UniProtKB - P29295 (HRR25_YEAST)
Your basket is currently empty. i <p>When browsing through different UniProt proteins, you can use the ‘basket’ to save them, so that you can back to find or analyse them later.<p><a href='/help/basket' target='_top'>More...</a></p>
Select item(s) and click on "Add to basket" to create your own collection here
(400 entries max)
- BLAST>sp|P29295|HRR25_YEAST Casein kinase I homolog HRR25 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=HRR25 PE=1 SV=1 MDLRVGRKFRIGRKIGSGSFGDIYHGTNLISGEEVAIKLESIRSRHPQLDYESRVYRYLS GGVGIPFIRWFGREGEYNAMVIDLLGPSLEDLFNYCHRRFSFKTVIMLALQMFCRIQYIH GRSFIHRDIKPDNFLMGVGRRGSTVHVIDFGLSKKYRDFNTHRHIPYRENKSLTGTARYA SVNTHLGIEQSRRDDLESLGYVLIYFCKGSLPWQGLKATTKKQKYDRIMEKKLNVSVETL CSGLPLEFQEYMAYCKNLKFDEKPDYLFLARLFKDLSIKLEYHNDHLFDWTMLRYTKAMV EKQRDLLIEKGDLNANSNAASASNSTDNKSETFNKIKLLAMKKFPTHFHYYKNEDKHNPS PEEIKQQTILNNNAASSLPEELLNALDKGMENLRQQQPQQQVQSSQPQPQPQQLQQQPNG QRPNYYPEPLLQQQQRDSQEQQQQVPMATTRATQYPPQINSNNFNTNQASVPPQMRSNPQ QPPQDKPAGQSIWL
- Align
- Format
- Add to basketAdded to basket
- History
- Other tutorials and videos
- Help video
- Feedback
Casein kinase I homolog HRR25
HRR25
Annotation score:5 out of 5
<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome.<p><a href='/help/annotation_score' target='_top'>More...</a></p>-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>Select a section on the left to see content.
<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni
Miscellaneous
<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.6"Global analysis of protein expression in yeast."
Ghaemmaghami S., Huh W.-K., Bower K., Howson R.W., Belle A., Dephoure N., O'Shea E.K., Weissman J.S.
Nature 425:737-741(2003) [PubMed] [Europe PMC] [Abstract]Cited for: LEVEL OF PROTEIN EXPRESSION [LARGE SCALE ANALYSIS].
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. the chemical reaction it catalyzes. This information usually correlates with the presence of an EC (Enzyme Commission) number in the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi
Sites
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei | 38 | ATPPROSITE-ProRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi | 1 | |
<p>This subsection of the ‘Function’ section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei | 128 | Proton acceptorPROSITE-ProRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi | 1 |
Regions
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the ‘Function’ section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi | 15 – 23 | ATPPROSITE-ProRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi | 9 |
<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni
- ATP binding Source: UniProtKB-KW
- identical protein binding Source: IntAct <p>Inferred from Physical Interaction</p> <p>Covers physical interactions between the gene product of interest and another molecule (or ion, or complex).</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ipi">GO evidence code guide</a></p> Inferred from physical interactioni
- protein serine/threonine kinase activity Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
- protein tyrosine kinase activity Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Biological processi
- attachment of spindle microtubules to kinetochore involved in homologous chromosome segregation Source: SGD <p>Inferred from Mutant Phenotype</p> <p>Describes annotations that are concluded from looking at variations or changes in a gene product such as mutations or abnormal levels and includes techniques such as knockouts, overexpression, anti-sense experiments and use of specific protein inhibitors.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#imp">GO evidence code guide</a></p> Inferred from mutant phenotypei
- autophagosome assembly Source: SGD <p>Inferred from Mutant Phenotype</p> <p>Describes annotations that are concluded from looking at variations or changes in a gene product such as mutations or abnormal levels and includes techniques such as knockouts, overexpression, anti-sense experiments and use of specific protein inhibitors.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#imp">GO evidence code guide</a></p> Inferred from mutant phenotypei
- autophagy of peroxisome Source: SGD <p>Inferred from Mutant Phenotype</p> <p>Describes annotations that are concluded from looking at variations or changes in a gene product such as mutations or abnormal levels and includes techniques such as knockouts, overexpression, anti-sense experiments and use of specific protein inhibitors.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#imp">GO evidence code guide</a></p> Inferred from mutant phenotypei
- DNA repair Source: SGD <p>Inferred from Mutant Phenotype</p> <p>Describes annotations that are concluded from looking at variations or changes in a gene product such as mutations or abnormal levels and includes techniques such as knockouts, overexpression, anti-sense experiments and use of specific protein inhibitors.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#imp">GO evidence code guide</a></p> Inferred from mutant phenotypei
