Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P29590 (PML_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 179. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (6) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Alt products·Sequence annotation·Sequences·References·Web links·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Protein PML
Alternative name(s):
Promyelocytic leukemia protein
RING finger protein 71
Tripartite motif-containing protein 19
Gene names
Name:PML
Synonyms:MYL, PP8675, RNF71, TRIM19
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length882 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Isoform PML-4 has a multifaceted role in the regulation of apoptosis and growth suppression: activates RB1 and inhibits AKT1 via interactions with PP1 and PP2A phosphatases respectively, negatively affects the PI3K pathway by inhibiting MTOR and activating PTEN, and positively regulates p53/TP53 by acting at different levels (by promoting its acetylation and phosphorylation and by inhibiting its MDM2-dependent degradation). Isoform PML-4 also: acts as a transcriptional repressor of TBX2 during cellular senescence and the repression is dependent on a functional RBL2/E2F4 repressor complex, regulates double-strand break repair in gamma-irradiation-induced DNA damage responses via its interaction with WRN, acts as a negative regulator of telomerase by interacting with TERT, and regulates PER2 nuclear localization and circadian function. Isoform PML-6 inhibits specifically the activity of the tetrameric form of PKM. The nuclear isoforms (isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5)in concert with SATB1 are involved in local chromatin-loop remodeling and gene expression regulation at the MHC-I locus. Isoform PML-2 is required for efficient IFN-gamma induced MHC II gene transcription via regulation of CIITA. Cytoplasmic PML is involved in the regulation of the TGF-beta signaling pathway. PML also regulates transcription activity of ELF4 and can act as an important mediator for TNF-alpha- and IFN-alpha-mediated inhibition of endothelial cell network formation and migration. Ref.13 Ref.16 Ref.17 Ref.19 Ref.20 Ref.24 Ref.25 Ref.26 Ref.29 Ref.31 Ref.33 Ref.37 Ref.38 Ref.40 Ref.42 Ref.43 Ref.45 Ref.46 Ref.48 Ref.49 Ref.52 Ref.58 Ref.62 Ref.64 Ref.67 Ref.72 Ref.73 Ref.75 Ref.77 Ref.80 Ref.81 Ref.86 Ref.88 Ref.89

Exhibits antiviral activity against both DNA and RNA viruses. The antiviral activity can involve one or several isoform(s) and can be enhanced by the permanent PML-NB-associated protein DAXX or by the recruitment of p53/TP53 within these structures. Isoform PML-4 restricts varicella zoster virus (VZV) via sequestration of virion capsids in PML-NBs thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The sumoylated isoform PML-4 restricts rabies virus by inhibiting viral mRNA and protein synthesis. The cytoplasmic isoform PML-14 can restrict herpes simplex virus-1 (HHV-1) replication by sequestering the viral E3 ubiquitin-protein ligase ICP0 in the cytoplasm. Isoform PML-6 shows restriction activity towards human cytomegalovirus (HCMV) and influenza A virus strains PR8(H1N1) and ST364(H3N2). Sumoylated isoform PML-4 and isoform PML-12 show antiviral activity against encephalomyocarditis virus (EMCV) by promoting nuclear sequestration of viral polymerase (P3D-POL) within PML NBs. Isoform PML-3 exhibits antiviral activity against poliovirus by inducing apoptosis in infected cells through the recruitment and the activation of p53/TP53 in the PML-NBs. Isoform PML-3 represses human foamy virus (HFV) transcription by complexing the HFV transactivator, bel1/tas, preventing its binding to viral DNA. PML may positively regulate infectious hepatitis C viral (HCV) production and isoform PML-2 may enhance adenovirus transcription. Ref.13 Ref.16 Ref.17 Ref.19 Ref.20 Ref.24 Ref.25 Ref.26 Ref.29 Ref.31 Ref.33 Ref.37 Ref.38 Ref.40 Ref.42 Ref.43 Ref.45 Ref.46 Ref.48 Ref.49 Ref.52 Ref.58 Ref.62 Ref.64 Ref.67 Ref.72 Ref.73 Ref.75 Ref.77 Ref.80 Ref.81 Ref.86 Ref.88 Ref.89

Subunit structure

Key component of PML bodies. PML bodies are formed by the interaction of PML homodimers (via SUMO-binding motif) with sumoylated PML, leading to the assembly of higher oligomers. Several types of PML bodies have been observed. PML bodies can form hollow spheres that can sequester target proteins inside. Interacts (via SUMO-binding motif) with sumoylated proteins. Interacts (via C-terminus) with p53/TP53. Recruits p53/TP53 and CHEK2 into PML bodies, which promotes p53/TP53 phosphorylation at 'Ser-20' and prevents its proteasomal degradation. Interacts with MDM2, and sequesters MDM2 in the nucleolus, thereby preventing ubiquitination of p53/TP53. Interaction with PML-RARA oncoprotein and certain viral proteins causes disassembly of PML bodies and abolishes the normal PML function. Interacts with HIPK2, TERT, SIRT1, TOPBP1, TRIM27 and TRIM69. Interacts with ELF4 (via C-terminus). Interacts with Lassa virus Z protein and rabies virus phosphoprotein. Interacts with ITPR3. Interacts (in the cytoplasm) with TGFBR1, TGFBR2 and PKM. Interacts (via the coiled-coil domain and when sumoylated) with SATB1. Interacts with UBE2I; the interaction is enhanced by arsenic binding. Interacts (PML-RARA oncoprotein, via the coiled-coil domain) with UBE2I; the interaction is enhanced by arsenic binding and is required for PML-RARA oncoprotein sumoylation and inhibition of RARA transactivational activity. Interacts with RB1, PPP1A, SMAD2, SMAD3, DAXX, RPL11 and MTOR. Interacts with PPARGC1A and KAT2A. Interacts with CSNK2A1 and CSNK2A3. Interacts with ANKRD2; the interaction is direct. Isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4, isoform PML-5 and isoform PML-6 interact with RNF4. Isoform PML-1 interacts with NLRP3. Isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5 interact with MAGEA2, RBL2, PER2 and E2F4. Isoform PML-2 interacts with CIITA. Isoform PML-2, isoform PML-3 and isoform PML-4 interact with TBX2. Isoform PML-4 interacts with RANBP2, HDAC7, KAT6A, WRN, PIN1, TBX3 and phosphorylated MAPK1/ERK2. Isoform PML-4 interacts with the CTNNB1 and TCF7L2/TCF4 complex. Isoform PML-4 preferentially interacts with MAPK7/BMK1 although other isoforms (isoform PML-1, isoform PML-2, isoform PML-3 and isoform PML-6)also interact with it. Isoform PML-12 interacts with PIAS1, PIAS2 (isoform PIAS2-alpha)and CSNK2A1/CK2. Isoform PML-3 interacts with HFV bel1/tas and bet. Isoform PML-4 interacts with VZV capsid protein VP26/ORF23 capsid protein. Ths sumoylated isoform PML-4 interacts with encephalomyocarditis virus (EMCV) RNA-directed RNA polymerase 3D-POL (P3D-POL). Isoform PML-1 interacts with herpes simplex virus-1 (HHV-1) ICP0. Isoform PML-2 interacts with human adenovirus 2 E1A and this interaction stimulates E1A-dependent transcriptional activation. Isoform PML-6 interacts with moloney murine leukemia virus (MoMLV) integrase (IN) and reverse transcriptase (RT). Ref.14 Ref.15 Ref.16 Ref.17 Ref.18 Ref.19 Ref.20 Ref.22 Ref.24 Ref.25 Ref.26 Ref.27 Ref.28 Ref.29 Ref.30 Ref.31 Ref.32 Ref.33 Ref.34 Ref.39 Ref.40 Ref.45 Ref.49 Ref.50 Ref.54 Ref.56 Ref.58 Ref.61 Ref.64 Ref.67 Ref.69 Ref.70 Ref.72 Ref.73 Ref.75 Ref.76 Ref.80 Ref.82 Ref.83 Ref.85 Ref.87 Ref.88 Ref.89

Subcellular location

Nucleus. Nucleusnucleoplasm. Cytoplasm. NucleusPML body. Nucleusnucleolus. Endoplasmic reticulum membrane; Peripheral membrane protein; Cytoplasmic side By similarity. Early endosome membrane; Peripheral membrane protein; Cytoplasmic side. Note: Isoform PML-1 can shuttle between the nucleus and cytoplasm. Isoform PML-2, isoform PML-3, isoform PML-4, isoform PML-5 and isoform PML-6 are nuclear isoforms whereas isoform PML-7 and isoform PML-14 lacking the nuclear localization signal are cytoplasmic isoforms. Detected in the nucleolus after DNA damage. Acetylation at Lys-487 is essential for its nuclear localization. Within the nucleus, most of PML is expressed in the diffuse nuclear fraction of the nucleoplasm and only a small fraction is found in the matrix-associated nuclear bodies (PML-NBs). The transfer of PML from the nucleoplasm to PML-NBs depends on its phosphorylation and sumoylation. The B1 box and the RING finger are also required for the localization in PML-NBs. Also found in specific membrane structures termed mitochondria-associated membranes (MAMs) which connect the endoplasmic reticulum (ER) and the mitochondria. Sequestered in the cytoplasm by interaction with rabies virus phosphoprotein. Ref.13 Ref.18 Ref.19 Ref.20 Ref.25 Ref.26 Ref.29 Ref.31 Ref.32 Ref.33 Ref.34 Ref.35 Ref.39 Ref.40 Ref.43 Ref.46 Ref.67 Ref.69 Ref.70 Ref.73 Ref.75 Ref.76 Ref.80 Ref.83

Induction

By interferons alpha, beta and gamma. Up-regulated by IRF3 and p53/TP53.

