Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P25644 (PAT1_YEAST) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 119. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (4) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
DNA topoisomerase 2-associated protein PAT1
Alternative name(s):
Decapping activator and translational repressor PAT1
Topoisomerase II-associated protein PAT1
mRNA turnover protein 1
Gene names
Name:PAT1
Synonyms:MRT1
Ordered Locus Names:YCR077C
ORF Names:YCR77C
OrganismSaccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [Reference proteome]
Taxonomic identifier559292 [NCBI]
Taxonomic lineageEukaryotaFungiDikaryaAscomycotaSaccharomycotinaSaccharomycetesSaccharomycetalesSaccharomycetaceaeSaccharomyces

Protein attributes

Sequence length796 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Activator of decapping that functions as a general and active mechanism of translational repression and required for P-body formation. First decay factor recruited to mRNA, at a time when the mRNA is still associated with translation factors. Subsequently, PAT1 recruits the hepta-heterodimer LSM1-LSM7 complex to P-bodies. In association with the LSM1-LSM7 complex, stabilizes the 3' terminus of mRNAs. This association is also required for mosaic virus genomic RNA translation. Modulates the rates of mRNA-decapping that occur following deadenylation. Might be required for promoting the formation or the stabilization of the preinitiation translation complexes. Required for 40S ribosomal subunit joining to capped and/or polyadenylated mRNA. With other P-body components, enhances the formation of retrotransposition-competent Ty1 virus-like particles. Necessary for accurate chromosome transmission during cell division. Ref.5 Ref.6 Ref.7 Ref.8 Ref.9 Ref.10 Ref.11 Ref.12 Ref.13 Ref.14 Ref.18 Ref.21 Ref.25 Ref.27 Ref.29 Ref.31 Ref.34 Ref.35 Ref.38

Subunit structure

Associates with the 40S ribosomal subunit. Associates with the heptameric LSM1-LSM7 complex. Interacts directly with LSM2 and LSM3 within the LSM1-LSM7 complex. Interacts with DHH1, LSM1, LSM5, RPB4, RPB7 and with topoisomerase TOP2. Interacts with CDC33, PAB1, TIF4631 and TIF4632 in an RNA-dependent manner. Binds mRNAs. Ref.10 Ref.11 Ref.13 Ref.15 Ref.16 Ref.17 Ref.22 Ref.25 Ref.37 Ref.38

Subcellular location

Cytoplasm. Nucleus. CytoplasmP-body Ref.10 Ref.13 Ref.20 Ref.23 Ref.24 Ref.27 Ref.31.

Domain

The region at residues 254 to 422 is required for stimulation of decapping. The region at residues 422 to 763 is required for PAT1 and LSM1 to accumulate in P-bodies and responsible for translation repression and P-body assembly. Ref.31

Miscellaneous

Present with 656 molecules/cell in log phase SD medium.

Sequence similarities

Belongs to the PAT1 family.

Ontologies

Keywords
   Biological processCell cycle
Cell division
mRNA processing
Translation regulation
   Cellular componentCytoplasm
Nucleus
   LigandRNA-binding
   Molecular functionRepressor
   PTMAcetylation
Phosphoprotein
   Technical term3D-structure
Complete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processcell cycle

Inferred from electronic annotation. Source: UniProtKB-KW

cell division

Inferred from electronic annotation. Source: UniProtKB-KW

cytoplasmic mRNA processing body assembly

Inferred from mutant phenotype PubMed 18981231. Source: SGD

deadenylation-dependent decapping of nuclear-transcribed mRNA

Inferred from mutant phenotype Ref.11. Source: SGD

formation of translation preinitiation complex

Inferred from mutant phenotype Ref.35. Source: SGD

mRNA processing

Inferred from electronic annotation. Source: UniProtKB-KW

negative regulation of translational initiation

Inferred from direct assay Ref.35. Source: SGD

regulation of translational initiation

Inferred from mutant phenotype Ref.10. Source: SGD

   Cellular_componentcytoplasm

Inferred from direct assay PubMed 23706738. Source: SGD

cytoplasmic mRNA processing body

Inferred from direct assay Ref.20. Source: SGD

cytosolic small ribosomal subunit

Inferred from direct assay Ref.10. Source: SGD

nucleus

Inferred from direct assay PubMed 23706738. Source: SGD

   Molecular_functionRNA binding

Inferred from electronic annotation. Source: UniProtKB-KW

chromatin binding

Inferred from direct assay PubMed 23706738. Source: SGD

Complete GO annotation...

