Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P28482 (MK01_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified March 19, 2014. Version 166. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (5) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Alt products·Sequence annotation·Sequences·References·Web links·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Mitogen-activated protein kinase 1

Short name=MAP kinase 1
Short name=MAPK 1
EC=2.7.11.24
Alternative name(s):
ERT1
Extracellular signal-regulated kinase 2
Short name=ERK-2
MAP kinase isoform p42
Short name=p42-MAPK
Mitogen-activated protein kinase 2
Short name=MAP kinase 2
Short name=MAPK 2
Gene names
Name:MAPK1
Synonyms:ERK2, PRKM1, PRKM2
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length360 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays also a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, DCC, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade. Mediates phosphorylation of TPR in respons to EGF stimulation. May play a role in the spindle assembly checkpoint. Phosphorylates PML and promotes its interaction with PIN1, leading to PML degradation. Ref.7 Ref.8 Ref.10 Ref.11 Ref.12 Ref.13 Ref.15 Ref.16 Ref.17 Ref.18 Ref.19 Ref.21 Ref.22 Ref.23 Ref.26 Ref.27 Ref.28 Ref.29 Ref.30 Ref.31 Ref.34 Ref.40 Ref.43 Ref.44 Ref.55

Acts as a transcriptional repressor. Binds to a [GC]AAA[GC] consensus sequence. Repress the expression of interferon gamma-induced genes. Seems to bind to the promoter of CCL5, DMP1, IFIH1, IFITM1, IRF7, IRF9, LAMP3, OAS1, OAS2, OAS3 and STAT1. Transcriptional activity is independent of kinase activity. Ref.7 Ref.8 Ref.10 Ref.11 Ref.12 Ref.13 Ref.15 Ref.16 Ref.17 Ref.18 Ref.19 Ref.21 Ref.22 Ref.23 Ref.26 Ref.27 Ref.28 Ref.29 Ref.30 Ref.31 Ref.34 Ref.40 Ref.43 Ref.44 Ref.55

Catalytic activity

ATP + a protein = ADP + a phosphoprotein.

Cofactor

Magnesium By similarity.

Enzyme regulation

Phosphorylated by MAP2K1/MEK1 and MAP2K2/MEK2 on Thr-185 and Tyr-187 in response to external stimuli like insulin or NGF. Both phosphorylations are required for activity. This phosphorylation causes dramatic conformational changes, which enable full activation and interaction of MAPK1/ERK2 with its substrates. Phosphorylation on Ser-29 by SGK1 results in its activation by enhancing its interaction with MAP2K1/MEK1 and MAP2K2/MEK2. Dephosphorylated and inactivated by DUSP3, DUSP6 and DUSP9. Inactivated by pyrimidylpyrrole inhibitors. Ref.19 Ref.48

Subunit structure

Binds both upstream activators and downstream substrates in multimolecular complexes. Binds to HIV-1 Nef through its SH3 domain. This interaction inhibits its tyrosine-kinase activity. Interacts with ADAM15, ARHGEF2, ARRB2, DAPK1 (via death domain), HSF4, IER3, IPO7, DUSP6, NISCH, SGK1, and isoform 1 of NEK2. Interacts (phosphorylated form) with CAV2 ('Tyr-19'-phosphorylated form); the interaction, promoted by insulin, leads to nuclear location and MAPK1 activation. Interacts with MORG1, PEA15 and MKNK2 By similarity. MKNK2 isoform 1 binding prevents from dephosphorylation and inactivation By similarity. Interacts with DCC By similarity. The phosphorylated form interacts with PML (isoform PML-4) Ref.9 Ref.13 Ref.19 Ref.20 Ref.24 Ref.29 Ref.33 Ref.34 Ref.36 Ref.37 Ref.39 Ref.40 Ref.46 Ref.48 Ref.55

Subcellular location

Cytoplasmcytoskeletonspindle By similarity. Nucleus. Cytoplasmcytoskeletonmicrotubule organizing centercentrosome. Cytoplasm. Note: Associated with the spindle during prometaphase and metaphase By similarity. PEA15-binding and phosphorylated DAPK1 promote its cytoplasmic retention. Phosphorylation at Ser- 246 and Ser-248 as well as autophosphorylation at Thr-190 promote nuclear localization. Ref.24 Ref.29 Ref.39 Ref.48

Domain

The TXY motif contains the threonine and tyrosine residues whose phosphorylation activates the MAP kinases.

Post-translational modification

Phosphorylated upon KIT and FLT3 signaling By similarity. Dually phosphorylated on Thr-185 and Tyr-187, which activates the enzyme. Undergoes regulatory phosphorylation on additional residues such as Ser-246 and Ser-248 in the kinase insert domain (KID) These phosphorylations, which are probably mediated by more than one kinase, are important for binding of MAPK1/ERK2 to importin-7 (IPO7) and its nuclear translocation. In addition, autophosphorylation of Thr-190 was shown to affect the subcellular localization of MAPK1/ERK2 as well. Ligand-activated ALK induces tyrosine phosphorylation. Dephosphorylated by PTPRJ at Tyr-187. Phosphorylation on Ser-29 by SGK1 results in its activation by enhancing its interaction with MAP2K1/MEK1 and MAP2K2/MEK2. DUSP3 and DUSP6 dephosphorylate specifically MAPK1/ERK2 and MAPK3/ERK1 whereas DUSP9 dephosphorylates a broader range of MAPKs. Ref.14 Ref.35 Ref.39 Ref.44 Ref.45 Ref.46 Ref.48 Ref.64

ISGylated By similarity.

