKR LSKSDPCVLT YMSESGEHIV AGTGELHLEI 

       550        560        570        580        590        600 
CLQDLEHDHA GVPLKISPPV VAYRETVESE SSQTALSKSP NKHNRIYLKA EPIDEEVSLA 

       610        620        630        640        650        660 
IENGIINPRD DFKARARIMA DDYGWDVTDA RKIWCFGPDG NGPNLVIDQT KAVQYLHEIK 

       670        680        690        700        710        720 
DSVVAAFQWA TKEGPIFGEE MRSVRVNILD VTLHADAIHR GGGQIIPTMR RATYAGFLLA 

       730        740        750        760        770        780 
DPKIQEPVFL VEIQCPEQAV GGIYSVLNKK RGQVVSEEQR PGTPLFTVKA YLPVNESFGF 

       790        800        810        820        830        840 
TGELRQATGG QAFPQMVFDH WSTLGSDPLD PTSKAGEIVL AARKRHGMKE EVPGWQEYYD 


KL 

« Hide

References

« Hide 'large scale' references
[1]"Saccharomyces cerevisiae elongation factor 2. Genetic cloning, characterization of expression, and G-domain modeling."
Perentesis J.P., Phan L.D., Laporte D.C., Livingston D.M., Bodley J.W.
J. Biol. Chem. 267:1190-1197(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA] (EFT1 AND EFT2).
[2]"Sequencing and analysis of 51 kb on the right arm of chromosome XV from Saccharomyces cerevisiae reveals 30 open reading frames."
Wiemann S., Rechmann S., Benes V., Voss H., Schwager C., Vlcek C., Stegemann J., Zimmermann J., Erfle H., Paces V., Ansorge W.
Yeast 12:281-288(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA] (EFT1).
Strain: ATCC 96604 / S288c / FY1679.
[3]"DNA sequencing and analysis of 130 kb from yeast chromosome XV."
Voss H., Benes V., Andrade M.A., Valencia A., Rechmann S., Teodoru C., Schwager C., Paces V., Sander C., Ansorge W.
Yeast 13:655-672(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA] (EFT1).
[4]"The nucleotide sequence of Saccharomyces cerevisiae chromosome IV."
Jacq C., Alt-Moerbe J., Andre B., Arnold W., Bahr A., Ballesta J.P.G., Bargues M., Baron L., Becker A., Biteau N., Bloecker H., Blugeon C., Boskovic J., Brandt P., Brueckner M., Buitrago M.J., Coster F., Delaveau T. expand/collapse author list , del Rey F., Dujon B., Eide L.G., Garcia-Cantalejo J.M., Goffeau A., Gomez-Peris A., Granotier C., Hanemann V., Hankeln T., Hoheisel J.D., Jaeger W., Jimenez A., Jonniaux J.-L., Kraemer C., Kuester H., Laamanen P., Legros Y., Louis E.J., Moeller-Rieker S., Monnet A., Moro M., Mueller-Auer S., Nussbaumer B., Paricio N., Paulin L., Perea J., Perez-Alonso M., Perez-Ortin J.E., Pohl T.M., Prydz H., Purnelle B., Rasmussen S.W., Remacha M.A., Revuelta J.L., Rieger M., Salom D., Saluz H.P., Saiz J.E., Saren A.-M., Schaefer M., Scharfe M., Schmidt E.R., Schneider C., Scholler P., Schwarz S., Soler-Mira A., Urrestarazu L.A., Verhasselt P., Vissers S., Voet M., Volckaert G., Wagner G., Wambutt R., Wedler E., Wedler H., Woelfl S., Harris D.E., Bowman S., Brown D., Churcher C.M., Connor R., Dedman K., Gentles S., Hamlin N., Hunt S., Jones L., McDonald S., Murphy L.D., Niblett D., Odell C., Oliver K., Rajandream M.A., Richards C., Shore L., Walsh S.V., Barrell B.G., Dietrich F.S., Mulligan J.T., Allen E., Araujo R., Aviles E., Berno A., Carpenter J., Chen E., Cherry J.M., Chung E., Duncan M., Hunicke-Smith S., Hyman R.W., Komp C., Lashkari D., Lew H., Lin D., Mosedale D., Nakahara K., Namath A., Oefner P., Oh C., Petel F.X., Roberts D., Schramm S., Schroeder M., Shogren T., Shroff N., Winant A., Yelton M.A., Botstein D., Davis R.W., Johnston M., Andrews S., Brinkman R., Cooper J., Ding H., Du Z., Favello A., Fulton L., Gattung S., Greco T., Hallsworth K., Hawkins J., Hillier L.W., Jier M., Johnson D., Johnston L., Kirsten J., Kucaba T., Langston Y., Latreille P., Le T., Mardis E., Menezes S., Miller N., Nhan M., Pauley A., Peluso D., Rifkin L., Riles L., Taich A., Trevaskis E., Vignati D., Wilcox L., Wohldman P., Vaudin M., Wilson R., Waterston R., Albermann K., Hani J., Heumann K., Kleine K., Mewes H.-W., Zollner A., Zaccaria P.
Nature 387:75-78(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA] (EFT2).
Strain: ATCC 204508 / S288c.
[5]"The nucleotide sequence of Saccharomyces cerevisiae chromosome XV."