- peptidyl-serine phosphorylation Source: GO_Central
- peptidyl-tyrosine autophosphorylation Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
- peptidyl-tyrosine phosphorylation Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
- positive regulation of clathrin-dependent endocytosis Source: SGD <p>Inferred from Mutant Phenotype</p> <p>Describes annotations that are concluded from looking at variations or changes in a gene product such as mutations or abnormal levels and includes techniques such as knockouts, overexpression, anti-sense experiments and use of specific protein inhibitors.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#imp">GO evidence code guide</a></p> Inferred from mutant phenotypei
- protein phosphorylation Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
- regulation of cell shape Source: GO_Central
- regulation of ER to Golgi vesicle-mediated transport Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
- regulation of protein localization Source: SGD <p>Inferred from Mutant Phenotype</p> <p>Describes annotations that are concluded from looking at variations or changes in a gene product such as mutations or abnormal levels and includes techniques such as knockouts, overexpression, anti-sense experiments and use of specific protein inhibitors.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#imp">GO evidence code guide</a></p> Inferred from mutant phenotypei
- regulation of protein localization by the Cvt pathway Source: SGD <p>Inferred from Mutant Phenotype</p> <p>Describes annotations that are concluded from looking at variations or changes in a gene product such as mutations or abnormal levels and includes techniques such as knockouts, overexpression, anti-sense experiments and use of specific protein inhibitors.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#imp">GO evidence code guide</a></p> Inferred from mutant phenotypei
- ribosomal large subunit biogenesis Source: SGD <p>Inferred from Mutant Phenotype</p> <p>Describes annotations that are concluded from looking at variations or changes in a gene product such as mutations or abnormal levels and includes techniques such as knockouts, overexpression, anti-sense experiments and use of specific protein inhibitors.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#imp">GO evidence code guide</a></p> Inferred from mutant phenotypei
- ribosomal small subunit biogenesis Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
- tRNA wobble uridine modification Source: SGD <p>Inferred from Mutant Phenotype</p> <p>Describes annotations that are concluded from looking at variations or changes in a gene product such as mutations or abnormal levels and includes techniques such as knockouts, overexpression, anti-sense experiments and use of specific protein inhibitors.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#imp">GO evidence code guide</a></p> Inferred from mutant phenotypei
- vesicle fusion with Golgi apparatus Source: SGD <p>Inferred from Mutant Phenotype</p> <p>Describes annotations that are concluded from looking at variations or changes in a gene product such as mutations or abnormal levels and includes techniques such as knockouts, overexpression, anti-sense experiments and use of specific protein inhibitors.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#imp">GO evidence code guide</a></p> Inferred from mutant phenotypei
<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi
Molecular function | Kinase, Serine/threonine-protein kinase, Transferase |
Biological process | DNA damage, DNA repair |
Ligand | ATP-binding, Nucleotide-binding |
Enzyme and pathway databases
BioCyc Collection of Pathway/Genome Databases More...BioCyci | YEAST:G3O-34096-MONOMER. |
BRENDA Comprehensive Enzyme Information System More...BRENDAi | 2.7.11.1. 984. |
<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi | |
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi | Name:HRR25 Ordered Locus Names:YPL204W |
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>Organismi | Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) |
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the <span class="caps">NCBI</span> to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri | 559292 [NCBI] |
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineagei | cellular organisms › Eukaryota › Opisthokonta › Fungi › Dikarya › Ascomycota › saccharomyceta › Saccharomycotina › Saccharomycetes › Saccharomycetales › Saccharomycetaceae › Saccharomyces › Saccharomyces cerevisiae |
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi |
|
Organism-specific databases
Eukaryotic Pathogen Database Resources More...EuPathDBi | FungiDB:YPL204W. |
Saccharomyces Genome Database More...SGDi | S000006125. HRR25. |
<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi
Nucleus
- nucleolus 1 Publication
<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.5"The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes."