Sequence similarities

Belongs to the protein kinase superfamily. CMGC Ser/Thr protein kinase family. MAP kinase subfamily.

Contains 1 protein kinase domain.

Sequence caution

The sequence CAA77753.1 differs from that shown. Reason: Erroneous initiation. Translation N-terminally extended.

Ontologies

Keywords
   Biological processApoptosis
Cell cycle
Host-virus interaction
Transcription
Transcription regulation
   Cellular componentCytoplasm
Cytoskeleton
Nucleus
   Coding sequence diversityAlternative splicing
   LigandATP-binding
DNA-binding
Nucleotide-binding
   Molecular functionKinase
Repressor
Serine/threonine-protein kinase
Transferase
   PTMAcetylation
Phosphoprotein
Ubl conjugation
   Technical term3D-structure
Complete proteome
Direct protein sequencing
Reference proteome
Gene Ontology (GO)
   Biological_processB cell receptor signaling pathway

Inferred from electronic annotation. Source: Ensembl

ERK1 and ERK2 cascade

Inferred from direct assay PubMed 16314496. Source: UniProtKB

Fc-epsilon receptor signaling pathway

Traceable author statement. Source: Reactome

Fc-gamma receptor signaling pathway involved in phagocytosis

Traceable author statement. Source: Reactome

JAK-STAT cascade involved in growth hormone signaling pathway

Traceable author statement. Source: Reactome

MAPK import into nucleus

Inferred from electronic annotation. Source: Ensembl

MyD88-dependent toll-like receptor signaling pathway

Traceable author statement. Source: Reactome

Ras protein signal transduction

Traceable author statement. Source: Reactome

T cell receptor signaling pathway

Inferred from electronic annotation. Source: Ensembl

TRIF-dependent toll-like receptor signaling pathway

Traceable author statement. Source: Reactome

activation of MAPK activity

Traceable author statement. Source: Reactome

activation of MAPKK activity

Traceable author statement. Source: Reactome

apoptotic process

Traceable author statement PubMed 10958679. Source: ProtInc

axon guidance

Traceable author statement. Source: Reactome

caveolin-mediated endocytosis

Traceable author statement Ref.50. Source: UniProtKB

cell cycle

Inferred from electronic annotation. Source: UniProtKB-KW

cellular response to DNA damage stimulus

Inferred from electronic annotation. Source: Ensembl

cytosine metabolic process

Inferred from electronic annotation. Source: Ensembl

epidermal growth factor receptor signaling pathway

Traceable author statement. Source: Reactome

fibroblast growth factor receptor signaling pathway

Traceable author statement. Source: Reactome

innate immune response

Traceable author statement. Source: Reactome

insulin receptor signaling pathway

Traceable author statement. Source: Reactome

labyrinthine layer blood vessel development

Inferred from electronic annotation. Source: Ensembl

lipopolysaccharide-mediated signaling pathway

Inferred from electronic annotation. Source: Ensembl

mammary gland epithelial cell proliferation

Inferred from electronic annotation. Source: Ensembl

negative regulation of cell differentiation

Inferred from electronic annotation. Source: Ensembl

neurotrophin TRK receptor signaling pathway

Traceable author statement. Source: Reactome

organ morphogenesis

Inferred from electronic annotation. Source: Ensembl

peptidyl-serine phosphorylation

Inferred from direct assay PubMed 15850461. Source: BHF-UCL

peptidyl-threonine phosphorylation

Inferred from sequence or structural similarity. Source: UniProtKB

platelet activation

Traceable author statement. Source: Reactome

positive regulation of cell migration

Inferred from electronic annotation. Source: Ensembl

positive regulation of cell proliferation

Inferred from electronic annotation. Source: Ensembl

positive regulation of peptidyl-threonine phosphorylation

Inferred from direct assay PubMed 16314496. Source: UniProtKB

positive regulation of transcription, DNA-templated

Inferred from electronic annotation. Source: Ensembl

positive regulation of translation

Inferred from electronic annotation. Source: Ensembl

regulation of Golgi inheritance

Traceable author statement Ref.50. Source: UniProtKB

regulation of cytoskeleton organization

Traceable author statement Ref.50. Source: UniProtKB

regulation of early endosome to late endosome transport

Traceable author statement Ref.50. Source: UniProtKB

regulation of protein stability

Inferred from sequence or structural similarity. Source: UniProtKB

regulation of sequence-specific DNA binding transcription factor activity

Traceable author statement. Source: Reactome

regulation of stress-activated MAPK cascade

Traceable author statement Ref.50. Source: UniProtKB

response to epidermal growth factor

Inferred from direct assay Ref.40. Source: UniProtKB

response to estrogen

Inferred from electronic annotation. Source: Ensembl

response to exogenous dsRNA

Inferred from electronic annotation. Source: Ensembl

response to toxic substance

Inferred from electronic annotation. Source: Ensembl

sensory perception of pain

Inferred from electronic annotation. Source: Ensembl

stress-activated MAPK cascade

Traceable author statement. Source: Reactome

synaptic transmission

Traceable author statement. Source: Reactome

toll-like receptor 10 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor 2 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor 3 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor 4 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor 5 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor 9 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor TLR1:TLR2 signaling pathway