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Initiator methionine11Removed Ref.36
Chain2 – 796795DNA topoisomerase 2-associated protein PAT1
PRO_0000058235

Regions

Compositional bias114 – 235122Pro-rich
Compositional bias133 – 19260Gln-rich

Amino acid modifications

Modified residue21N-acetylserine Ref.36
Modified residue4561Phosphoserine Ref.33
Modified residue4571Phosphoserine Ref.33

Experimental info

Sequence conflict6881D → V in CAC42990. Ref.1

Secondary structure

........................................................ 796
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
P25644 [UniParc].

Last modified July 27, 2011. Version 4.
Checksum: 2DBE1210C173E468

FASTA79688,511
        10         20         30         40         50         60 
MSFFGLENSG NARDGPLDFE ESYKGYGEHE LEENDYLNDE TFGDNVQVGT DFDFGNPHSS 

        70         80         90        100        110        120 
GSSGNAIGGN GVGATARSYV AATAEGISGP RTDGTAAAGP LDLKPMESLW STAPPPAMAP 

       130        140        150        160        170        180 
SPQSTMAPAP APQQMAPLQP ILSMQDLERQ QRQMQQQFMN FHAMGHPQGL PQGPPQQQFP 

       190        200        210        220        230        240 
MQPASGQPGP SQFAPPPPPP GVNVNMNQMP MGPVQVPVQA SPSPIGMSNT PSPGPVVGAT 

       250        260        270        280        290        300 
KMPLQSGRRS KRDLSPEEQR RLQIRHAKVE KILKYSGLMT PRDKDFITRY QLSQIVTEDP 

       310        320        330        340        350        360 
YNEDFYFQVY KIIQRGGITS ESNKGLIARA YLEHSGHRLG GRYKRTDIAL QRMQSQVEKA 

       370        380        390        400        410        420 
VTVAKERPSK LKDQQAAAGN SSQDNKQANT VLGKISSTLN SKNPRRQLQI PRQQPSDPDA 

       430        440        450        460        470        480 
LKDVTDSLTN VDLASSGSSS TGSSAAAVAS KQRRRSSYAF NNGNGATNLN KSGGKKFILE 

       490        500        510        520        530        540 
LIETVYEEIL DLEANLRNGQ QTDSTAMWEA LHIDDSSYDV NPFISMLSFD KGIKIMPRIF 

       550        560        570        580        590        600 
NFLDKQQKLK ILQKIFNELS HLQIIILSSY KTTPKPTLTQ LKKVDLFQMI ILKIIVSFLS 

       610        620        630        640        650        660 
NNSNFIEIMG LLLQLIRNNN VSFLTTSKIG LNLITILISR AALIKQDSSR SNILSSPEIS 

       670        680        690        700        710        720 
TWNEIYDKLF TSLESKIQLI FPPREYNDHI MRLQNDKFMD EAYIWQFLAS LALSGKLNHQ 

       730        740        750        760        770        780 
RIIIDEVRDE IFATINEAET LQKKEKELSV LPQRSQELDT ELKSIIYNKE KLYQDLNLFL 