Dujon B., Albermann K., Aldea M., Alexandraki D., Ansorge W., Arino J., Benes V., Bohn C., Bolotin-Fukuhara M., Bordonne R., Boyer J., Camasses A., Casamayor A., Casas C., Cheret G., Cziepluch C., Daignan-Fornier B., Dang V.-D. expand/collapse author list , de Haan M., Delius H., Durand P., Fairhead C., Feldmann H., Gaillon L., Galisson F., Gamo F.-J., Gancedo C., Goffeau A., Goulding S.E., Grivell L.A., Habbig B., Hand N.J., Hani J., Hattenhorst U., Hebling U., Hernando Y., Herrero E., Heumann K., Hiesel R., Hilger F., Hofmann B., Hollenberg C.P., Hughes B., Jauniaux J.-C., Kalogeropoulos A., Katsoulou C., Kordes E., Lafuente M.J., Landt O., Louis E.J., Maarse A.C., Madania A., Mannhaupt G., Marck C., Martin R.P., Mewes H.-W., Michaux G., Paces V., Parle-McDermott A.G., Pearson B.M., Perrin A., Pettersson B., Poch O., Pohl T.M., Poirey R., Portetelle D., Pujol A., Purnelle B., Ramezani Rad M., Rechmann S., Schwager C., Schweizer M., Sor F., Sterky F., Tarassov I.A., Teodoru C., Tettelin H., Thierry A., Tobiasch E., Tzermia M., Uhlen M., Unseld M., Valens M., Vandenbol M., Vetter I., Vlcek C., Voet M., Volckaert G., Voss H., Wambutt R., Wedler H., Wiemann S., Winsor B., Wolfe K.H., Zollner A., Zumstein E., Kleine K.
Nature 387:98-102(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA] (EFT1).
Strain: ATCC 204508 / S288c.
[6]Saccharomyces Genome Database
Submitted (DEC-2009) to the EMBL/GenBank/DDBJ databases
Cited for: GENOME REANNOTATION (EFT1 AND EFT2).
Strain: ATCC 204508 / S288c.
[7]"Protein identifications for a Saccharomyces cerevisiae protein database."
Garrels J.I., Futcher B., Kobayashi R., Latter G.I., Schwender B., Volpe T., Warner J.R., McLaughlin C.S.
Electrophoresis 15:1466-1486(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 411-422 AND 505-513.
Strain: ATCC 204508 / S288c.
[8]"Phylogeny and evolution of medical species of Candida and related taxa: a multigenic analysis."
Diezmann S., Cox C.J., Schoenian G., Vilgalys R.J., Mitchell T.G.
J. Clin. Microbiol. 42:5624-5635(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 586-785.
[9]"Isolation and properties of the trypsin-derived ADP-ribosyl peptide from diphtheria toxin-modified yeast elongation factor 2."
Van Ness B.G., Howard J.B., Bodley J.W.
J. Biol. Chem. 253:8687-8690(1978) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 686-700, DIPHTHAMIDE AT HIS-699.
[10]"Saccharomyces cerevisiae elongation factor 2 is phosphorylated by an endogenous kinase."
Donovan M.G., Bodley J.W.
FEBS Lett. 291:303-306(1991) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION.
[11]"Expression of non-ADP-ribosylatable, diphtheria toxin-resistant elongation factor 2 in Saccharomyces cerevisiae."
Kimata Y., Harashima S., Kohno K.
Biochem. Biophys. Res. Commun. 191:1145-1151(1993) [PubMed] [Europe PMC] [Abstract]
Cited for: MUTAGENESIS OF GLY-701.
[12]"Saccharomyces cerevisiae elongation factor 2. Mutagenesis of the histidine precursor of diphthamide yields a functional protein that is resistant to diphtheria toxin."
Phan L.D., Perentesis J.P., Bodley J.W.
J. Biol. Chem. 268:8665-8668(1993) [PubMed] [Europe PMC] [Abstract]
Cited for: MUTAGENESIS OF HIS-699.
[13]"Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis."
Justice M.C., Hsu M.-J., Tse B., Ku T., Balkovec J., Schmatz D., Nielsen J.
J. Biol. Chem. 273:3148-3151(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: MUTAGENESIS OF ARG-180; VAL-187; GLN-490; TYR-521; SER-523; ILE-529; PRO-559; ALA-562; PRO-727; VAL-774 AND GLY-790.
[14]"Characterization of interaction sites in the Saccharomyces cerevisiae ribosomal stalk components."
Lalioti V.S., Perez-Fernandez J., Remacha M.A., Ballesta J.P.G.
Mol. Microbiol. 46:719-729(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RPL0.
[15]"Global analysis of protein localization in budding yeast."
Huh W.-K., Falvo J.V., Gerke L.C., Carroll A.S., Howson R.W., Weissman J.S., O'Shea E.K.
Nature 425:686-691(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION [LARGE SCALE ANALYSIS].
[16]"Global analysis of protein expression in yeast."