Traceable author statement. Source: Reactome

toll-like receptor TLR6:TLR2 signaling pathway

Traceable author statement. Source: Reactome

transcription, DNA-templated

Inferred from electronic annotation. Source: UniProtKB-KW

viral process

Inferred from electronic annotation. Source: UniProtKB-KW

   Cellular_componentGolgi apparatus

Traceable author statement Ref.50. Source: UniProtKB

caveola

Traceable author statement Ref.50. Source: UniProtKB

cytosol

Traceable author statement Ref.50. Source: UniProtKB

dendrite cytoplasm

Inferred from electronic annotation. Source: Ensembl

early endosome

Traceable author statement Ref.50. Source: UniProtKB

focal adhesion

Traceable author statement Ref.50. Source: UniProtKB

late endosome

Traceable author statement Ref.50. Source: UniProtKB

microtubule organizing center

Inferred from electronic annotation. Source: UniProtKB-SubCell

mitochondrion

Traceable author statement Ref.50. Source: UniProtKB

mitotic spindle

Inferred from sequence or structural similarity. Source: UniProtKB

nucleoplasm

Traceable author statement. Source: Reactome

perikaryon

Inferred from electronic annotation. Source: Ensembl

pseudopodium

Inferred from electronic annotation. Source: Ensembl

   Molecular_functionATP binding

Inferred from electronic annotation. Source: UniProtKB-KW

DNA binding

Inferred from electronic annotation. Source: UniProtKB-KW

MAP kinase activity

Traceable author statement PubMed 10706854. Source: ProtInc

RNA polymerase II carboxy-terminal domain kinase activity

Inferred from sequence or structural similarity. Source: UniProtKB

Complete GO annotation...

Alternative products

This entry describes 2 isoforms produced by alternative splicing. [Align] [Select]
Isoform 1 (identifier: P28482-1)

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Isoform 2 (identifier: P28482-2)

The sequence of this isoform differs from the canonical sequence as follows:
     242-285: Missing.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Initiator methionine11Removed Ref.6
Chain2 – 360359Mitogen-activated protein kinase 1
PRO_0000186247

Regions

Domain25 – 313289Protein kinase
Nucleotide binding31 – 399ATP By similarity
DNA binding259 – 27719 Ref.43
Region105 – 1084Inhibitor-binding
Region153 – 1542Inhibitor-binding
Motif185 – 1873TXY
Motif318 – 3225Cytoplasmic retention motif
Motif327 – 3337Nuclear translocation motif
Compositional bias2 – 98Poly-Ala

Sites

Active site1491Proton acceptor By similarity
Binding site541ATP By similarity
Binding site541Inhibitor
Binding site1081Inhibitor; via amide nitrogen and carbonyl oxygen
Binding site1141Inhibitor
Binding site1541Inhibitor
Binding site1661Inhibitor
Binding site1671Inhibitor

Amino acid modifications

Modified residue21N-acetylalanine Ref.6 Ref.42 Ref.58
Modified residue291Phosphoserine; by SGK1 Ref.46
Modified residue1851Phosphothreonine; by MAP2K1 and MAP2K2 Ref.41 Ref.51 Ref.56
Modified residue1871Phosphotyrosine; by MAP2K1 and MAP2K2 Ref.41 Ref.45 Ref.51 Ref.56 Ref.64
Modified residue1901Phosphothreonine; by autocatalysis Ref.48
Modified residue2461Phosphoserine Ref.39
Modified residue2481Phosphoserine Ref.39
Modified residue2841Phosphoserine Ref.47

Natural variations

Alternative sequence242 – 28544Missing in isoform 2.
VSP_047815

Experimental info

Mutagenesis541K → R: Does not inhibit interaction with MAP2K1. Ref.40
Mutagenesis176 – 1794Missing: Inhibits homodimerization and interaction with TPR. Ref.40
Mutagenesis1851T → A: Inhibits interaction with TPR; when associated with A-187. Ref.40
Mutagenesis1871Y → A: Inhibits interaction with TPR; when associated with A-185. Ref.40
Mutagenesis2341L → A: Inhibits interaction with TPR. Ref.40
Mutagenesis3181D → A: Loss of dephosphorylation by PTPRJ. Ref.40 Ref.45
Mutagenesis3181D → N: Inhibits interaction with MAP2K1 but not with TPR; when associated with N-321. Ref.40 Ref.45
Mutagenesis3211D → N: Inhibits interaction with MAP2K1 but not with TPR; when associated with N-318. Ref.40
Sequence conflict911R → Q in CAA77752. Ref.2

Secondary structure

......................................................................... 360
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Isoform 1 [UniParc].

Last modified January 23, 2007. Version 3.
Checksum: E85D0B2A5D2D724E

FASTA36041,390
        10         20         30         40         50         60 
MAAAAAAGAG PEMVRGQVFD VGPRYTNLSY IGEGAYGMVC SAYDNVNKVR VAIKKISPFE 

        70         80         90        100        110        120 
HQTYCQRTLR EIKILLRFRH ENIIGINDII RAPTIEQMKD VYIVQDLMET DLYKLLKTQH 

       130        140        150        160        170        180 
LSNDHICYFL YQILRGLKYI HSANVLHRDL KPSNLLLNTT CDLKICDFGL ARVADPDHDH 

       190        200        210        220        230        240 
TGFLTEYVAT RWYRAPEIML NSKGYTKSID IWSVGCILAE MLSNRPIFPG KHYLDQLNHI 

       250        260        270        280        290        300 
LGILGSPSQE DLNCIINLKA RNYLLSLPHK NKVPWNRLFP NADSKALDLL DKMLTFNPHK 

       310        320        330        340        350        360 
RIEVEQALAH PYLEQYYDPS DEPIAEAPFK FDMELDDLPK EKLKELIFEE TARFQPGYRS 

« Hide

Isoform 2 [UniParc].