Domain

The coiled-coil domain mediates a strong homo/multidimerization activity essential for core assembly of PML-NBs. Interacts with PKM via its coiled-coil domain (Ref.40). Ref.40 Ref.56 Ref.78 Ref.85

The B box-type zinc binding domain and the coiled-coil domain mediate its interaction with PIAS1 (Ref.69). Ref.40 Ref.56 Ref.78 Ref.85

Binds arsenic via the RING-type zinc finger. The RING-type zinc finger is essential for its interaction with HFV bel1/tas (Ref.20). Ref.40 Ref.56 Ref.78 Ref.85

The unique C-terminal domains of isoform PML-2 and isoform PML-5 play an important role in regulating the localization, assembly dynamics, and functions of PML-NBs (Ref.78). Ref.40 Ref.56 Ref.78 Ref.85

The Sumo interaction motif (SIM) is required for efficient ubiquitination, recruitment of proteasome components within PML-NBs and PML degradation in response to arsenic trioxide (Ref.85). Ref.40 Ref.56 Ref.78 Ref.85

Post-translational modification

Ubiquitinated; mediated by RNF4, UHRF1, UBE3A/E6AP, KLHL20-based E3 ligase complex, SIAH1 or SIAH2 and leading to subsequent proteasomal degradation. Ubiquitination by KLHL20-based E3 ligase complex requires CDK1/2-mediated phosphorylation at Ser-518 which in turn is recognized by prolyl-isopeptidase PIN1 and PIN1-catalyzed isomerization further potentiates PML interaction with KLHL20. 'Lys-6'-, 'Lys-11'-, 'Lys-48'- and 'Lys-63'-linked polyubiquitination by RNF4 is polysumoylation-dependent. Ref.28 Ref.44 Ref.53 Ref.56 Ref.84

Sumoylation regulates PML's: stability in response to extracellular or intracellular stimuli, transcription directly and indirectly, through sequestration of or dissociation of the transcription factors from PML-NBs, ability to regulate apoptosis and its anti-viral activities. It is also essential for: maintaining proper PML nuclear bodies (PML-NBs) structure and normal function, recruitment of components of PML-NBs, the turnover and retention of PML in PML-NBs and the integrity of PML-NBs. Undergoes 'Lys-11'-linked sumoylation. Sumoylation on all three sites (Lys-65, Lys-160 and Lys-490) is required for nuclear body formation. Sumoylation on Lys-160 is a prerequisite for sumoylation on Lys-65. Lys-65 and Lys-160 are sumoylated by PISA1 and PIAS2. PIAS1-mediated sumoylation of PML promotes its interaction with CSNK2A1/CK2 and phosphorylation at Ser-565 which in turn triggers its ubiquitin-mediated degradation. PIAS1-mediated sumoylation of PML-RARA promotes its ubiquitin-mediated degradation. The PML-RARA fusion protein requires the coiled-coil domain for sumoylation. Sumoylation at Lys-490 by RANBP2 is essential for the proper assembly of PML-NBs. DNA damage triggers its sumoylation while some but not all viral infections can abolish sumoylation. Desumoylated by SENP1, SENP2, SENP3, SENP5 and SENP6. Arsenic induces PML and PML-RARA polysumoylation and their subsequent RNF4-dependent ubiquitination and proteasomal degradation, and is used as treatment in acute promyelocytic leukemia (APL). The nuclear isoforms (isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4, isoform PML-5 and isoform PML-6)show an increased sumoylation in response to arsenic trioxide. The cytoplasmic isoform PML-7 is not sumoylated. Ref.13 Ref.23 Ref.34 Ref.39 Ref.44 Ref.53 Ref.56 Ref.65 Ref.69 Ref.75 Ref.85

Phosphorylation is a major regulatory mechanism that controls PML protein abundance and the number and size of PML nuclear bodies (PML-NBs). Phosphorylated in response to DNA damage, probably by ATR. HIPK2-mediated phosphorylation at Ser-8, Ser-36 and Ser-38 leads to increased accumulation of PML protein and its sumoylation and is required for the maximal pro-apoptotic activity of PML after DNA damage. CHEK2-mediated phosphorylation at Ser-117 is important for PML-mediated apopotosis following DNA damage. MAPK1-mediated phosphorylations at Ser-403, Ser-505, Ser-527 and Ser-530 and CDK1/2-mediated phosphorylation at Ser-518 promote PIN1-dependent PML degradation. CK2-mediated phosphorylation at Ser-565 primes PML ubiquitination via an unidentified ubiquitin ligase. Ref.24 Ref.31 Ref.50 Ref.61 Ref.69

Acetylation at Lys-487 is essential for its nuclear localization. Deacetylated at Lys-487 by SIRT1 and this deacetylation promotes PML control of PER2 nuclear localization. Ref.41 Ref.73

Involvement in disease

A chromosomal aberration involving PML may be a cause of acute promyelocytic leukemia (APL). Translocation t(15;17)(q21;q21) with RARA. The PML breakpoints (type A and type B) lie on either side of an alternatively spliced exon. Ref.1 Ref.2

Sequence similarities

Contains 2 B box-type zinc fingers.

Contains 1 RING-type zinc finger.

Sequence caution

The sequence AAA60351.1 differs from that shown. Reason: Erroneous initiation. Translation N-terminally extended.

The sequence AAA60352.1 differs from that shown. Reason: Erroneous initiation. Translation N-terminally extended.

The sequence AAA60388.1 differs from that shown. Reason: Erroneous initiation. Translation N-terminally extended.

The sequence AAA60390.1 differs from that shown. Reason: Erroneous initiation. Translation N-terminally extended.

The sequence BAB62809.1 differs from that shown. Reason: Chimeric cDNA.

The sequence BAD92648.1 differs from that shown. Reason: Erroneous initiation. Translation N-terminally shortened.

Ontologies

Keywords
   Biological processAntiviral defense
Apoptosis
Host-virus interaction
Immunity
Innate immunity
Transcription
Transcription regulation
   Cellular componentCytoplasm
Endoplasmic reticulum
Endosome
Membrane
Nucleus
   Coding sequence diversityAlternative splicing
Chromosomal rearrangement
Polymorphism
   DiseaseProto-oncogene
Tumor suppressor
   DomainCoiled coil
Repeat
Zinc-finger
   LigandDNA-binding
Metal-binding
Zinc
   Molecular functionActivator
   PTMAcetylation
Isopeptide bond
Phosphoprotein
Ubl conjugation
   Technical term3D-structure
Complete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processDNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest

Inferred from sequence or structural similarity. Source: UniProtKB

PML body organization

Inferred from direct assay PubMed 10779416PubMed 8643677. Source: UniProtKB

SMAD protein import into nucleus

Inferred from electronic annotation. Source: Ensembl

activation of cysteine-type endopeptidase activity involved in apoptotic process

Inferred from electronic annotation. Source: Ensembl

apoptotic process

Inferred from direct assay PubMed 9583681. Source: UniProtKB

branching involved in mammary gland duct morphogenesis

Inferred from electronic annotation. Source: Ensembl

cell cycle arrest

Inferred from direct assay PubMed 9583681Ref.27. Source: UniProtKB

cell fate commitment

Inferred from electronic annotation. Source: Ensembl

cellular response to interleukin-4

Inferred from electronic annotation. Source: Ensembl

cellular senescence

Inferred from direct assay Ref.72Ref.70Ref.89. Source: UniProtKB

common-partner SMAD protein phosphorylation

Inferred from electronic annotation. Source: Ensembl

cytokine-mediated signaling pathway

Traceable author statement. Source: Reactome

defense response to virus

Inferred from electronic annotation. Source: UniProtKB-KW

endoplasmic reticulum calcium ion homeostasis

Inferred from sequence or structural similarity. Source: UniProtKB

extrinsic apoptotic signaling pathway

Inferred from electronic annotation. Source: Ensembl

innate immune response

Inferred from direct assay PubMed 18248090. Source: UniProt

interferon-gamma-mediated signaling pathway

Traceable author statement. Source: Reactome

intrinsic apoptotic signaling pathway in response to DNA damage

Inferred from direct assay Ref.24. Source: UniProtKB

intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator

Inferred from sequence or structural similarity. Source: UniProtKB

intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress

Inferred from electronic annotation. Source: Ensembl

intrinsic apoptotic signaling pathway in response to oxidative stress

Inferred from electronic annotation. Source: Ensembl

maintenance of protein location in nucleus

Inferred from direct assay PubMed 17332504. Source: MGI

myeloid cell differentiation

Inferred from electronic annotation. Source: Ensembl

negative regulation of angiogenesis

Inferred from mutant phenotype PubMed 16915281. Source: UniProtKB

negative regulation of cell growth

Inferred from direct assay PubMed 9448006PubMed 7935403PubMed 9395203PubMed 9583681PubMed 9448006. Source: UniProtKB

negative regulation of cell proliferation

Inferred from mutant phenotype Ref.22. Source: BHF-UCL

negative regulation of mitotic cell cycle

Inferred from direct assay PubMed 9395203. Source: UniProtKB

negative regulation of protein ubiquitination involved in ubiquitin-dependent protein catabolic process