       790 
NVMGLVYRDG EISELK 

« Hide

References

« Hide 'large scale' references
[1]"The complete DNA sequence of yeast chromosome III."
Oliver S.G., van der Aart Q.J.M., Agostoni-Carbone M.L., Aigle M., Alberghina L., Alexandraki D., Antoine G., Anwar R., Ballesta J.P.G., Benit P., Berben G., Bergantino E., Biteau N., Bolle P.-A., Bolotin-Fukuhara M., Brown A., Brown A.J.P., Buhler J.-M. expand/collapse author list , Carcano C., Carignani G., Cederberg H., Chanet R., Contreras R., Crouzet M., Daignan-Fornier B., Defoor E., Delgado M.D., Demolder J., Doira C., Dubois E., Dujon B., Duesterhoeft A., Erdmann D., Esteban M., Fabre F., Fairhead C., Faye G., Feldmann H., Fiers W., Francingues-Gaillard M.-C., Franco L., Frontali L., Fukuhara H., Fuller L.J., Galland P., Gent M.E., Gigot D., Gilliquet V., Glansdorff N., Goffeau A., Grenson M., Grisanti P., Grivell L.A., de Haan M., Haasemann M., Hatat D., Hoenicka J., Hegemann J.H., Herbert C.J., Hilger F., Hohmann S., Hollenberg C.P., Huse K., Iborra F., Indge K.J., Isono K., Jacq C., Jacquet M., James C.M., Jauniaux J.-C., Jia Y., Jimenez A., Kelly A., Kleinhans U., Kreisl P., Lanfranchi G., Lewis C., van der Linden C.G., Lucchini G., Lutzenkirchen K., Maat M.J., Mallet L., Mannhaupt G., Martegani E., Mathieu A., Maurer C.T.C., McConnell D., McKee R.A., Messenguy F., Mewes H.-W., Molemans F., Montague M.A., Muzi Falconi M., Navas L., Newlon C.S., Noone D., Pallier C., Panzeri L., Pearson B.M., Perea J., Philippsen P., Pierard A., Planta R.J., Plevani P., Poetsch B., Pohl F.M., Purnelle B., Ramezani Rad M., Rasmussen S.W., Raynal A., Remacha M.A., Richterich P., Roberts A.B., Rodriguez F., Sanz E., Schaaff-Gerstenschlaeger I., Scherens B., Schweitzer B., Shu Y., Skala J., Slonimski P.P., Sor F., Soustelle C., Spiegelberg R., Stateva L.I., Steensma H.Y., Steiner S., Thierry A., Thireos G., Tzermia M., Urrestarazu L.A., Valle G., Vetter I., van Vliet-Reedijk J.C., Voet M., Volckaert G., Vreken P., Wang H., Warmington J.R., von Wettstein D., Wicksteed B.L., Wilson C., Wurst H., Xu G., Yoshikawa A., Zimmermann F.K., Sgouros J.G.
Nature 357:38-46(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: ATCC 204508 / S288c.
[2]Valles G., Volckaerts G.
Submitted (JUN-2001) to the EMBL/GenBank/DDBJ databases
Cited for: SEQUENCE REVISION.
[3]Saccharomyces Genome Database
Submitted (MAR-2011) to the EMBL/GenBank/DDBJ databases
Cited for: GENOME REANNOTATION, SEQUENCE REVISION TO 688.
Strain: ATCC 204508 / S288c.
[4]"Identification and initial characterization of the cytosolic protein Ycr77p."
Rodriguez-Cousino N., Lill R., Neupert W., Court D.A.
Yeast 11:581-585(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: SEQUENCE REVISION, CHARACTERIZATION.
[5]"Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae."
Hatfield L., Beelman C.A., Stevens A., Parker R.
Mol. Cell. Biol. 16:5830-5838(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[6]"Pat1: a topoisomerase II-associated protein required for faithful chromosome transmission in Saccharomyces cerevisiae."
Wang X., Watt P.M., Louis E.J., Borts R.H., Hickson I.D.
Nucleic Acids Res. 24:4791-4797(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[7]"Mutations in VPS16 and MRT1 stabilize mRNAs by activating an inhibitor of the decapping enzyme."
Zhang S., Williams C.J., Hagan K., Peltz S.W.
Mol. Cell. Biol. 19:7568-7576(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[8]"The topoisomerase II-associated protein, Pat1p, is required for maintenance of rDNA locus stability in Saccharomyces cerevisiae."
Wang X., Watt P.M., Borts R.H., Louis E.J., Hickson I.D.
Mol. Gen. Genet. 261:831-840(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[9]"A Sm-like protein complex that participates in mRNA degradation."
Bouveret E., Rigaut G., Shevchenko A., Wilm M., Seraphin B.
EMBO J. 19:1661-1671(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, ASSOCIATION WITH THE LSM1-LSM7 COMPLEX.