Checksum: 6076E1767B603945
Show »

FASTA31636,432

References

« Hide 'large scale' references
[1]"Extracellular signal-regulated kinases in T cells: characterization of human ERK1 and ERK2 cDNAs."
Owaki H., Makar R., Boulton T.G., Cobb M.H., Geppert T.D.
Biochem. Biophys. Res. Commun. 182:1416-1422(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
[2]"Heterogeneous expression of four MAP kinase isoforms in human tissues."
Gonzalez F.A., Raden D.L., Rigby M.R., Davis R.J.
FEBS Lett. 304:170-178(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
[3]"Identification of dominant negative Erk1/2 variants in cancer cells."
Cheng H., Ren S., Qiu R., Wang M., Feng Y.H.
Submitted (FEB-2006) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2), ALTERNATIVE SPLICING.
[4]"The DNA sequence of human chromosome 22."
Dunham I., Hunt A.R., Collins J.E., Bruskiewich R., Beare D.M., Clamp M., Smink L.J., Ainscough R., Almeida J.P., Babbage A.K., Bagguley C., Bailey J., Barlow K.F., Bates K.N., Beasley O.P., Bird C.P., Blakey S.E., Bridgeman A.M. expand/collapse author list , Buck D., Burgess J., Burrill W.D., Burton J., Carder C., Carter N.P., Chen Y., Clark G., Clegg S.M., Cobley V.E., Cole C.G., Collier R.E., Connor R., Conroy D., Corby N.R., Coville G.J., Cox A.V., Davis J., Dawson E., Dhami P.D., Dockree C., Dodsworth S.J., Durbin R.M., Ellington A.G., Evans K.L., Fey J.M., Fleming K., French L., Garner A.A., Gilbert J.G.R., Goward M.E., Grafham D.V., Griffiths M.N.D., Hall C., Hall R.E., Hall-Tamlyn G., Heathcott R.W., Ho S., Holmes S., Hunt S.E., Jones M.C., Kershaw J., Kimberley A.M., King A., Laird G.K., Langford C.F., Leversha M.A., Lloyd C., Lloyd D.M., Martyn I.D., Mashreghi-Mohammadi M., Matthews L.H., Mccann O.T., Mcclay J., Mclaren S., McMurray A.A., Milne S.A., Mortimore B.J., Odell C.N., Pavitt R., Pearce A.V., Pearson D., Phillimore B.J.C.T., Phillips S.H., Plumb R.W., Ramsay H., Ramsey Y., Rogers L., Ross M.T., Scott C.E., Sehra H.K., Skuce C.D., Smalley S., Smith M.L., Soderlund C., Spragon L., Steward C.A., Sulston J.E., Swann R.M., Vaudin M., Wall M., Wallis J.M., Whiteley M.N., Willey D.L., Williams L., Williams S.A., Williamson H., Wilmer T.E., Wilming L., Wright C.L., Hubbard T., Bentley D.R., Beck S., Rogers J., Shimizu N., Minoshima S., Kawasaki K., Sasaki T., Asakawa S., Kudoh J., Shintani A., Shibuya K., Yoshizaki Y., Aoki N., Mitsuyama S., Roe B.A., Chen F., Chu L., Crabtree J., Deschamps S., Do A., Do T., Dorman A., Fang F., Fu Y., Hu P., Hua A., Kenton S., Lai H., Lao H.I., Lewis J., Lewis S., Lin S.-P., Loh P., Malaj E., Nguyen T., Pan H., Phan S., Qi S., Qian Y., Ray L., Ren Q., Shaull S., Sloan D., Song L., Wang Q., Wang Y., Wang Z., White J., Willingham D., Wu H., Yao Z., Zhan M., Zhang G., Chissoe S., Murray J., Miller N., Minx P., Fulton R., Johnson D., Bemis G., Bentley D., Bradshaw H., Bourne S., Cordes M., Du Z., Fulton L., Goela D., Graves T., Hawkins J., Hinds K., Kemp K., Latreille P., Layman D., Ozersky P., Rohlfing T., Scheet P., Walker C., Wamsley A., Wohldmann P., Pepin K., Nelson J., Korf I., Bedell J.A., Hillier L.W., Mardis E., Waterston R., Wilson R., Emanuel B.S., Shaikh T., Kurahashi H., Saitta S., Budarf M.L., McDermid H.E., Johnson A., Wong A.C.C., Morrow B.E., Edelmann L., Kim U.J., Shizuya H., Simon M.I., Dumanski J.P., Peyrard M., Kedra D., Seroussi E., Fransson I., Tapia I., Bruder C.E., O'Brien K.P., Wilkinson P., Bodenteich A., Hartman K., Hu X., Khan A.S., Lane L., Tilahun Y., Wright H.
Nature 402:489-495(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[5]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
Tissue: Lung.
[6]"Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides."
Gevaert K., Goethals M., Martens L., Van Damme J., Staes A., Thomas G.R., Vandekerckhove J.
Nat. Biotechnol. 21:566-569(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 2-15, ACETYLATION AT ALA-2.
Tissue: Platelet.
[7]"ERF: an ETS domain protein with strong transcriptional repressor activity, can suppress ets-associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation."
Sgouras D.N., Athanasiou M.A., Beal G.J. Jr., Fisher R.J., Blair D.G., Mavrothalassitis G.J.
EMBO J. 14:4781-4793(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF ERF.
[8]"3pK, a new mitogen-activated protein kinase-activated protein kinase located in the small cell lung cancer tumor suppressor gene region."
Sithanandam G., Latif F., Duh F.-M., Bernal R., Smola U., Li H., Kuzmin I., Wixler V., Geil L., Shrestha S., Lloyd P.A., Bader S., Sekido Y., Tartof K.D., Kashuba V.I., Zabarovsky E.R., Dean M., Klein G. expand/collapse author list , Lerman M.I., Minna J.D., Rapp U.R., Allikmets R.
Mol. Cell. Biol. 16:868-876(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF MAPKAPK3.
[9]"Human immunodeficiency virus type 1 Nef binds directly to LCK and mitogen-activated protein kinase, inhibiting kinase activity."
Greenway A.L., Azad A., Mills J., McPhee D.A.
J. Virol. 70:6701-6708(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH HIV-1 NEF.
[10]"MAPKAPK5, a novel mitogen-activated protein kinase (MAPK)-activated protein kinase, is a substrate of the extracellular-regulated kinase (ERK) and p38 kinase."