Inferred from mutant phenotype Ref.31. Source: UniProtKB

negative regulation of telomerase activity

Inferred from mutant phenotype Ref.49. Source: UniProtKB

negative regulation of telomere maintenance via telomerase

Inferred from mutant phenotype Ref.49. Source: UniProtKB

negative regulation of transcription, DNA-templated

Inferred from direct assay PubMed 9448006PubMed 7935403Ref.72PubMed 11259576PubMed 9448006. Source: UniProtKB

negative regulation of translation in response to oxidative stress

Inferred from direct assay PubMed 16915281. Source: UniProtKB

negative regulation of viral release from host cell

Inferred from direct assay PubMed 18248090. Source: UniProt

positive regulation of apoptotic process involved in mammary gland involution

Inferred from direct assay PubMed 11080164. Source: UniProtKB

positive regulation of defense response to virus by host

Inferred from mutant phenotype PubMed 16873256PubMed 16873257. Source: UniProtKB

positive regulation of extrinsic apoptotic signaling pathway

Inferred from mutant phenotype PubMed 21803845. Source: UniProtKB

positive regulation of histone deacetylation

Inferred from direct assay PubMed 11259576. Source: UniProtKB

proteasome-mediated ubiquitin-dependent protein catabolic process

Inferred from direct assay Ref.69. Source: UniProtKB

protein complex assembly

Inferred from direct assay PubMed 12915590. Source: UniProtKB

protein stabilization

Inferred from direct assay Ref.27. Source: UniProtKB

protein targeting

Inferred from direct assay PubMed 11080164. Source: UniProtKB

regulation of MHC class I biosynthetic process

Inferred from electronic annotation. Source: Ensembl

regulation of calcium ion transport into cytosol

Inferred from sequence or structural similarity. Source: UniProtKB

regulation of double-strand break repair

Inferred from mutant phenotype Ref.58. Source: UniProtKB

regulation of protein phosphorylation

Inferred from sequence or structural similarity. Source: UniProtKB

regulation of transcription, DNA-templated

Inferred from mutant phenotype Ref.80. Source: UniProtKB

response to UV

Inferred from electronic annotation. Source: Ensembl

response to cytokine

Inferred from direct assay PubMed 9412458. Source: BHF-UCL

response to gamma radiation

Inferred from electronic annotation. Source: Ensembl

response to hypoxia

Inferred from direct assay PubMed 16915281. Source: UniProtKB

retinoic acid receptor signaling pathway

Inferred from electronic annotation. Source: Ensembl

transcription, DNA-templated

Inferred from electronic annotation. Source: UniProtKB-KW

transforming growth factor beta receptor signaling pathway

Inferred from electronic annotation. Source: Ensembl

viral process

Inferred from electronic annotation. Source: UniProtKB-KW

   Cellular_componentPML body

Inferred from direct assay Ref.5Ref.31Ref.39Ref.75Ref.83Ref.80Ref.89PubMed 9448006PubMed 9885291PubMed 9448006. Source: UniProtKB

cytoplasm

Inferred from direct assay Ref.40Ref.35PubMed 9885291. Source: UniProtKB

cytosol

Inferred from sequence or structural similarity. Source: UniProtKB

early endosome membrane

Inferred from electronic annotation. Source: UniProtKB-SubCell

extrinsic component of endoplasmic reticulum membrane

Inferred from sequence or structural similarity. Source: UniProtKB

nuclear matrix

Inferred from direct assay PubMed 11080164. Source: UniProtKB

nuclear membrane

Inferred from direct assay PubMed 123456Ref.35. Source: UniProtKB

nucleolus

Inferred from direct assay Ref.31Ref.35. Source: UniProtKB

nucleoplasm

Inferred from direct assay PubMed 12915590. Source: UniProtKB

nucleus

Inferred from direct assay PubMed 9412458. Source: BHF-UCL

   Molecular_functionDNA binding

Inferred from electronic annotation. Source: UniProtKB-KW

SUMO binding

Inferred from physical interaction Ref.39. Source: UniProtKB

cobalt ion binding

Inferred from direct assay Ref.90. Source: UniProtKB

protein heterodimerization activity

Inferred from direct assay PubMed 7935403. Source: UniProtKB

protein homodimerization activity

Inferred from physical interaction PubMed 9230084. Source: BHF-UCL

transcription coactivator activity

Inferred from direct assay PubMed 11080164PubMed 15626733. Source: UniProtKB

ubiquitin protein ligase binding

Inferred from physical interaction PubMed 12915590. Source: UniProtKB

zinc ion binding

Inferred from direct assay Ref.90. Source: UniProtKB

Complete GO annotation...

Alternative products

This entry describes 12 isoforms produced by alternative splicing. [Align] [Select]
Isoform PML-1 (identifier: P29590-1)

Also known as: PML-I; TRIM19alpha;

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Isoform PML-2 (identifier: P29590-8)

Also known as: PML-II; TRIM19kappa;

The sequence of this isoform differs from the canonical sequence as follows:
     571-882: SSRELDDSSS...GLAERASQQS → CMEPMETAEP...PVPGARQAGL
Isoform PML-3 (identifier: P29590-9)

Also known as: PML-III;

The sequence of this isoform differs from the canonical sequence as follows:
     571-641: SSRELDDSSS...RESKFRVVIQ → VSSSPQSEVL...PPSLASPPAR
     642-882: Missing.
Isoform PML-4 (identifier: P29590-5)

Also known as: PML-IV; PML-X; TRIM19zeta;

The sequence of this isoform differs from the canonical sequence as follows:
     621-633: TQKISQLAAVNRE → SGFSWGYPHPFLI
     634-882: Missing.
Isoform PML-5 (identifier: P29590-2)

Also known as: PML-2; PML-V; TRIM19beta;

The sequence of this isoform differs from the canonical sequence as follows:
     571-611: SSRELDDSSS...DPQAEDRPLV → VSGPEVQPRT...LRLGNFPVRH
     612-882: Missing.
Note: Contains a phosphoserine at position 565.
Isoform PML-6 (identifier: P29590-4)

Also known as: PML-3B; PML-VI; TRIM19epsilon;

The sequence of this isoform differs from the canonical sequence as follows:
     553-560: EERVVVIS → GRERNALW
     561-882: Missing.
Note: Contains a phosphoserine at position 518. Contains a phosphoserine at position 527. Contains a phosphoserine at position 530.
Isoform PML-7 (identifier: P29590-10)

Also known as: PML-VII; TRIM19theta;

The sequence of this isoform differs from the canonical sequence as follows:
     419-435: PEEAERVKAQVQALGLA → LPPPAHALTGPAQSSTH
     436-882: Missing.
Isoform PML-8 (identifier: P29590-3)

Also known as: PML-2G; PML-IIG; TRIM19gamma;

The sequence of this isoform differs from the canonical sequence as follows:
     571-882: SSRELDDSSS...GLAERASQQS → CMEPMETAEP...PVPGARQAGL
Note: Non-canonical splice sites. Might alternatively represent a polymorphic variation.
Isoform PML-11 (identifier: P29590-11)

Also known as: PML-1A; PML-IA;

The sequence of this isoform differs from the canonical sequence as follows:
     419-466: Missing.
Note: No experimental confirmation available.
Isoform PML-12 (identifier: P29590-12)

Also known as: PML-4A; PML-IVA; TRIM19lambda;

The sequence of this isoform differs from the canonical sequence as follows:
     419-466: Missing.
     621-633: TQKISQLAAVNRE → SGFSWGYPHPFLI
     634-882: Missing.
Isoform PML-13 (identifier: P29590-13)

Also known as: PML-2A; PML-IIA;

The sequence of this isoform differs from the canonical sequence as follows:
     419-466: Missing.
     571-882: SSRELDDSSS...GLAERASQQS → CMEPMETAEP...PVPGARQAGL
Isoform PML-14 (identifier: P29590-14)

Also known as: PML-6B; PML-VIB; TRIM19eta; TRIM19iota;

The sequence of this isoform differs from the canonical sequence as follows:
     419-423: PEEAE → RNALW
     424-882: Missing.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 882882Protein PML
PRO_0000056001

Regions

Zinc finger57 – 9236RING-type
Zinc finger124 – 16643B box-type 1; atypical
Zinc finger183 – 23654B box-type 2
Region448 – 555108Interaction with PER2
Region476 – 49015Nuclear localization signal
Region556 – 5627Sumo interaction motif (SIM)
Coiled coil228 – 25326 Potential
Compositional bias3 – 4644Pro-rich

Sites

Metal binding571Zinc 1
Metal binding601Zinc 1
Metal binding721Zinc 2
Metal binding741Zinc 2
Metal binding771Zinc 1
Metal binding801Zinc 1
Metal binding881Zinc 2
Metal binding911Zinc 2
Site394 – 3952Breakpoint for translocation to form PML-RARA oncogene in type A APL
Site552 – 5532Breakpoint for translocation to form PML-RARA oncogene in type B APL