[10]"Deletion of the PAT1 gene affects translation initiation and suppresses a PAB1 gene deletion in yeast."
Wyers F., Minet M., Dufour M.E., Vo L.T., Lacroute F.
Mol. Cell. Biol. 20:3538-3549(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, ASSOCIATION WITH THE 40S RIBOSOMAL SUBUNIT.
[11]"The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p."
Bonnerot C., Boeck R., Lapeyre B.
Mol. Cell. Biol. 20:5939-5946(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH LSM1.
[12]"mRNA decapping in yeast requires dissociation of the cap binding protein, eukaryotic translation initiation factor 4E."
Schwartz D.C., Parker R.
Mol. Cell. Biol. 20:7933-7942(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[13]"Yeast Sm-like proteins function in mRNA decapping and decay."
Tharun S., He W., Mayes A.E., Lennertz P., Beggs J.D., Parker R.
Nature 404:515-518(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, INTERACTION WITH LSM1 AND LSM5.
[14]"The yeast cytoplasmic LsmI/Pat1p complex protects mRNA 3' termini from partial degradation."
He W., Parker R.
Genetics 158:1445-1455(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[15]"Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs."
Tharun S., Parker R.
Mol. Cell 8:1075-1083(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CDC33; PAB1; TIF4631 AND TIF4632, MRNA-BINDING.
[16]"The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes."
Coller J.M., Tucker M., Sheth U., Valencia-Sanchez M.A., Parker R.
RNA 7:1717-1727(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DHH1.
[17]"The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1."
Fischer N., Weis K.
EMBO J. 21:2788-2797(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DHH1.
[18]"Yeast Lsm1p-7p/Pat1p deadenylation-dependent mRNA-decapping factors are required for brome mosaic virus genomic RNA translation."
Noueiry A.O., Diez J., Falk S.P., Chen J., Ahlquist P.
Mol. Cell. Biol. 23:4094-4106(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[19]"Global analysis of protein expression in yeast."
Ghaemmaghami S., Huh W.-K., Bower K., Howson R.W., Belle A., Dephoure N., O'Shea E.K., Weissman J.S.
Nature 425:737-741(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: LEVEL OF PROTEIN EXPRESSION [LARGE SCALE ANALYSIS].
[20]"Decapping and decay of messenger RNA occur in cytoplasmic processing bodies."
Sheth U., Parker R.
Science 300:805-808(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION.
[21]"General translational repression by activators of mRNA decapping."
Coller J., Parker R.
Cell 122:875-886(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[22]"The RNA polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs."
Lotan R., Bar-On V.G., Harel-Sharvit L., Duek L., Melamed D., Choder M.
Genes Dev. 19:3004-3016(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RPB4.
[23]"Processing bodies require RNA for assembly and contain nontranslating mRNAs."
Teixeira D., Sheth U., Valencia-Sanchez M.A., Brengues M., Parker R.
RNA 11:371-382(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION.
[24]"Targeting of aberrant mRNAs to cytoplasmic processing bodies."
Sheth U., Parker R.
Cell 125:1095-1109(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION.
[25]"The Rpb7p subunit of yeast RNA polymerase II plays roles in the two major cytoplasmic mRNA decay mechanisms."
Lotan R., Goler-Baron V., Duek L., Haimovich G., Choder M.
J. Cell Biol. 178:1133-1143(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH RPB7.
[26]"Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae."
Li X., Gerber S.A., Rudner A.D., Beausoleil S.A., Haas W., Villen J., Elias J.E., Gygi S.P.
J. Proteome Res. 6:1190-1197(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Strain: ADR376.
[27]"Analysis of P-body assembly in Saccharomyces cerevisiae."
Teixeira D., Parker R.
Mol. Biol. Cell 18:2274-2287(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION.
[28]"Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry."