Schaefer T., Strauss D., Petfalski E., Tollervey D., Hurt E.
EMBO J. 22:1370-1380(2003) [PubMed] [Europe PMC] [Abstract]Cited for: SUBCELLULAR LOCATION.
- nucleoplasm 1 Publication
<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.5"The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes."
Schaefer T., Strauss D., Petfalski E., Tollervey D., Hurt E.
EMBO J. 22:1370-1380(2003) [PubMed] [Europe PMC] [Abstract]Cited for: SUBCELLULAR LOCATION.
- nucleolus 1 Publication
Other locations
- Cytoplasm 1 Publication
<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.5"The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes."
Schaefer T., Strauss D., Petfalski E., Tollervey D., Hurt E.
EMBO J. 22:1370-1380(2003) [PubMed] [Europe PMC] [Abstract]Cited for: SUBCELLULAR LOCATION.
- Cytoplasm 1 Publication
Cytoskeleton
- spindle pole body Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
Golgi apparatus
- Golgi apparatus Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
Nucleus
- nucleolus Source: UniProtKB-SubCell
- nucleoplasm Source: UniProtKB-SubCell
- nucleus Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
Plasma Membrane
- plasma membrane Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
Other locations
- cellular bud neck Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
- cellular bud tip Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
- chromosome, centromeric region Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
- monopolin complex Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
- phagophore assembly site Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
- preribosome, small subunit precursor Source: GO_Central <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywords - Cellular componenti
Cytoplasm, Nucleus<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi
Molecule processing
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_0000192859 | 1 – 494 | Casein kinase I homolog HRR25Add BLAST | 494 |
Amino acid modifications
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei | 143 | PhosphoserineCombined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei
| 1 |
<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywords - PTMi
PhosphoproteinProteomic databases
MaxQB - The MaxQuant DataBase More...MaxQBi | P29295. |
PaxDb, a database of protein abundance averages across all three domains of life More...PaxDbi | P29295. |
PRoteomics IDEntifications database More...PRIDEi | P29295. |
PTM databases
iPTMnet integrated resource for PTMs in systems biology context More...iPTMneti | P29295. |
<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni
<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">‘Interaction’</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">‘Function’</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei
<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.9"Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes."
Fasolo J., Sboner A., Sun M.G., Yu H., Chen R., Sharon D., Kim P.M., Gerstein M., Snyder M.
Genes Dev. 25:767-778(2011) [PubMed] [Europe PMC] [Abstract]Cited for: INTERACTION WITH HRI1.
<p>This subsection of the ‘<a href="http://www.uniprot.org/help/interaction_section">Interaction</a>’ section provides information about binary protein-protein interactions. The data presented in this section are a quality-filtered subset of binary interactions automatically derived from the <a href="http://www.ebi.ac.uk/intact/">IntAct database</a>. It is updated on a monthly basis. Each binary interaction is displayed on a separate line.<p><a href='/help/binary_interactions' target='_top'>More...</a></p>Binary interactionsi
With | Entry | #Exp. | IntAct | Notes |
---|---|---|---|---|
itself | 3 | EBI-8536,EBI-8536 | ||
ATG19 | P35193 | 2 | EBI-8536,EBI-29291 | |
ATG34 | Q12292 | 2 | EBI-8536,EBI-36362 | |
GCN2 | P15442 | 5 | EBI-8536,EBI-330 | |
MAM1 | P40065 | 3 | EBI-8536,EBI-22643 | |
NNK1 | P36003 | 4 | EBI-8536,EBI-9796 | |
SEC23 | P15303 | 5 | EBI-8536,EBI-16584 |
<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni
- identical protein binding Source: IntAct <p>Inferred from Physical Interaction</p> <p>Covers physical interactions between the gene product of interest and another molecule (or ion, or complex).</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ipi">GO evidence code guide</a></p> Inferred from physical interactioni
Protein-protein interaction databases
The Biological General Repository for Interaction Datasets (BioGrid) More...BioGridi | 35980. 572 interactors. |
Database of interacting proteins More...DIPi | DIP-157N. |
Protein interaction database and analysis system More...IntActi | P29295. 151 interactors. |
Molecular INTeraction database More...MINTi | P29295. |
STRING: functional protein association networks More...STRINGi | 4932.YPL204W. |
<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei
Secondary structure