Amino acid modifications

Modified residue81Phosphoserine; by HIPK2 Ref.50
Modified residue281Phosphothreonine; by MAPK1
Modified residue361Phosphoserine; by HIPK2 and MAPK1
Modified residue381Phosphoserine; by HIPK2 and MAPK1 Ref.50
Modified residue401Phosphoserine; by MAPK1
Modified residue421Phosphothreonine
Modified residue1171Phosphoserine; by CHEK2 Ref.24
Modified residue4031Phosphoserine; by MAPK1 and MAPK7 Ref.36 Ref.47 Ref.61
Modified residue4091Phosphothreonine; by MAPK7
Modified residue4871N6-acetyllysine Ref.41 Ref.73
Modified residue5041Phosphoserine By similarity
Modified residue5051Phosphoserine; by MAPK1 Ref.61
Modified residue5151N6-acetyllysine Probable
Modified residue5181Phosphoserine; by CDK1 and CDK2 Ref.36 Ref.47 Ref.55 Ref.61 Ref.68
Modified residue5271Phosphoserine; by MAPK1 Ref.36 Ref.47 Ref.55 Ref.61 Ref.68
Modified residue5301Phosphoserine; by MAPK1 Ref.36 Ref.47 Ref.51 Ref.68
Modified residue5351Phosphoserine
Modified residue5651Phosphoserine; by CK2 Ref.36 Ref.69
Cross-link65Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO) Ref.13 Ref.69
Cross-link160Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO) Ref.13 Ref.69
Cross-link380Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin) Ref.44
Cross-link400Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin) Ref.44
Cross-link401Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin) Ref.44
Cross-link476Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin) Ref.44
Cross-link490Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO) Ref.13 Ref.75
Cross-link497Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO)

Natural variations

Alternative sequence419 – 46648Missing in isoform PML-11, isoform PML-12 and isoform PML-13.
VSP_040590
Alternative sequence419 – 43517PEEAE…ALGLA → LPPPAHALTGPAQSSTH in isoform PML-7.
VSP_040591
Alternative sequence419 – 4235PEEAE → RNALW in isoform PML-14.
VSP_040592
Alternative sequence424 – 882459Missing in isoform PML-14.
VSP_040593
Alternative sequence436 – 882447Missing in isoform PML-7.
VSP_040594
Alternative sequence553 – 5608EERVVVIS → GRERNALW in isoform PML-6.
VSP_005742
Alternative sequence561 – 882322Missing in isoform PML-6.
VSP_005743
Alternative sequence571 – 882312SSREL…ASQQS → CMEPMETAEPQSSPAHSSPA HSSPAHSSPVQSLLRAQGAS SLPCGTYHPPAWPPHQPAEQ AATPDAEPHSEPPDHQERPA VHRGIRYLLYRAQRAIRLRH ALRLHPQLHRAPIRTWSPHV VQASTPAITGPLNHPANAQE HPAQLQRGISPPHRIRGAVR SRSRSLRGSSHLSQWLNNFF ALPFSSMASQLDMSSVVGAG ESRAQTLGAGVPPGDSVRGS MEASQVQVPLEASPITFPPP CAPERPPISPVPGARQAGL in isoform PML-2 and isoform PML-13.
VSP_040595
Alternative sequence571 – 882312SSREL…ASQQS → CMEPMETAEPQSSPAHSSPA HSSPVQSLLRAQGASSLPCG TYHPPAWPPHQPAEQAATPD AEPHSEPPDHQERPAVHRGI RYLLYRAQRAIRLRHALRLH PQLHRAPIRTWSPHVVQAST PAITGPLNHPANAQEHPAQL QRGISPPHRIRGAVRSRSRS LRGSSHLSQWLNNFFALPFS SMASQLDMSSVVGAGEGRAQ TLGAVVPPGDSVRGSMEASQ VQVPLEASPITFPPPCAPER PPISPVPGARQAGL in isoform PML-8.
VSP_005741
Alternative sequence571 – 64171SSREL…RVVIQ → VSSSPQSEVLYWKVHGAHGD RRATVLASPLLASPLLASPL LASPVSAESTRSLQPALWHI PPPSLASPPAR in isoform PML-3.
VSP_040596
Alternative sequence571 – 61141SSREL…DRPLV → VSGPEVQPRTPASPHFRSQG AQPQQVTLRLALRLGNFPVR H in isoform PML-5.
VSP_005739
Alternative sequence612 – 882271Missing in isoform PML-5.
VSP_005740
Alternative sequence621 – 63313TQKIS…AVNRE → SGFSWGYPHPFLI in isoform PML-4 and isoform PML-12.
VSP_005744
Alternative sequence634 – 882249Missing in isoform PML-4 and isoform PML-12.
VSP_005745
Alternative sequence642 – 882241Missing in isoform PML-3.
VSP_040597
Natural variant6451F → L. Ref.2 Ref.5
Corresponds to variant rs5742915 [ dbSNP | Ensembl ].
VAR_052090

Experimental info

Mutagenesis571C → S: Strongly reduced sumoylation; when associated with S-60. Ref.39
Mutagenesis601C → S: Strongly reduced sumoylation; when associated with S-57. Ref.39
Mutagenesis651K → R: Loss of one sumoylation. No effect on nuclear body formation. Loss of 2 sumoylations; when associated with R-490 with or without R-133 or R-150. No effect on nuclear body formation; when associated with R-490. No sumoylation nor nuclear body formation; when associated with R-160 and R-490. Ref.13
Mutagenesis681K → R: No effect on sumoylation levels.
Mutagenesis881C → S: No nuclear microspeckle location, no sumoylation and loss of intrinsic transcriptional repressor activity of PML-RARA oncoprotein; when associated with R-89. Ref.34
Mutagenesis891P → R: No nuclear microspeckle location, no sumoylation and loss of intrinsic transcriptional repressor activity of PML-RARA oncoprotein; when associated with S-88. Ref.34
Mutagenesis1331K → R: Loss of 2 sumoylations; when associated with R-65 and R-490. Ref.13
Mutagenesis1501K → R: Loss of 2 sumoylations; when associated with R-65 and R-490. Ref.13
Mutagenesis1601K → R: Loss of 2 sumoylations; when associated with or without R-65. No sumoylation nor nuclear body formation; when associated with or without R-65 and R-490. Ref.13
Mutagenesis4871K → A: Loss of nuclear localization; when associated with A-490. Ref.40 Ref.41
Mutagenesis4871K → R: Loss of nuclear localization. Reduced acetylation. Further decrease in acetylation; when associated with R-515. Ref.40 Ref.41
Mutagenesis4901K → A: Loss of nuclear localization; when associated with A-487. Ref.13 Ref.40
Mutagenesis4901K → R: Loss of 2 sumoylations; when associated with R-65 with or without R-133. No effect on nuclear body formation; when associated with R-65. No sumoylation nor nuclear body formation; when associated with R-65 and R-160. Ref.13 Ref.40
Mutagenesis5151K → R: Slightly reduced acetylation. Further decrease in acetylation; when associated with R-487. Ref.41
Mutagenesis556 – 5594VVVI → AAAS: Abolishes SUMO1 binding.
Sequence conflict2241E → D in AAP88913. Ref.7
Sequence conflict2241E → D in AAH00080. Ref.10
Sequence conflict2241E → D in AAH20994. Ref.10
Sequence conflict4191P → A in AAA60351. Ref.2
Sequence conflict4191P → A in AAA60388. Ref.2
Sequence conflict4191P → A in AAA60390. Ref.2
Sequence conflict4191P → A in AAA60352. Ref.4
Sequence conflict4191P → A in AAG50182. Ref.5
Sequence conflict4191P → A in AAG50184. Ref.5
Sequence conflict4191P → A in AAG50185. Ref.5
Isoform PML-5:
Sequence conflict5781P → A in AAG50181. Ref.5
Isoform PML-7:
Sequence conflict4191L → V in AAG50187. Ref.5

Secondary structure

....... 882
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Isoform PML-1 (PML-I) (TRIM19alpha) [UniParc].

Last modified November 25, 2008. Version 3.
Checksum: D50968A977E34287

FASTA88297,551
        10         20         30         40         50         60 
MEPAPARSPR PQQDPARPQE PTMPPPETPS EGRQPSPSPS PTERAPASEE EFQFLRCQQC 

        70         80         90        100        110        120 
QAEAKCPKLL PCLHTLCSGC LEASGMQCPI CQAPWPLGAD TPALDNVFFE SLQRRLSVYR 

       130        140        150        160        170        180 
QIVDAQAVCT RCKESADFWC FECEQLLCAK CFEAHQWFLK HEARPLAELR NQSVREFLDG 

       190        200        210        220        230        240 
TRKTNNIFCS NPNHRTPTLT SIYCRGCSKP LCCSCALLDS SHSELKCDIS AEIQQRQEEL 

       250        260        270        280        290        300 
DAMTQALQEQ DSAFGAVHAQ MHAAVGQLGR ARAETEELIR ERVRQVVAHV RAQERELLEA 

       310        320        330        340        350        360 
VDARYQRDYE EMASRLGRLD AVLQRIRTGS ALVQRMKCYA SDQEVLDMHG FLRQALCRLR 

       370        380        390        400        410        420 
QEEPQSLQAA VRTDGFDEFK VRLQDLSSCI TQGKDAAVSK KASPEAASTP RDPIDVDLPE 

       430        440        450        460        470        480 
EAERVKAQVQ ALGLAEAQPM AVVQSVPGAH PVPVYAFSIK GPSYGEDVSN TTTAQKRKCS 

       490        500        510        520        530        540 
QTQCPRKVIK MESEEGKEAR LARSSPEQPR PSTSKAVSPP HLDGPPSPRS PVIGSEVFLP 

       550        560        570        580        590        600 
NSNHVASGAG EAEERVVVIS SSEDSDAENS SSRELDDSSS ESSDLQLEGP STLRVLDENL 

       610        620        630        640        650        660 
ADPQAEDRPL VFFDLKIDNE TQKISQLAAV NRESKFRVVI QPEAFFSIYS KAVSLEVGLQ 

       670        680        690        700        710        720 
HFLSFLSSMR RPILACYKLW GPGLPNFFRA LEDINRLWEF QEAISGFLAA LPLIRERVPG 

       730        740        750        760        770        780 
ASSFKLKNLA QTYLARNMSE RSAMAAVLAM RDLCRLLEVS PGPQLAQHVY PFSSLQCFAS 

       790        800        810        820        830        840 
LQPLVQAAVL PRAEARLLAL HNVSFMELLS AHRRDRQGGL KKYSRYLSLQ TTTLPPAQPA 

       850        860        870        880 
FNLQALGTYF EGLLEGPALA RAEGVSTPLA GRGLAERASQ QS 

« Hide

Isoform PML-2 (PML-II) (TRIM19kappa) [UniParc].