Ghaemmaghami S., Huh W.-K., Bower K., Howson R.W., Belle A., Dephoure N., O'Shea E.K., Weissman J.S.
Nature 425:737-741(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: LEVEL OF PROTEIN EXPRESSION [LARGE SCALE ANALYSIS].
[17]"A multidimensional chromatography technology for in-depth phosphoproteome analysis."
Albuquerque C.P., Smolka M.B., Payne S.H., Bafna V., Eng J., Zhou H.
Mol. Cell. Proteomics 7:1389-1396(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[18]"Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution."
Holt L.J., Tuch B.B., Villen J., Johnson A.D., Gygi S.P., Morgan D.O.
Science 325:1682-1686(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-579; THR-713 AND THR-763, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[19]"A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult."
Hekman K.E., Yu G.Y., Brown C.D., Zhu H., Du X., Gervin K., Undlien D.E., Peterson A., Stevanin G., Clark H.B., Pulst S.M., Bird T.D., White K.P., Gomez C.M.
Hum. Mol. Genet. 21:5472-5483(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: MUTAGENESIS OF PRO-580.
[20]"N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB."
Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A., Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E., Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K., Aldabe R.
Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[21]"Sites of ubiquitin attachment in Saccharomyces cerevisiae."
Starita L.M., Lo R.S., Eng J.K., von Haller P.D., Fields S.
Proteomics 12:236-240(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[22]"Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase."
Joergensen R., Ortiz P.A., Carr-Schmid A., Nissen P., Kinzy T.G., Andersen G.R.
Nat. Struct. Biol. 10:379-385(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.12 ANGSTROMS) IN COMPLEX WITH SORDARIN.
[23]"Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation."
Spahn C.M.T., Gomez-Lorenzo M.G., Grassucci R.A., Joergensen R., Andersen G.R., Beckmann R., Penczek P.A., Ballesta J.P.G., Frank J.
EMBO J. 23:1008-1019(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY ELECTRON MICROSCOPY (11.7 ANGSTROMS) IN COMPLEX WITH 80S RIBOSOME AND SORDARIN, FUNCTION, INTERACTION WITH RPL9A; RPL12A; RPS23A; 18S RRNA AND 25S RRNA.
[24]"Crystal structure of ADP-ribosylated ribosomal translocase from Saccharomyces cerevisiae."
Joergensen R., Yates S.P., Teal D.J., Nilsson J., Prentice G.A., Merrill A.R., Andersen G.R.
J. Biol. Chem. 279:45919-45925(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.6 ANGSTROMS) OF ADP-RIBOSYLATED FORM IN COMPLEX WITH GDP AND SORDARIN.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
M59369 Genomic DNA. Translation: AAA21646.1.
M59370 Genomic DNA. Translation: AAA51398.1.
X90518 Genomic DNA. Translation: CAA62116.1.
X94335 Genomic DNA. Translation: CAA64052.1.
U32274 Genomic DNA. Translation: AAB64827.1.
U28373 Genomic DNA. Translation: AAB64821.1.
Z75041 Genomic DNA. Translation: CAA99332.1.
AY497635 Genomic DNA. Translation: AAT12549.1.
BK006948 Genomic DNA. Translation: DAA10907.1.
BK006938 Genomic DNA. Translation: DAA12229.1.
PIRA41778.
RefSeqNP_010673.1. NM_001180693.1.
NP_014776.1. NM_001183552.1.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1N0UX-ray2.12A1-842[»]
1N0VX-ray2.85C/D1-842[»]
1S1Helectron microscopy11.70T1-842[»]
1U2RX-ray2.60A1-842[»]
1ZM2X-ray3.07A/C/E1-842[»]
1ZM3X-ray3.07A/C/E1-842[»]
1ZM4X-ray2.90A/C/E1-842[»]
1ZM9X-ray2.80A/C/E1-842[»]
2E1RX-ray3.15A1-842[»]
2NPFX-ray2.90A/B1-842[»]
2P8Welectron microscopy11.30T1-842[»]
2P8Xelectron microscopy9.70T1-842[»]
2P8Yelectron microscopy11.70T1-842[»]
2P8Zelectron microscopy8.90T1-842[»]
2ZITX-ray3.00A/C/E1-842[»]
3B78X-ray2.50A/C/E1-842[»]
3B82X-ray2.35A/C/E1-842[»]
3B8HX-ray2.50A/C/E1-842[»]
3DNYelectron microscopy12.60T1-842[»]
ProteinModelPortalP32324.
SMRP32324. Positions 2-842.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid32446. 131 interactions.
34529. 83 interactions.
DIPDIP-4911N.
IntActP32324. 138 interactions.
MINTMINT-8285544.
STRING4932.YDR385W.