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 9 – 17 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 9 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 22 – 28 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 7 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 29 – 31 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 34 – 41 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 8 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 42 – 45 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 49 – 58 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 10 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 59 – 61 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 68 – 74 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 7 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 77 – 83 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 7 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 85 – 88 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 89 – 95 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 7 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 96 – 98 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 102 – 121 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 20 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 131 – 133 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 134 – 138 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 5 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 139 – 141 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 145 – 147 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 159 – 161 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 177 – 179 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 182 – 185 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 192 – 208 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 17 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 212 – 215 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 224 – 230 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 7 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 237 – 240 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 241 – 243 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 246 – 255 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 10 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 266 – 273 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 8 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 276 – 278 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 289 – 307 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 19 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 330 – 334 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 5 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 339 – 343 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 5 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 345 – 347 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 361 – 364 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 367 – 373 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 7 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 379 – 386 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 8 |
3D structure databases
Select the link destinations: Protein Data Bank Europe More...PDBeiProtein Data Bank RCSB More...RCSB PDBiProtein Data Bank Japan More...PDBjiLinks Updated | PDB entry | Method | Resolution (Å) | Chain | Positions | PDBsum |
4XHL | X-ray | 3.01 | A | 1-394 | [»] | |
5CYZ | X-ray | 1.84 | A | 1-394 | [»] | |
5CZO | X-ray | 2.89 | A/B | 1-394 | [»] | |
Protein Model Portal of the PSI-Nature Structural Biology Knowledgebase More...ProteinModelPortali | P29295. | |||||
SWISS-MODEL Repository - a database of annotated 3D protein structure models More...SMRi | P29295. | |||||
Database of comparative protein structure models More...ModBasei | Search... | |||||
MobiDB: a database of protein disorder and mobility annotations More...MobiDBi | Search... |
<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi
Domains and Repeats
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the <a href="http://www.uniprot.org/help/family_and_domains_section">Family and Domains</a> section describes the position and type of a domain, which is defined as a specific combination of secondary structures organized into a characteristic three-dimensional structure or fold.<p><a href='/help/domain' target='_top'>More...</a></p>Domaini | 9 – 278 | Protein kinasePROSITE-ProRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi Add BLAST | 270 |
Compositional bias
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the ‘Family and Domains’ section describes the position of regions of compositional bias within the protein and the particular amino acids that are over-represented within those regions.<p><a href='/help/compbias' target='_top'>More...</a></p>Compositional biasi | 395 – 494 | Gln/Pro-richAdd BLAST | 100 |
<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi
Phylogenomic databases
Ensembl GeneTree More...GeneTreei | ENSGT00760000119040. |
The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms More...HOGENOMi | HOG000182055. |
InParanoid: Eukaryotic Ortholog Groups More...InParanoidi | P29295. |
KEGG Orthology (KO) More...KOi | K14758. |
Identification of Orthologs from Complete Genome Data More...OMAi | ESRVYKY. |
Database of Orthologous Groups More...OrthoDBi | EOG092C30PR. |
Family and domain databases
Integrated resource of protein families, domains and functional sites More...InterProi | View protein in InterPro IPR011009. Kinase-like_dom_sf. IPR000719. Prot_kinase_dom. IPR017441. Protein_kinase_ATP_BS. IPR008271. Ser/Thr_kinase_AS. |
Pfam protein domain database More...Pfami | View protein in Pfam PF00069. Pkinase. 1 hit. |
Simple Modular Architecture Research Tool; a protein domain database More...SMARTi | View protein in SMART SM00220. S_TKc. 1 hit. |
Superfamily database of structural and functional annotation More...SUPFAMi | SSF56112. SSF56112. 1 hit. |
PROSITE; a protein domain and family database More...PROSITEi | View protein in PROSITE PS00107. PROTEIN_KINASE_ATP. 1 hit. PS50011. PROTEIN_KINASE_DOM. 1 hit. PS00108. PROTEIN_KINASE_ST. 1 hit. |
<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei
<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.