Checksum: 25824778A4AB6AB1
Show »

FASTA82990,721
Isoform PML-3 (PML-III) [UniParc].

Checksum: 8262393E2B00CBC7
Show »

FASTA64170,368
Isoform PML-4 (PML-IV) (PML-X) (TRIM19zeta) [UniParc].

Checksum: 85FBAEC9F162C8E0
Show »

FASTA63370,024
Isoform PML-5 (PML-2) (PML-V) (TRIM19beta) [UniParc].

Checksum: 52E7FB5D57D59233
Show »

FASTA61167,471
Isoform PML-6 (PML-3B) (PML-VI) (TRIM19epsilon) [UniParc].

Checksum: 9DC795A6542BA778
Show »

FASTA56062,007
Isoform PML-7 (PML-VII) (TRIM19theta) [UniParc].

Checksum: 2565113DBF5F9229
Show »

FASTA43548,598
Isoform PML-8 (PML-2G) (PML-IIG) (TRIM19gamma) [UniParc].

Checksum: 5DA9DD2E4EEE8492
Show »

FASTA82490,254
Isoform PML-11 (PML-1A) (PML-IA) [UniParc].

Checksum: 16772D51354CFDAC
Show »

FASTA83492,564
Isoform PML-12 (PML-4A) (PML-IVA) (TRIM19lambda) [UniParc].

Checksum: FF1E5A8D845780B2
Show »

FASTA58565,037
Isoform PML-13 (PML-2A) (PML-IIA) [UniParc].

Checksum: C6C163ECD9FA6FB2
Show »

FASTA78185,734
Isoform PML-14 (PML-6B) (PML-VIB) (TRIM19eta) (TRIM19iota) [UniParc].

Checksum: EE5031BE9C3B33C8
Show »