Ni H., Wang X.S., Diener K., Yao Z.
Biochem. Biophys. Res. Commun. 243:492-496(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF MAPKAPK5.
[11]"Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB."
Deak M., Clifton A.D., Lucocq J.M., Alessi D.R.
EMBO J. 17:4426-4441(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF RPS6KA5/MSK1.
[12]"Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor."
Niu H., Ye B.H., Dalla-Favera R.
Genes Dev. 12:1953-1961(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF BCL6.
[13]"Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase."
Camps M., Nichols A., Gillieron C., Antonsson B., Muda M., Chabert C., Boschert U., Arkinstall S.
Science 280:1262-1265(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DUSP6, FUNCTION.
[14]"Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway."
Todd J.L., Tanner K.G., Denu J.M.
J. Biol. Chem. 274:13271-13280(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: DEPHOSPHORYLATION BY DUSP3.
[15]"ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry."
Cruzalegui F.H., Cano E., Treisman R.
Oncogene 18:7948-7957(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF ELK1.
[16]"Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation."
Brondello J.M., Pouyssegur J., McKenzie F.R.
Science 286:2514-2517(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF DUSP1.
[17]"The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells."
Scheper G.C., Morrice N.A., Kleijn M., Proud C.G.
Mol. Cell. Biol. 21:743-754(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS MKNK2 KINASE.
[18]"Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38."
Ouwens D.M., de Ruiter N.D., van der Zon G.C., Carter A.P., Schouten J., van der Burgt C., Kooistra K., Bos J.L., Maassen J.A., van Dam H.
EMBO J. 21:3782-3793(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF ATF2.
[19]"IEX-1: a new ERK substrate involved in both ERK survival activity and ERK activation."
Garcia J., Ye Y., Arranz V., Letourneux C., Pezeron G., Porteu F.
EMBO J. 21:5151-5163(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF IER3, INTERACTION WITH IER3, ENZYME REGULATION.
[20]"Insulin receptor substrate 4 associates with the protein IRAS."
Sano H., Liu S.C.H., Lane W.S., Piletz J.E., Lienhard G.E.
J. Biol. Chem. 277:19439-19447(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH NISCH.
[21]"EGFR and FGFR signaling through FRS2 is subject to negative feedback control by ERK1/2."
Wu Y., Chen Z., Ullrich A.
Biol. Chem. 384:1215-1226(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF FRS2.
[22]"Activation of ERK induces phosphorylation of MAPK phosphatase-7, a JNK specific phosphatase, at Ser-446."
Masuda K., Shima H., Katagiri C., Kikuchi K.
J. Biol. Chem. 278:32448-32456(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF DUSP16.
[23]"Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK."
Allan L.A., Morrice N., Brady S., Magee G., Pathak S., Clarke P.R.
Nat. Cell Biol. 5:647-654(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF CASP9.
[24]"Nek2A specifies the centrosomal localization of Erk2."
Lou Y., Xie W., Zhang D.F., Yao J.H., Luo Z.F., Wang Y.Z., Shi Y.Y., Yao X.B.
Biochem. Biophys. Res. Commun. 321:495-501(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION, INTERACTION WITH NEK2.
[25]"Signal transduction via the stem cell factor receptor/c-Kit."
Ronnstrand L.
Cell. Mol. Life Sci. 61:2535-2548(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON ROLE IN KIT SIGNALING.
[26]"Extracellular signal-regulated kinase activated by epidermal growth factor and cell adhesion interacts with and phosphorylates vinexin."
Mitsushima M., Suwa A., Amachi T., Ueda K., Kioka N.
J. Biol. Chem. 279:34570-34577(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF SORBS3.
[27]"MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol."
Domina A.M., Vrana J.A., Gregory M.A., Hann S.R., Craig R.W.
Oncogene 23:5301-5315(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF MCL1.
[28]"Phosphorylation of Grb10 by mitogen-activated protein kinase: identification of Ser150 and Ser476 of human Grb10zeta as major phosphorylation sites."
Langlais P., Wang C., Dong L.Q., Carroll C.A., Weintraub S.T., Liu F.
Biochemistry 44:8890-8897(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF GRB10.
[29]"Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK."
Chen C.H., Wang W.J., Kuo J.C., Tsai H.C., Lin J.R., Chang Z.F., Chen R.H.
EMBO J. 24:294-304(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF DAPK1, SUBCELLULAR LOCATION, INTERACTION WITH DAPK1.
[30]"Phosphorylation of serine 147 of tis21/BTG2/pc3 by p-Erk1/2 induces Pin-1 binding in cytoplasm and cell death."
Hong J.W., Ryu M.S., Lim I.K.
J. Biol. Chem. 280:21256-21263(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF BTG2.
[31]"Regulation of Raf-1 by direct feedback phosphorylation."
Dougherty M.K., Muller J., Ritt D.A., Zhou M., Zhou X.Z., Copeland T.D., Conrads T.P., Veenstra T.D., Lu K.P., Morrison D.K.
Mol. Cell 17:215-224(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF RAF1.
[32]"Global, in vivo, and site-specific phosphorylation dynamics in signaling networks."
Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P., Mann M.
Cell 127:635-648(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[33]"ERK1/2 phosphorylate GEF-H1 to enhance its guanine nucleotide exchange activity toward RhoA."
Fujishiro S.H., Tanimura S., Mure S., Kashimoto Y., Watanabe K., Kohno M.
Biochem. Biophys. Res. Commun. 368:162-167(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH ARHGEF2.
[34]"Association and regulation of heat shock transcription factor 4b with both extracellular signal-regulated kinase mitogen-activated protein kinase and dual-specificity tyrosine phosphatase DUSP26."
Hu Y., Mivechi N.F.
Mol. Cell. Biol. 26:3282-3294(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH HSF4.
[35]"ALK activation induces Shc and FRS2 recruitment: Signaling and phenotypic outcomes in PC12 cells differentiation."
Degoutin J., Vigny M., Gouzi J.Y.
FEBS Lett. 581:727-734(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION.
[36]"Mutations of beta-arrestin 2 that limit self-association also interfere with interactions with the beta2-adrenoceptor and the ERK1/2 MAPKs: implications for beta2-adrenoceptor signalling via the ERK1/2 MAPKs."
Xu T.-R., Baillie G.S., Bhari N., Houslay T.M., Pitt A.M., Adams D.R., Kolch W., Houslay M.D., Milligan G.
Biochem. J. 413:51-60(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH ARRB2.
[37]"Distinct functions of natural ADAM-15 cytoplasmic domain variants in human mammary carcinoma."
Zhong J.L., Poghosyan Z., Pennington C.J., Scott X., Handsley M.M., Warn A., Gavrilovic J., Honert K., Kruger A., Span P.N., Sweep F.C., Edwards D.R.
Mol. Cancer Res. 6:383-394(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH ADAM15.
[38]"Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle."
Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R., Greff Z., Keri G., Stemmann O., Mann M.
Mol. Cell 31:438-448(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[39]"Identification and characterization of a general nuclear translocation signal in signaling proteins."
Chuderland D., Konson A., Seger R.
Mol. Cell 31:850-861(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT SER-246 AND SER-248, INTERACTION WITH IPO7, SUBCELLULAR LOCATION.
[40]"Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction."
Vomastek T., Iwanicki M.P., Burack W.R., Tiwari D., Kumar D., Parsons J.T., Weber M.J., Nandicoori V.K.
Mol. Cell. Biol. 28:6954-6966(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN PHOSPHORYLATION OF TPR, INTERACTION WITH TPR, MUTAGENESIS OF LYS-54; 176-PRO--ASP-179; THR-185; TYR-187; LEU-234; ASP-318 AND ASP-321.
[41]"A quantitative atlas of mitotic phosphorylation."
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E., Elledge S.J., Gygi S.P.
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-185 AND TYR-187, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[42]"Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach."
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J., Mohammed S.
Anal. Chem. 81:4493-4501(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[43]"Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling."
Hu S., Xie Z., Onishi A., Yu X., Jiang L., Lin J., Rho H.-S., Woodard C., Wang H., Jeong J.-S., Long S., He X., Wade H., Blackshaw S., Qian J., Zhu H.
Cell 139:610-622(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS A TRANSCRIPTIONAL REPRESSOR, DNA-BINDING.
[44]"The D816V mutation of c-Kit circumvents a requirement for Src family kinases in c-Kit signal transduction."
Sun J., Pedersen M., Ronnstrand L.
J. Biol. Chem. 284:11039-11047(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN KIT SIGNALING PATHWAY, PHOSPHORYLATION.
[45]"Tumor suppressor density-enhanced phosphatase-1 (DEP-1) inhibits the RAS pathway by direct dephosphorylation of ERK1/2 kinases."
Sacco F., Tinti M., Palma A., Ferrari E., Nardozza A.P., Hooft van Huijsduijnen R., Takahashi T., Castagnoli L., Cesareni G.
J. Biol. Chem. 284:22048-22058(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT TYR-187, DEPHOSPHORYLATION BY PTPRJ AT TYR-187, MUTAGENESIS OF ASP-318.
[46]"Protein kinase SGK1 enhances MEK/ERK complex formation through the phosphorylation of ERK2: implication for the positive regulatory role of SGK1 on the ERK function during liver regeneration."
Won M., Park K.A., Byun H.S., Kim Y.R., Choi B.L., Hong J.H., Park J., Seok J.H., Lee Y.H., Cho C.H., Song I.S., Kim Y.K., Shen H.M., Hur G.M.
J. Hepatol. 51:67-76(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT SER-29 BY SGK1, INTERACTION WITH SGK1.
[47]"Large-scale proteomics analysis of the human kinome."
Oppermann F.S., Gnad F., Olsen J.V., Hornberger R., Greff Z., Keri G., Mann M., Daub H.
Mol. Cell. Proteomics 8:1751-1764(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-284, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[48]"A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy."
Lorenz K., Schmitt J.P., Schmitteckert E.M., Lohse M.J.
Nat. Med. 15:75-83(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: AUTOPHOSPHORYLATION AT THR-190, ENZYME REGULATION, SUBUNIT, SUBCELLULAR LOCATION.
[49]"The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions."
Yoon S., Seger R.