10 20 30 40 50
MDLRVGRKFR IGRKIGSGSF GDIYHGTNLI SGEEVAIKLE SIRSRHPQLD
60 70 80 90 100
YESRVYRYLS GGVGIPFIRW FGREGEYNAM VIDLLGPSLE DLFNYCHRRF
110 120 130 140 150
SFKTVIMLAL QMFCRIQYIH GRSFIHRDIK PDNFLMGVGR RGSTVHVIDF
160 170 180 190 200
GLSKKYRDFN THRHIPYREN KSLTGTARYA SVNTHLGIEQ SRRDDLESLG
210 220 230 240 250
YVLIYFCKGS LPWQGLKATT KKQKYDRIME KKLNVSVETL CSGLPLEFQE
260 270 280 290 300
YMAYCKNLKF DEKPDYLFLA RLFKDLSIKL EYHNDHLFDW TMLRYTKAMV
310 320 330 340 350
EKQRDLLIEK GDLNANSNAA SASNSTDNKS ETFNKIKLLA MKKFPTHFHY
360 370 380 390 400
YKNEDKHNPS PEEIKQQTIL NNNAASSLPE ELLNALDKGM ENLRQQQPQQ
410 420 430 440 450
QVQSSQPQPQ PQQLQQQPNG QRPNYYPEPL LQQQQRDSQE QQQQVPMATT
460 470 480 490
RATQYPPQIN SNNFNTNQAS VPPQMRSNPQ QPPQDKPAGQ SIWL
Sequence databases
Select the link destinations: EMBL nucleotide sequence database More...EMBLiGenBank nucleotide sequence database More...GenBankiDNA Data Bank of Japan; a nucleotide sequence database More...DDBJiLinks Updated | M68605 Genomic DNA. Translation: AAA34687.1. Z73560 Genomic DNA. Translation: CAA97918.1. BK006949 Genomic DNA. Translation: DAA11231.1. |
Protein sequence database of the Protein Information Resource More...PIRi | A40860. |
NCBI Reference Sequences More...RefSeqi | NP_015120.1. NM_001184018.1. |
Genome annotation databases
Ensembl fungal genome annotation project More...EnsemblFungii | YPL204W; YPL204W; YPL204W. |
Database of genes from NCBI RefSeq genomes More...GeneIDi | 855897. |
KEGG: Kyoto Encyclopedia of Genes and Genomes More...KEGGi | sce:YPL204W. |
<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi
Protein | Similar proteins | Organisms | Length | Cluster ID | Cluster name | Size | |
---|---|---|---|---|---|---|---|
P29295 | N1NW96 | Saccharomyces cerevisiae (strain CEN.PK113-7D) (Baker's yeast) | 494 | UniRef100_P29295 | Cluster: Casein kinase I homolog HRR25 | 2 |
<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi
Sequence databases
Select the link destinations: EMBL nucleotide sequence database More...EMBLiGenBank nucleotide sequence database More...GenBankiDNA Data Bank of Japan; a nucleotide sequence database More...DDBJiLinks Updated | M68605 Genomic DNA. Translation: AAA34687.1. Z73560 Genomic DNA. Translation: CAA97918.1. BK006949 Genomic DNA. Translation: DAA11231.1. |
Protein sequence database of the Protein Information Resource More...PIRi | A40860. |
NCBI Reference Sequences More...RefSeqi | NP_015120.1. NM_001184018.1. |
3D structure databases
Select the link destinations: Protein Data Bank Europe More...PDBeiProtein Data Bank RCSB More...RCSB PDBiProtein Data Bank Japan More...PDBjiLinks Updated | PDB entry | Method | Resolution (Å) | Chain | Positions | PDBsum |
4XHL | X-ray | 3.01 | A | 1-394 | [»] | |
5CYZ | X-ray | 1.84 | A | 1-394 | [»] | |
5CZO | X-ray | 2.89 | A/B | 1-394 | [»] | |
Protein Model Portal of the PSI-Nature Structural Biology Knowledgebase More...ProteinModelPortali | P29295. | |||||
SWISS-MODEL Repository - a database of annotated 3D protein structure models More...SMRi | P29295. | |||||
Database of comparative protein structure models More...ModBasei | Search... | |||||
MobiDB: a database of protein disorder and mobility annotations More...MobiDBi | Search... |
Protein-protein interaction databases
The Biological General Repository for Interaction Datasets (BioGrid) More...BioGridi | 35980. 572 interactors. |
Database of interacting proteins More...DIPi | DIP-157N. |