2D gel databases

SWISS-2DPAGEP32324.

Proteomic databases

PaxDbP32324.
PRIDEP32324.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblFungiYDR385W; YDR385W; YDR385W.
YOR133W; YOR133W; YOR133W.
GeneID851993.
854301.
KEGGsce:YDR385W.
sce:YOR133W.

Organism-specific databases

CYGDYDR385w.
YOR133w.
SGDS000005659. EFT1.
S000002793. EFT2.

Phylogenomic databases

eggNOGCOG0480.
GeneTreeENSGT00750000117652.
ENSGT00750000118348.
HOGENOMHOG000231589.
KOK03234.
OMAEGPEEMQ.
OrthoDBEOG7966SQ.

Enzyme and pathway databases

BioCycYEAST:G3O-29933-MONOMER.
YEAST:G3O-33657-MONOMER.
UniPathwayUPA00345.

Gene expression databases

GenevestigatorP32324.

Family and domain databases

Gene3D3.30.230.10. 1 hit.
3.30.70.240. 1 hit.
3.40.50.300. 1 hit.
InterProIPR000795. EF_GTP-bd_dom.
IPR009022. EFG_III-V.
IPR000640. EFG_V.
IPR027417. P-loop_NTPase.
IPR020568. Ribosomal_S5_D2-typ_fold.
IPR014721. Ribosomal_S5_D2-typ_fold_subgr.
IPR005225. Small_GTP-bd_dom.
IPR009000. Transl_B-barrel.
IPR005517. Transl_elong_EFG/EF2_IV.
IPR004161. Transl_elong_EFTu/EF1A_2.
[Graphical view]
PfamPF00679. EFG_C. 1 hit.
PF14492. EFG_II. 1 hit.
PF03764. EFG_IV. 1 hit.
PF00009. GTP_EFTU. 1 hit.
PF03144. GTP_EFTU_D2. 1 hit.
[Graphical view]
PRINTSPR00315. ELONGATNFCT.
SMARTSM00838. EFG_C. 1 hit.
SM00889. EFG_IV. 1 hit.
[Graphical view]
SUPFAMSSF50447. SSF50447. 1 hit.
SSF52540. SSF52540. 1 hit.
SSF54211. SSF54211. 1 hit.
SSF54980. SSF54980. 2 hits.
TIGRFAMsTIGR00231. small_GTP. 1 hit.
PROSITEPS00301. EFACTOR_GTP. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

EvolutionaryTraceP32324.
NextBio970163.
PROP32324.

Entry information

Entry nameEF2_YEAST
AccessionPrimary (citable) accession number: P32324
Secondary accession number(s): D6VT19, Q6JEF7
Entry history
Integrated into UniProtKB/Swiss-Prot: October 1, 1993
Last sequence update: October 1, 1993
Last modified: April 16, 2014
This is version 149 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

Relevant documents

Yeast chromosome IV

Yeast (Saccharomyces cerevisiae) chromosome IV: entries and gene names

Yeast chromosome XV

Yeast (Saccharomyces cerevisiae) chromosome XV: entries and gene names

Yeast

Yeast (Saccharomyces cerevisiae): entries, gene names and cross-references to SGD

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

PATHWAY comments

Index of metabolic and biosynthesis pathways