FASTA42347,575

References

« Hide 'large scale' references
[1]"The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR."
de The H., Lavau C., Marchio A., Chomienne C., Degos L., Dejean A.
Cell 66:675-684(1991) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM PML-3), DISEASE.
[2]"Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia."
Goddard A.D., Borrow J., Freemont P.S., Solomon E.
Science 254:1371-1374(1991) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS PML-1; PML-5 AND PML-8), CHROMOSOMAL TRANSLOCATION WITH RARA, DISEASE, VARIANT LEU-645.
[3]"Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins."
Kastner P., Perez A., Lutz Y., Rochette-Egly C., Gaub M.P., Durand B., Lanotte M., Berger R., Chambon P.
EMBO J. 11:629-642(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM PML-4).
[4]"Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML."
Kakizuka A., Miller W.H. Jr., Umenono K., Warrell R.P. Jr., Frankel S.R., Murty V.V., Dmitrovsky E., Evans R.M.
Cell 66:663-674(1991) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM PML-6).
[5]"The tripartite motif family identifies cell compartments."
Reymond A., Meroni G., Fantozzi A., Merla G., Cairo S., Luzi L., Riganelli D., Zanaria E., Messali S., Cainarca S., Guffanti A., Minucci S., Pelicci P.G., Ballabio A.
EMBO J. 20:2140-2151(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS PML-1; PML-2; PML-4; PML-5; PML-6; PML-7; PML-8; PML-12 AND PML-14), VARIANT LEU-645.
[6]Goddard A.D., Solomon E.
Submitted (JAN-1992) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM PML-6).
[7]"Cloning of human full-length CDSs in BD Creator(TM) system donor vector."
Kalnine N., Chen X., Rolfs A., Halleck A., Hines L., Eisenstein S., Koundinya M., Raphael J., Moreira D., Kelley T., LaBaer J., Lin Y., Phelan M., Farmer A.
Submitted (AUG-2003) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM PML-13).
[8]"Homo sapiens protein coding cDNA."
Totoki Y., Toyoda A., Takeda T., Sakaki Y., Tanaka A., Yokoyama S., Ohara O., Nagase T., Kikuno R.F.
Submitted (MAR-2005) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM PML-11).
Tissue: Brain.
[9]"Analysis of the DNA sequence and duplication history of human chromosome 15."
Zody M.C., Garber M., Sharpe T., Young S.K., Rowen L., O'Neill K., Whittaker C.A., Kamal M., Chang J.L., Cuomo C.A., Dewar K., FitzGerald M.G., Kodira C.D., Madan A., Qin S., Yang X., Abbasi N., Abouelleil A. expand/collapse author list , Arachchi H.M., Baradarani L., Birditt B., Bloom S., Bloom T., Borowsky M.L., Burke J., Butler J., Cook A., DeArellano K., DeCaprio D., Dorris L. III, Dors M., Eichler E.E., Engels R., Fahey J., Fleetwood P., Friedman C., Gearin G., Hall J.L., Hensley G., Johnson E., Jones C., Kamat A., Kaur A., Locke D.P., Madan A., Munson G., Jaffe D.B., Lui A., Macdonald P., Mauceli E., Naylor J.W., Nesbitt R., Nicol R., O'Leary S.B., Ratcliffe A., Rounsley S., She X., Sneddon K.M.B., Stewart S., Sougnez C., Stone S.M., Topham K., Vincent D., Wang S., Zimmer A.R., Birren B.W., Hood L., Lander E.S., Nusbaum C.
Nature 440:671-675(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[10]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM PML-13).
Tissue: Kidney.
[11]"Molecular rearrangements of the MYL gene in acute promyelocytic leukemia (APL, M3) define a breakpoint cluster region as well as some molecular variants."
Tong J.H., Dong S., Geng J.P., Huang W., Wang Z.Y., Sun G.L., Chen S.J., Chen Z., Larsen C.-J., Berger R.
Oncogene 7:311-316(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 419-466, CHROMOSOMAL TRANSLOCATION WITH RARA.
[12]"Cytogenetics, FISH and RT-PCR analysis of acute promyelocytic leukemia: structure of the fusion point in a case lacking classic t(15;17) translocation."
Fujita K., Oba R., Harada H., Mori H., Niikura H., Isoyama K., Omine M.
Leuk. Lymphoma 44:111-115(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 454-503, CHROMOSOMAL TRANSLOCATION WITH RARA.
[13]"Identification of three major sentrinization sites in PML."
Kamitani T., Kito K., Nguyen H.P., Wada H., Fukuda-Kamitani T., Yeh E.T.H.
J. Biol. Chem. 273:26675-26682(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: SUMOYLATION AT LYS-65; LYS-160 AND LYS-490, MUTAGENESIS OF LYS-65; LYS-133; LYS-150; LYS-160 AND LYS-490, SUBCELLULAR LOCATION, FUNCTION.
[14]"Ret finger protein is a normal component of PML nuclear bodies and interacts directly with PML."
Cao T., Duprez E., Borden K.L., Freemont P.S., Etkin L.D.
J. Cell Sci. 111:1319-1329(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TRIM27.
[15]"An arenavirus RING (zinc-binding) protein binds the oncoprotein promyelocyte leukemia protein (PML) and relocates PML nuclear bodies to the cytoplasm."
Borden K.L., Campbell-Dwyer E.J., Salvato M.S.
J. Virol. 72:758-766(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH LASSA VIRUS Z PROTEIN.
[16]"A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins."
Zhong S., Delva L., Rachez C., Cenciarelli C., Gandini D., Zhang H., Kalantry S., Freedman L.P., Pandolfi P.P.
Nat. Genet. 23:287-295(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH RARA; RXRA AND TRIM24.
[17]"Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis."
Zhong S., Salomoni P., Ronchetti S., Guo A., Ruggero D., Pandolfi P.P.
J. Exp. Med. 191:631-640(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH DAXX.
[18]"Sequestration and inhibition of Daxx-mediated transcriptional repression by PML."
Li H., Leo C., Zhu J., Wu X., O'Neil J., Park E.-J., Chen J.D.
Mol. Cell. Biol. 20:1784-1796(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DAXX, SUBCELLULAR LOCATION.
[19]"The function of PML in p53-dependent apoptosis."
Guo A., Salomoni P., Luo J., Shih A., Zhong S., Gu W., Pandolfi P.P.
Nat. Cell Biol. 2:730-736(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH TP53, SUBCELLULAR LOCATION.
[20]"PML mediates the interferon-induced antiviral state against a complex retrovirus via its association with the viral transactivator."
Regad T., Saib A., Lallemand-Breitenbach V., Pandolfi P.P., de The H., Chelbi-Alix M.K.
EMBO J. 20:3495-3505(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN HFV RESTRICTION, INTERACTION WITH HFV BEL1 AND BET, SUBCELLULAR LOCATION.
[21]"PML protein isoforms and the RBCC/TRIM motif."
Jensen K., Shiels C., Freemont P.S.
Oncogene 20:7223-7233(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: NOMENCLATURE OF ISOFORMS PML-1 THROUGH PML-7.
[22]"Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence."
Langley E., Pearson M., Faretta M., Bauer U.-M., Frye R.A., Minucci S., Pelicci P.G., Kouzarides T.
EMBO J. 21:2383-2396(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SIRT1.
[23]"SUMO-1 protease-1 regulates gene transcription through PML."
Best J.L., Ganiatsas S., Agarwal S., Changou A., Salomoni P., Shirihai O., Meluh P.B., Pandolfi P.P., Zon L.I.
Mol. Cell 10:843-855(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: SUMOYLATION, DESUMOYLATION BY SENP2.
[24]"PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2."
Yang S., Kuo C., Bisi J.E., Kim M.K.
Nat. Cell Biol. 4:865-870(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DNA REPAIR, PHOSPHORYLATION AT SER-117 BY CHEK2, INTERACTION WITH CHEK2.
[25]"Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies."
Blondel D., Regad T., Poisson N., Pavie B., Harper F., Pandolfi P.P., De The H., Chelbi-Alix M.K.
Oncogene 21:7957-7970(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RABIES VIRUS PHOSPHOPROTEINS, SUBCELLULAR LOCATION, FUNCTION.
[26]"The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation."
Louria-Hayon I., Grossman T., Sionov R.V., Alsheich O., Pandolfi P.P., Haupt Y.
J. Biol. Chem. 278:33134-33141(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, INTERACTION WITH CHEK2 AND TP53.
[27]"PML colocalizes with and stabilizes the DNA damage response protein TopBP1."
Xu Z.-X., Timanova-Atanasova A., Zhao R.-X., Chang K.-S.
Mol. Cell. Biol. 23:4247-4256(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TOPBP1.
[28]"The coiled-coil domain is the structural determinant for mammalian homologues of Drosophila Sina-mediated degradation of promyelocytic leukemia protein and other tripartite motif proteins by the proteasome."
Fanelli M., Fantozzi A., De Luca P., Caprodossi S., Matsuzawa S., Lazar M.A., Pelicci P.G., Minucci S.
J. Biol. Chem. 279:5374-5379(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SIAH1, DEGRADATION.
[29]"Myeloid Elf-1-like factor, an ETS transcription factor, up-regulates lysozyme transcription in epithelial cells through interaction with promyelocytic leukemia protein."
Suico M.A., Yoshida H., Seki Y., Uchikawa T., Lu Z., Shuto T., Matsuzaki K., Nakao M., Li J.-D., Kai H.
J. Biol. Chem. 279:19091-19098(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH ELF4, SUBCELLULAR LOCATION.
[30]"The Ankrd2 protein, a link between the sarcomere and the nucleus in skeletal muscle."
Kojic S., Medeot E., Guccione E., Krmac H., Zara I., Martinelli V., Valle G., Faulkner G.
J. Mol. Biol. 339:313-325(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH ANKRD2.
[31]"PML regulates p53 stability by sequestering Mdm2 to the nucleolus."
Bernardi R., Scaglioni P.P., Bergmann S., Horn H.F., Vousden K.H., Pandolfi P.P.
Nat. Cell Biol. 6:665-672(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH MDM2 AND RPL11, PHOSPHORYLATION BY ATR IN RESPONSE TO DNA DAMAGE, SUBCELLULAR LOCATION.
[32]"PML bodies control the nuclear dynamics and function of the CHFR mitotic checkpoint protein."
Daniels M.J., Marson A., Venkitaraman A.R.
Nat. Struct. Mol. Biol. 11:1114-1121(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION, INTERACTION WITH CHFR.
[33]"Cytoplasmic PML function in TGF-beta signalling."
Lin H.K., Bergmann S., Pandolfi P.P.
Nature 431:205-211(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, INTERACTION WITH TGFBR1; TGFBR2; SMAD2; SMAD3 AND ZFYVE9/SARA.
[34]"Requirement of the coiled-coil domain of PML-RARalpha oncoprotein for localization, sumoylation, and inhibition of monocyte differentiation."
Kim Y.E., Kim D.Y., Lee J.M., Kim S.T., Han T.H., Ahn J.H.
Biochem. Biophys. Res. Commun. 330:746-754(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION OF PML-RARALPHA ONCOPROTEIN WITH UBE2I, SUBCELLULAR LOCATION, SUMOYLATION, MUTAGENESIS OF CYS-88 AND PRO-89.
[35]"Characterization of endogenous human promyelocytic leukemia isoforms."
Condemine W., Takahashi Y., Zhu J., Puvion-Dutilleul F., Guegan S., Janin A., de The H.
Cancer Res. 66:6192-6198(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION.
[36]"Global, in vivo, and site-specific phosphorylation dynamics in signaling networks."
Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P., Mann M.
Cell 127:635-648(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-403; SER-518; SER-527 AND SER-530, PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-565 (ISOFORM PML-5), PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-518; SER-527 AND SER-530 (ISOFORM PML-6), IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[37]"Promyelocytic leukemia nuclear bodies behave as DNA damage sensors whose response to DNA double-strand breaks is regulated by NBS1 and the kinases ATM, Chk2, and ATR."
Dellaire G., Ching R.W., Ahmed K., Jalali F., Tse K.C., Bristow R.G., Bazett-Jones D.P.
J. Cell Biol. 175:55-66(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[38]"Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense."
Pampin M., Simonin Y., Blondel B., Percherancier Y., Chelbi-Alix M.K.
J. Virol. 80:8582-8592(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN POLIOVIRUS RESTRICTION.
[39]"The mechanisms of PML-nuclear body formation."
Shen T.H., Lin H.K., Scaglioni P.P., Yung T.M., Pandolfi P.P.
Mol. Cell 24:331-339(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBUNIT, SUMOYLATION, SUMO-BINDING MOTIF, MUTAGENESIS OF CYS-57 AND CYS-60, SUBCELLULAR LOCATION.
[40]"Modulation of M2-type pyruvate kinase activity by the cytoplasmic PML tumor suppressor protein."
Shimada N., Shinagawa T., Ishii S.
Genes Cells 13:245-254(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH PKM, FUNCTION, SUBCELLULAR LOCATION, DOMAIN, MUTAGENESIS OF LYS-487 AND LYS-490.
[41]"Acetylation of PML is involved in histone deacetylase inhibitor-mediated apoptosis."
Hayakawa F., Abe A., Kitabayashi I., Pandolfi P.P., Naoe T.
J. Biol. Chem. 283:24420-24425(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION AT LYS-487 AND LYS-515, MUTAGENESIS OF LYS-487 AND LYS-515.
[42]"Nuclear domain 10 components promyelocytic leukemia protein and hDaxx independently contribute to an intrinsic antiviral defense against human cytomegalovirus infection."
Tavalai N., Papior P., Rechter S., Stamminger T.
J. Virol. 82:126-137(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN HCMV RESTRICTION.
[43]"The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network."
Song M.S., Salmena L., Carracedo A., Egia A., Lo-Coco F., Teruya-Feldstein J., Pandolfi P.P.
Nature 455:813-817(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION.
[44]"RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation."
Tatham M.H., Geoffroy M.C., Shen L., Plechanovova A., Hattersley N., Jaffray E.G., Palvimo J.J., Hay R.T.
Nat. Cell Biol. 10:538-546(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: POLYUBIQUITINATION AT LYS-380; LYS-400; LYS-401 AND LYS-476 BY RNF4, PROTEASOMAL DEGRADATION, SUMOYLATION.
[45]"Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus."
Kumar P.P., Bischof O., Purbey P.K., Notani D., Urlaub H., Dejean A., Galande S.
Nat. Cell Biol. 9:45-56(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH SATB1.
[46]"A role for cytoplasmic PML in cellular resistance to viral infection."
McNally B.A., Trgovcich J., Maul G.G., Liu Y., Zheng P.
PLoS ONE 3:E2277-E2277(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN HHV-1 RESTRICTION, SUBCELLULAR LOCATION.
[47]"A quantitative atlas of mitotic phosphorylation."
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E., Elledge S.J., Gygi S.P.
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-403; SER-518; SER-527 AND SER-530, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[48]"Differential suppressive effect of promyelocytic leukemia protein on the replication of different subtypes/strains of influenza A virus."