Protein interaction database and analysis system More...IntActi | P29295. 151 interactors. |
Molecular INTeraction database More...MINTi | P29295. |
STRING: functional protein association networks More...STRINGi | 4932.YPL204W. |
PTM databases
iPTMnet integrated resource for PTMs in systems biology context More...iPTMneti | P29295. |
Proteomic databases
MaxQB - The MaxQuant DataBase More...MaxQBi | P29295. |
PaxDb, a database of protein abundance averages across all three domains of life More...PaxDbi | P29295. |
PRoteomics IDEntifications database More...PRIDEi | P29295. |
Protocols and materials databases
Structural Biology Knowledgebase | Search... |
Genome annotation databases
Ensembl fungal genome annotation project More...EnsemblFungii | YPL204W; YPL204W; YPL204W. |
Database of genes from NCBI RefSeq genomes More...GeneIDi | 855897. |
KEGG: Kyoto Encyclopedia of Genes and Genomes More...KEGGi | sce:YPL204W. |
Organism-specific databases
Eukaryotic Pathogen Database Resources More...EuPathDBi | FungiDB:YPL204W. |
Saccharomyces Genome Database More...SGDi | S000006125. HRR25. |
Phylogenomic databases
Ensembl GeneTree More...GeneTreei | ENSGT00760000119040. |
The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms More...HOGENOMi | HOG000182055. |
InParanoid: Eukaryotic Ortholog Groups More...InParanoidi | P29295. |
KEGG Orthology (KO) More...KOi | K14758. |
Identification of Orthologs from Complete Genome Data More...OMAi | ESRVYKY. |
Database of Orthologous Groups More...OrthoDBi | EOG092C30PR. |
Enzyme and pathway databases
BioCyc Collection of Pathway/Genome Databases More...BioCyci | YEAST:G3O-34096-MONOMER. |
BRENDA Comprehensive Enzyme Information System More...BRENDAi | 2.7.11.1. 984. |
Miscellaneous databases
Protein Ontology More...PROi | PR:P29295. |
Family and domain databases
Integrated resource of protein families, domains and functional sites More...InterProi | View protein in InterPro IPR011009. Kinase-like_dom_sf. IPR000719. Prot_kinase_dom. IPR017441. Protein_kinase_ATP_BS. IPR008271. Ser/Thr_kinase_AS. |
Pfam protein domain database More...Pfami | View protein in Pfam PF00069. Pkinase. 1 hit. |
Simple Modular Architecture Research Tool; a protein domain database More...SMARTi | View protein in SMART SM00220. S_TKc. 1 hit. |
Superfamily database of structural and functional annotation More...SUPFAMi | SSF56112. SSF56112. 1 hit. |
PROSITE; a protein domain and family database More...PROSITEi | View protein in PROSITE PS00107. PROTEIN_KINASE_ATP. 1 hit. PS50011. PROTEIN_KINASE_DOM. 1 hit. PS00108. PROTEIN_KINASE_ST. 1 hit. |
ProtoNet; Automatic hierarchical classification of proteins More...ProtoNeti | Search... |
<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi
<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry namei | HRR25_YEAST | |
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>Accessioni | P29295Primary (citable) accession number: P29295 Secondary accession number(s): D6W3G5 | |
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyi | Integrated into UniProtKB/Swiss-Prot: | December 1, 1992 |
Last sequence update: | December 1, 1992 | |
Last modified: | March 28, 2018 | |
This is version 175 of the entry and version 1 of the sequence. See complete history. | ||
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusi | Reviewed (UniProtKB/Swiss-Prot) | |
Annotation program | Fungal Protein Annotation Program |