Growth Factors 24:21-44(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON FUNCTION.
[50]"The ERK signaling cascade--views from different subcellular compartments."
Yao Z., Seger R.
BioFactors 35:407-416(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON FUNCTION, REVIEW ON SUBCELLULAR LOCATION.
[51]"Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions."
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K., Rodionov V., Han D.K.
Sci. Signal. 2:RA46-RA46(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-185 AND TYR-187, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Leukemic T-cell.
[52]"Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis."
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L., Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.
Sci. Signal. 3:RA3-RA3(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[53]"Initial characterization of the human central proteome."
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17-17(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[54]"The ERK cascade: distinct functions within various subcellular organelles."
Wortzel I., Seger R.
Genes Cancer 2:195-209(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON ENZYME REGULATION, REVIEW ON FUNCTION.
[55]"Mitogen-activated protein kinase extracellular signal-regulated kinase 2 phosphorylates and promotes Pin1 protein-dependent promyelocytic leukemia protein turnover."
Lim J.H., Liu Y., Reineke E., Kao H.Y.
J. Biol. Chem. 286:44403-44411(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH PML.
[56]"System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation."
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J., Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V., Blagoev B.
Sci. Signal. 4:RS3-RS3(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-185 AND TYR-187, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[57]"Comparative large-scale characterisation of plant vs. mammal proteins reveals similar and idiosyncratic N-alpha acetylation features."
Bienvenut W.V., Sumpton D., Martinez A., Lilla S., Espagne C., Meinnel T., Giglione C.
Mol. Cell. Proteomics 11:M111.015131-M111.015131(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[58]"N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB."
Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A., Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E., Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K., Aldabe R.
Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT ALA-2, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[59]"A single amino acid substitution makes ERK2 susceptible to pyridinyl imidazole inhibitors of p38 MAP kinase."
Fox T., Coll J.T., Xie X., Ford P.J., Germann U.A., Porter M.D., Pazhanisamy S., Fleming M.A., Galullo V., Su M.S., Wilson K.P.
Protein Sci. 7:2249-2255(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.00 ANGSTROMS) IN COMPLEX WITH INHIBITOR.
[60]"Identification of a selective ERK inhibitor and structural determination of the inhibitor-ERK2 complex."
Ohori M., Kinoshita T., Okubo M., Sato K., Yamazaki A., Arakawa H., Nishimura S., Inamura N., Nakajima H., Neya M., Miyake H., Fujii T.
Biochem. Biophys. Res. Commun. 336:357-363(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.50 ANGSTROMS) IN COMPLEX WITH INHIBITOR.
[61]"Crystal structure of human ERK2 complexed with a pyrazolo[3,4-c]pyridazine derivative."
Kinoshita T., Warizaya M., Ohori M., Sato K., Neya M., Fujii T.
Bioorg. Med. Chem. Lett. 16:55-58(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.50 ANGSTROMS) IN COMPLEX WITH INHIBITOR.
[62]"Role of a cysteine residue in the active site of ERK and the MAPKK family."
Ohori M., Kinoshita T., Yoshimura S., Warizaya M., Nakajima H., Miyake H.
Biochem. Biophys. Res. Commun. 353:633-637(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (3.00 ANGSTROMS) IN COMPLEX WITH INHIBITOR.
[63]"Flipped out: structure-guided design of selective pyrazolylpyrrole ERK inhibitors."
Aronov A.M., Baker C., Bemis G.W., Cao J., Chen G., Ford P.J., Germann U.A., Green J., Hale M.R., Jacobs M., Janetka J.W., Maltais F., Martinez-Botella G., Namchuk M.N., Straub J., Tang Q., Xie X.
J. Med. Chem. 50:1280-1287(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.00 ANGSTROMS) OF 2-359 IN COMPLEX WITH INHIBITOR.
[64]"Structural basis of substrate recognition by hematopoietic tyrosine phosphatase."
Critton D.A., Tortajada A., Stetson G., Peti W., Page R.
Biochemistry 47:13336-13345(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (1.90 ANGSTROMS) OF 186-191, PHOSPHORYLATION AT TYR-187.
[65]"Structure-guided design of potent and selective pyrimidylpyrrole inhibitors of extracellular signal-regulated kinase (ERK) using conformational control."
Aronov A.M., Tang Q., Martinez-Botella G., Bemis G.W., Cao J., Chen G., Ewing N.P., Ford P.J., Germann U.A., Green J., Hale M.R., Jacobs M., Janetka J.W., Maltais F., Markland W., Namchuk M.N., Nanthakumar S., Poondru S. expand/collapse author list , Straub J., ter Haar E., Xie X.
J. Med. Chem. 52:6362-6368(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.20 ANGSTROMS) IN COMPLEX WITH INHIBITOR.
+Additional computationally mapped references.