Li W., Wang G., Zhang H., Zhang D., Zeng J., Chen X., Xu Y., Li K.
Biochem. Biophys. Res. Commun. 389:84-89(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN INFLUENZA A VIRUS RESTRICTION.
[49]"PML-IV functions as a negative regulator of telomerase by interacting with TERT."
Oh W., Ghim J., Lee E.W., Yang M.R., Kim E.T., Ahn J.H., Song J.
J. Cell Sci. 122:2613-2622(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH TERT.
[50]"PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage."
Gresko E., Ritterhoff S., Sevilla-Perez J., Roscic A., Froebius K., Kotevic I., Vichalkovski A., Hess D., Hemmings B.A., Schmitz M.L.
Oncogene 28:698-708(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT SER-8 AND SER-38 BY HIPK2, INTERACTION WITH HIPK2.
[51]"Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions."
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K., Rodionov V., Han D.K.
Sci. Signal. 2:RA46-RA46(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-530, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Leukemic T-cell.
[52]"Resistance to rabies virus infection conferred by the PMLIV isoform."
Blondel D., Kheddache S., Lahaye X., Dianoux L., Chelbi-Alix M.K.
J. Virol. 84:10719-10726(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN RABIES VIRUS RESTRICTION.
[53]"Arsenic-induced SUMO-dependent recruitment of RNF4 into PML nuclear bodies."
Geoffroy M.C., Jaffray E.G., Walker K.J., Hay R.T.
Mol. Biol. Cell 21:4227-4239(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: SUMOYLATION, UBIQUITINATION.
[54]"Functional polymorphism of the CK2alpha intronless gene plays oncogenic roles in lung cancer."
Hung M.S., Lin Y.C., Mao J.H., Kim I.J., Xu Z., Yang C.T., Jablons D.M., You L.
PLoS ONE 5:E11418-E11418(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CSNK2A1 AND CSNK2A3.
[55]"Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis."
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L., Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.
Sci. Signal. 3:RA3-RA3(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-518 AND SER-527, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[56]"Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML."
Zhang X.W., Yan X.J., Zhou Z.R., Yang F.F., Wu Z.Y., Sun H.B., Liang W.X., Song A.X., Lallemand-Breitenbach V., Jeanne M., Zhang Q.Y., Yang H.Y., Huang Q.H., Zhou G.B., Tong J.H., Zhang Y., Wu J.H., Hu H.Y. expand/collapse author list , de The H., Chen S.J., Chen Z.
Science 328:240-243(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH UBC9, SUBUNIT, UBIQUITINATION, SUMOYLATION, ARSENIC BINDING, DOMAIN, IDENTIFICATION BY MASS SPECTROMETRY.
[57]"Initial characterization of the human central proteome."
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17-17(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[58]"Promyelocytic leukemia protein interacts with werner syndrome helicase and regulates double-strand break repair in gamma-irradiation-induced DNA damage responses."
Liu J., Song Y., Qian J., Liu B., Dong Y., Tian B., Sun Z.
Biochemistry (Mosc.) 76:550-554(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH WRN.
[59]"The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites."
Pinton P., Giorgi C., Pandolfi P.P.
Cell Death Differ. 18:1450-1456(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON FUNCTION.
[60]"The nuclear bodies inside out: PML conquers the cytoplasm."
Carracedo A., Ito K., Pandolfi P.P.
Curr. Opin. Cell Biol. 23:360-366(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON FUNCTION.
[61]"Mitogen-activated protein kinase extracellular signal-regulated kinase 2 phosphorylates and promotes Pin1 protein-dependent promyelocytic leukemia protein turnover."
Lim J.H., Liu Y., Reineke E., Kao H.Y.
J. Biol. Chem. 286:44403-44411(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT SER-403; SER-505; SER-518 AND SER-527, INTERACTION WITH PIN1 AND MAPK1.
[62]"PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication."
Cuchet D., Sykes A., Nicolas A., Orr A., Murray J., Sirma H., Heeren J., Bartelt A., Everett R.D.
J. Cell Sci. 124:280-291(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[63]"Role of promyelocytic leukemia protein in host antiviral defense."
Geoffroy M.C., Chelbi-Alix M.K.
J. Interferon Cytokine Res. 31:145-158(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON FUNCTION IN ANTIVIRAL DEFENSE.
[64]"Promyelocytic leukemia isoform IV confers resistance to encephalomyocarditis virus via the sequestration of 3D polymerase in nuclear bodies."
Maroui M.A., Pampin M., Chelbi-Alix M.K.
J. Virol. 85:13164-13173(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN EMCV RESTRICTION, INTERACTION WITH EMCV P3D-POL.
[65]"The SUMO protease SENP6 is a direct regulator of PML nuclear bodies."
Hattersley N., Shen L., Jaffray E.G., Hay R.T.
Mol. Biol. Cell 22:78-90(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: SUMOYLATION, DESUMOYLATION BY SENP6.
[66]"The role of PML in the nervous system."
Salomoni P., Betts-Henderson J.
Mol. Neurobiol. 43:114-123(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON FUNCTION.
[67]"Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against Varicella-Zoster virus."
Reichelt M., Wang L., Sommer M., Perrino J., Nour A.M., Sen N., Baiker A., Zerboni L., Arvin A.M.
PLoS Pathog. 7:E1001266-E1001266(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN VARICELLA ZOSTER RESTRICTION, SUBCELLULAR LOCATION, INTERACTION WITH VZV VP26.
[68]"System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation."
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J., Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V., Blagoev B.
Sci. Signal. 4:RS3-RS3(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-518; SER-527 AND SER-530, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[69]"The SUMO E3-ligase PIAS1 regulates the tumor suppressor PML and its oncogenic counterpart PML-RARA."
Rabellino A., Carter B., Konstantinidou G., Wu S.Y., Rimessi A., Byers L.A., Heymach J.V., Girard L., Chiang C.M., Teruya-Feldstein J., Scaglioni P.P.
Cancer Res. 72:2275-2284(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: SUMOYLATION AT LYS-65 AND LYS-160, PHOSPHORYLATION AT SER-565, SUBCELLULAR LOCATION, INTERACTION WITH PIAS1; PIAS2 AND CSNK2A1.
[70]"MageA2 restrains cellular senescence by targeting the function of PMLIV/p53 axis at the PML-NBs."
Peche L.Y., Scolz M., Ladelfa M.F., Monte M., Schneider C.
Cell Death Differ. 19:926-936(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION, INTERACTION WITH MAGEA2.
[71]"Role of the promyelocytic leukaemia protein in cell death regulation."
Salomoni P., Dvorkina M., Michod D.
Cell Death Dis. 3:E247-E247(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON FUNCTION.
[72]"Physical and functional interaction between PML and TBX2 in the establishment of cellular senescence."
Martin N., Benhamed M., Nacerddine K., Demarque M.D., van Lohuizen M., Dejean A., Bischof O.
EMBO J. 31:95-109(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH TBX2; TBX3; E2F4 AND RBL2.
[73]"PML regulates PER2 nuclear localization and circadian function."
Miki T., Xu Z., Chen-Goodspeed M., Liu M., Van Oort-Jansen A., Rea M.A., Zhao Z., Lee C.C., Chang K.S.
EMBO J. 31:1427-1439(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, INTERACTION WITH PER2, ACETYLATION AT LYS-487, DEACETYLATION BY SIRT1.
[74]"Post-translational modifications of PML: consequences and implications."
Cheng X., Kao H.Y.
Front. Oncol. 2:210-210(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON PTM.
[75]"Beta-catenin inhibits promyelocytic leukemia protein tumor suppressor function in colorectal cancer cells."
Satow R., Shitashige M., Jigami T., Fukami K., Honda K., Kitabayashi I., Yamada T.
Gastroenterology 142:572-581(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, SUMOYLATION AT LYS-490, INTERACTION WITH HDAC7; RANBP2 AND CTNNB1-TCF7L2 COMPLEX.
[76]"Moloney murine leukemia virus integrase and reverse transcriptase interact with PML proteins."
Okino Y., Inayoshi Y., Kojima Y., Kidani S., Kaneoka H., Honkawa A., Higuchi H., Nishijima K., Miyake K., Iijima S.
J. Biochem. 152:161-169(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH MOMLV IN AND RT, SUBCELLULAR LOCATION.
[77]"Promyelocytic leukemia protein (PML) regulates endothelial cell network formation and migration in response to tumor necrosis factor alpha (TNFalpha) and interferon alpha (IFNalpha)."
Cheng X., Liu Y., Chu H., Kao H.Y.
J. Biol. Chem. 287:23356-23367(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[78]"Contribution of the C-terminal regions of promyelocytic leukemia protein (PML) isoforms II and V to PML nuclear body formation."
Geng Y., Monajembashi S., Shao A., Cui D., He W., Chen Z., Hemmerich P., Tang J.
J. Biol. Chem. 287:30729-30742(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: DOMAIN C-TERMINAL.
[79]"The role of PML ubiquitination in human malignancies."
Chen R.H., Lee Y.R., Yuan W.C.
J. Biomed. Sci. 19:81-81(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON UBIQUITINATION.
[80]"PML promotes MHC class II gene expression by stabilizing the class II transactivator."
Ulbricht T., Alzrigat M., Horch A., Reuter N., von Mikecz A., Steimle V., Schmitt E., Kraemer O.H., Stamminger T., Hemmerich P.
J. Cell Biol. 199:49-63(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, INTERACTION WITH CIITA.
[81]"A metabolic prosurvival role for PML in breast cancer."
Carracedo A., Weiss D., Leliaert A.K., Bhasin M., de Boer V.C., Laurent G., Adams A.C., Sundvall M., Song S.J., Ito K., Finley L.S., Egia A., Libermann T., Gerhart-Hines Z., Puigserver P., Haigis M.C., Maratos-Flier E., Richardson A.L., Schafer Z.T., Pandolfi P.P.
J. Clin. Invest. 122:3088-3100(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, TISSUE SPECIFICITY.
[82]"Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces its SUMO-independent degradation."
Cuchet-Lourenco D., Vanni E., Glass M., Orr A., Everett R.D.
J. Virol. 86:11209-11222(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH HHV-1 ICP0.
[83]"BMK1 is involved in the regulation of p53 through disrupting the PML-MDM2 interaction."
Yang Q., Liao L., Deng X., Chen R., Gray N.S., Yates J.R. III, Lee J.D.
Oncogene 32:3156-3164(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION, INTERACTION WITH MDM2 AND MAPK7.
[84]"The epigenetic regulator UHRF1 promotes ubiquitination-mediated degradation of the tumor-suppressor protein promyelocytic leukemia protein."
Guan D., Factor D., Liu Y., Wang Z., Kao H.Y.
Oncogene 32:3819-3828(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: UBIQUITINATION BY UHRF1.
[85]"Requirement of PML SUMO interacting motif for RNF4- or arsenic trioxide-induced degradation of nuclear PML isoforms."
Maroui M.A., Kheddache-Atmane S., El Asmi F., Dianoux L., Aubry M., Chelbi-Alix M.K.
PLoS ONE 7:E44949-E44949(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: SUMOYLATION, INTERACTION WITH RNF4, DOMAIN SIM.
[86]"PML tumor suppressor protein is required for HCV production."
Kuroki M., Ariumi Y., Hijikata M., Ikeda M., Dansako H., Wakita T., Shimotohno K., Kato N.
Biochem. Biophys. Res. Commun. 430:592-597(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[87]"Selective inhibition of the NLRP3 inflammasome by targeting to promyelocytic leukemia protein in mouse and human."
Lo Y.H., Huang Y.W., Wu Y.H., Tsai C.S., Lin Y.C., Mo S.T., Kuo W.C., Chuang Y.T., Jiang S.T., Shih H.M., Lai M.Z.
Blood 121:3185-3194(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH NLRP3.
[88]"The adenoviral oncogene E1A-13S interacts with a specific isoform of the tumor suppressor PML to enhance viral transcription."
Berscheminski J., Groitl P., Dobner T., Wimmer P., Schreiner S.
J. Virol. 87:965-977(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH HUMAN ADENOVIRUS 2 E1A.
[89]"MOZ increases p53 acetylation and premature senescence through its complex formation with PML."
Rokudai S., Laptenko O., Arnal S.M., Taya Y., Kitabayashi I., Prives C.
Proc. Natl. Acad. Sci. U.S.A. 110:3895-3900(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH KAT6A.
[90]"The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML."
Borden K.L.B., Boddy M.N., Lally J., O'Reilly N.J., Martin S., Howe K., Solomon E., Freemont P.S.
EMBO J. 14:1532-1541(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY NMR OF 49-104.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
S50913 mRNA. Translation: AAB19601.2.
M79462 mRNA. Translation: AAA60388.1. Different initiation.
M79463 mRNA. Translation: AAA60351.1. Different initiation.
M79464 mRNA. Translation: AAA60390.1. Different initiation.
X63131 mRNA. Translation: CAA44841.1.
M73778 mRNA. Translation: AAA60125.1.
M80185 mRNA. Translation: AAA60352.1. Different initiation.
AF230401 mRNA. Translation: AAG50180.1.
AF230402 mRNA. Translation: AAG50181.1.
AF230403 mRNA. Translation: AAG50182.1.
AF230405 mRNA. Translation: AAG50184.1.
AF230406 mRNA. Translation: AAG50185.1.
AF230407 mRNA. Translation: AAG50186.1.
AF230408 mRNA. Translation: AAG50187.1.
AF230409 mRNA. Translation: AAG50188.1.
AF230410 mRNA. Translation: AAG50189.1.
AF230411 mRNA. Translation: AAG50190.1.
BT009911 mRNA. Translation: AAP88913.1.
AB209411 mRNA. Translation: BAD92648.1. Different initiation.
AC013486 Genomic DNA. No translation available.
AC108137 Genomic DNA. No translation available.
BC000080 mRNA. Translation: AAH00080.2.
BC020994 mRNA. Translation: AAH20994.1.
X64800 Genomic DNA. Translation: CAA46026.1.
AB067754 mRNA. Translation: BAB62809.1. Sequence problems.
PIRA40044.
I38054.
S19244.
S42516.
S44381.
RefSeqNP_002666.1. NM_002675.3.
NP_150241.2. NM_033238.2.
NP_150242.1. NM_033239.2.
NP_150243.2. NM_033240.2.
NP_150247.2. NM_033244.3.
NP_150249.1. NM_033246.2.
NP_150250.2. NM_033247.2.
NP_150252.1. NM_033249.2.
NP_150253.2. NM_033250.2.
UniGeneHs.526464.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1BORNMR-A49-104[»]
ProteinModelPortalP29590.
SMRP29590. Positions 49-104, 187-229.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid111384. 163 interactions.
IntActP29590. 67 interactions.
MINTMINT-158826.
STRING9606.ENSP00000268058.