Web resources

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
M84489 mRNA. Translation: AAA58459.1.
Z11694 mRNA. Translation: CAA77752.1.
Z11695 mRNA. Translation: CAA77753.1. Different initiation.
DQ399292 mRNA. Translation: ABD60303.1.
AP000553 Genomic DNA. No translation available.
AP000554 Genomic DNA. No translation available.
AP000555 Genomic DNA. No translation available.
BC017832 mRNA. Translation: AAH17832.1.
PIRJQ1400.
RefSeqNP_002736.3. NM_002745.4.
NP_620407.1. NM_138957.2.
UniGeneHs.431850.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1PMEX-ray2.00A1-360[»]
1TVOX-ray2.50A1-360[»]
1WZYX-ray2.50A1-360[»]
2OJGX-ray2.00A2-359[»]
2OJIX-ray2.60A2-359[»]
2OJJX-ray2.40A2-359[»]
2Y9QX-ray1.55A1-360[»]
3D42X-ray2.46B184-191[»]
3D44X-ray1.90B186-191[»]
3I5ZX-ray2.20A1-360[»]
3I60X-ray2.50A1-360[»]
3SA0X-ray1.59A1-360[»]
3TEIX-ray2.40A1-360[»]
3W55X-ray3.00A1-360[»]
4FMQX-ray2.10A1-360[»]
4FUXX-ray2.20A1-360[»]
4FUYX-ray2.00A1-360[»]
4FV0X-ray2.10A1-360[»]
4FV1X-ray1.99A1-360[»]
4FV2X-ray2.00A1-360[»]
4FV3X-ray2.20A1-360[»]
4FV4X-ray2.50A1-360[»]
4FV5X-ray2.40A1-360[»]
4FV6X-ray2.50A1-360[»]
4FV7X-ray1.90A1-360[»]
4FV8X-ray2.00A1-360[»]
4FV9X-ray2.11A1-360[»]
4G6NX-ray2.00A1-360[»]
4G6OX-ray2.20A1-360[»]
4H3PX-ray2.30A/D1-360[»]
4H3QX-ray2.20A1-360[»]
4IZ5X-ray3.19A/B/C/D8-360[»]
4IZ7X-ray1.80A/C8-360[»]
4IZAX-ray1.93A/C8-360[»]
ProteinModelPortalP28482.
SMRP28482. Positions 9-358.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid111580. 188 interactions.
DIPDIP-519N.
IntActP28482. 66 interactions.
MINTMINT-144006.
STRING9606.ENSP00000215832.

Chemistry

BindingDBP28482.
ChEMBLCHEMBL4040.
DrugBankDB01169. Arsenic trioxide.
GuidetoPHARMACOLOGY1495.

PTM databases

PhosphoSiteP28482.

Polymorphism databases

DMDM119554.

2D gel databases

OGPP28482.

Proteomic databases

PaxDbP28482.
PeptideAtlasP28482.
PRIDEP28482.

Protocols and materials databases

DNASU5594.
StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000215832; ENSP00000215832; ENSG00000100030. [P28482-1]
ENST00000398822; ENSP00000381803; ENSG00000100030. [P28482-1]
ENST00000544786; ENSP00000440842; ENSG00000100030. [P28482-2]
GeneID5594.
KEGGhsa:5594.
UCSCuc002zvn.3. human. [P28482-1]

Organism-specific databases

CTD5594.
GeneCardsGC22M022108.
HGNCHGNC:6871. MAPK1.
HPACAB004229.
HPA003995.
HPA005700.
HPA030069.
MIM176948. gene.
neXtProtNX_P28482.
Orphanet261330. Distal 22q11.2 microdeletion syndrome.
PharmGKBPA30616.
GenAtlasSearch...

Phylogenomic databases

eggNOGCOG0515.
HOGENOMHOG000233024.
HOVERGENHBG014652.
InParanoidP28482.
KOK04371.
OMAVCSAYDR.
OrthoDBEOG7M3J0K.
PhylomeDBP28482.
TreeFamTF105097.

Enzyme and pathway databases

BRENDA2.7.11.24. 2681.
ReactomeREACT_111045. Developmental Biology.
REACT_111102. Signal Transduction.
REACT_115566. Cell Cycle.
REACT_116125. Disease.
REACT_120956. Cellular responses to stress.
REACT_13685. Neuronal System.
REACT_21300. Mitotic M-M/G1 phases.
REACT_604. Hemostasis.
REACT_6782. TRAF6 Mediated Induction of proinflammatory cytokines.
REACT_6900. Immune System.
SignaLinkP28482.

Gene expression databases

ArrayExpressP28482.
BgeeP28482.
CleanExHS_MAPK1.
GenevestigatorP28482.

Family and domain databases

InterProIPR011009. Kinase-like_dom.
IPR003527. MAP_kinase_CS.
IPR008349. MAPK_ERK1/2.
IPR000719. Prot_kinase_dom.
IPR017441. Protein_kinase_ATP_BS.
IPR002290. Ser/Thr_dual-sp_kinase_dom.
IPR008271. Ser/Thr_kinase_AS.
[Graphical view]
PANTHERPTHR24055:SF111. PTHR24055:SF111. 1 hit.
PfamPF00069. Pkinase. 1 hit.
[Graphical view]
PRINTSPR01770. ERK1ERK2MAPK.
SMARTSM00220. S_TKc. 1 hit.
[Graphical view]
SUPFAMSSF56112. SSF56112. 1 hit.
PROSITEPS01351. MAPK. 1 hit.
PS00107. PROTEIN_KINASE_ATP. 1 hit.
PS50011. PROTEIN_KINASE_DOM. 1 hit.
PS00108. PROTEIN_KINASE_ST. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

ChiTaRSMAPK1. human.
EvolutionaryTraceP28482.
GeneWikiMAPK1.
GenomeRNAi5594.
NextBio21708.
PROP28482.
SOURCESearch...

Entry information

Entry nameMK01_HUMAN
AccessionPrimary (citable) accession number: P28482
Secondary accession number(s): A8CZ64
Entry history
Integrated into UniProtKB/Swiss-Prot: December 1, 1992
Last sequence update: January 23, 2007
Last modified: March 19, 2014
This is version 166 of the entry and version 3 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

Human and mouse protein kinases

Human and mouse protein kinases: classification and index

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human chromosome 22

Human chromosome 22: entries, gene names and cross-references to MIM