PTM databases

PhosphoSiteP29590.

Polymorphism databases

DMDM215274219.

Proteomic databases

PaxDbP29590.
PRIDEP29590.

Protocols and materials databases

DNASU5371.
StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000268058; ENSP00000268058; ENSG00000140464. [P29590-1]
ENST00000268059; ENSP00000268059; ENSG00000140464. [P29590-8]
ENST00000354026; ENSP00000315434; ENSG00000140464. [P29590-13]
ENST00000359928; ENSP00000353004; ENSG00000140464. [P29590-14]
ENST00000395132; ENSP00000378564; ENSG00000140464. [P29590-10]
ENST00000395135; ENSP00000378567; ENSG00000140464. [P29590-5]
ENST00000435786; ENSP00000395576; ENSG00000140464. [P29590-2]
ENST00000436891; ENSP00000394642; ENSG00000140464. [P29590-4]
ENST00000564428; ENSP00000457023; ENSG00000140464. [P29590-12]
ENST00000565898; ENSP00000455838; ENSG00000140464. [P29590-11]
ENST00000567543; ENSP00000456277; ENSG00000140464. [P29590-14]
ENST00000569477; ENSP00000455612; ENSG00000140464. [P29590-9]
ENST00000569965; ENSP00000456486; ENSG00000140464. [P29590-4]
GeneID5371.
KEGGhsa:5371.
UCSCuc002awk.3. human. [P29590-8]
uc002awl.3. human. [P29590-14]
uc002awm.3. human. [P29590-2]
uc002awn.3. human. [P29590-4]
uc002awo.3. human. [P29590-13]
uc002awr.3. human. [P29590-5]
uc002aws.3. human. [P29590-12]
uc002awu.3. human. [P29590-11]
uc002awv.3. human. [P29590-1]

Organism-specific databases

CTD5371.
GeneCardsGC15P074287.
HGNCHGNC:9113. PML.
HPACAB010194.
CAB016304.
HPA008312.
MIM102578. gene.
neXtProtNX_P29590.
Orphanet520. Acute promyelocytic leukemia.
PharmGKBPA33439.
GenAtlasSearch...

Phylogenomic databases

eggNOGNOG326718.
HOVERGENHBG000552.
InParanoidP29590.
KOK10054.
OMASDAENSC.
OrthoDBEOG7M98FM.
PhylomeDBP29590.
TreeFamTF336434.

Enzyme and pathway databases

ReactomeREACT_6900. Immune System.
SignaLinkP29590.

Gene expression databases

ArrayExpressP29590.
BgeeP29590.
CleanExHS_PML.
GenevestigatorP29590.

Family and domain databases

Gene3D3.30.40.10. 1 hit.
InterProIPR021978. DUF3583.
IPR000315. Znf_B-box.
IPR001841. Znf_RING.
IPR013083. Znf_RING/FYVE/PHD.
IPR017907. Znf_RING_CS.
[Graphical view]
PfamPF12126. DUF3583. 1 hit.
PF00643. zf-B_box. 1 hit.
[Graphical view]
SMARTSM00336. BBOX. 1 hit.
SM00184. RING. 1 hit.
[Graphical view]
PROSITEPS50119. ZF_BBOX. 2 hits.
PS00518. ZF_RING_1. 1 hit.
PS50089. ZF_RING_2. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

ChiTaRSPML. human.
EvolutionaryTraceP29590.
GeneWikiPromyelocytic_leukemia_protein.
GenomeRNAi5371.
NextBio20820.
PMAP-CutDBP29590.
PROP29590.
SOURCESearch...

Entry information

Entry namePML_HUMAN
AccessionPrimary (citable) accession number: P29590
Secondary accession number(s): E9PBR7 expand/collapse secondary AC list , P29591, P29592, P29593, Q00755, Q15959, Q59FP9, Q8WUA0, Q96S41, Q9BPW2, Q9BWP7, Q9BZX6, Q9BZX7, Q9BZX8, Q9BZX9, Q9BZY0, Q9BZY2, Q9BZY3
Entry history
Integrated into UniProtKB/Swiss-Prot: April 1, 1993
Last sequence update: November 25, 2008
Last modified: April 16, 2014
This is version 179 of the entry and version 3 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 15

Human chromosome 15: entries, gene names and cross-references to MIM