Chi A., Huttenhower C., Geer L.Y., Coon J.J., Syka J.E.P., Bai D.L., Shabanowitz J., Burke D.J., Troyanskaya O.G., Hunt D.F.
Proc. Natl. Acad. Sci. U.S.A. 104:2193-2198(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[29]"The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs."
Chowdhury A., Mukhopadhyay J., Tharun S.
RNA 13:998-1016(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[30]"Purification and analysis of the decapping activator Lsm1p-7p-Pat1p complex from yeast."
Tharun S.
Methods Enzymol. 448:41-55(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: ASSOCIATION WITH THE LSM1-LSM7 COMPLEX, IDENTIFICATION BY MASS SPECTROMETRY.
[31]"Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping."
Pilkington G.R., Parker R.
Mol. Cell. Biol. 28:1298-1312(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, DOMAIN, RNA-BINDING.
[32]"A multidimensional chromatography technology for in-depth phosphoproteome analysis."
Albuquerque C.P., Smolka M.B., Payne S.H., Bafna V., Eng J., Zhou H.
Mol. Cell. Proteomics 7:1389-1396(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[33]"Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution."
Holt L.J., Tuch B.B., Villen J., Johnson A.D., Gygi S.P., Morgan D.O.
Science 325:1682-1686(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-456 AND SER-457, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[34]"P-body components are required for Ty1 retrotransposition during assembly of retrotransposition-competent virus-like particles."
Checkley M.A., Nagashima K., Lockett S.J., Nyswaner K.M., Garfinkel D.J.
Mol. Cell. Biol. 30:382-398(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[35]"Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms."
Nissan T., Rajyaguru P., She M., Song H., Parker R.
Mol. Cell 39:773-783(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[36]"N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB."
Van Damme P., Lasa M., Polevoda B., Gazquez C., Elosegui-Artola A., Kim D.S., De Juan-Pardo E., Demeyer K., Hole K., Larrea E., Timmerman E., Prieto J., Arnesen T., Sherman F., Gevaert K., Aldabe R.
Proc. Natl. Acad. Sci. U.S.A. 109:12449-12454(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT SER-2, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS], CLEAVAGE OF INITIATOR METHIONINE [LARGE SCALE ANALYSIS].
[37]"Architecture of the Lsm1-7-Pat1 complex: a conserved assembly in eukaryotic mRNA turnover."
Sharif H., Conti E.
Cell Rep. 5:283-291(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (3.70 ANGSTROMS) OF 456-783 IN COMPLEX WITH THE LSM1-LSM7 COMPLEX, SUBUNIT.
[38]"Lsm2 and Lsm3 bridge the interaction of the Lsm1-7 complex with Pat1 for decapping activation."
Wu D., Muhlrad D., Bowler M.W., Jiang S., Liu Z., Parker R., Song H.
Cell Res. 24:233-246(2014) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (3.15 ANGSTROMS) OF 422-796 IN COMPLEX WITH THE LSM1-LSM7 COMPLEX, FUNCTION, SUBUNIT.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
X59720 Genomic DNA. Translation: CAC42990.1.
BK006937 Genomic DNA. Translation: DAA07549.2.
PIRS53590.
RefSeqNP_010002.3. NM_001178786.2.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
4BRWX-ray2.80B5-79[»]
4C8QX-ray3.70H456-783[»]
4N0AX-ray3.15H/I/J422-796[»]
ProteinModelPortalP25644.
SMRP25644. Positions 25-54, 471-783.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid31052. 794 interactions.
DIPDIP-883N.
IntActP25644. 44 interactions.
MINTMINT-414364.
STRING4932.YCR077C.

Proteomic databases

PaxDbP25644.
PeptideAtlasP25644.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblFungiYCR077C; YCR077C; YCR077C.
GeneID850440.
KEGGsce:YCR077C.

Organism-specific databases

CYGDYCR077c.
SGDS000000673. PAT1.

Phylogenomic databases

eggNOGNOG287050.
HOGENOMHOG000246501.
KOK12617.
OMAPHPFIAF.
OrthoDBEOG72RN6K.

Enzyme and pathway databases

BioCycYEAST:G3O-29376-MONOMER.

Gene expression databases

GenevestigatorP25644.

Family and domain databases

InterProIPR019167. Topo_II-assoc_PAT1.
[Graphical view]
PfamPF09770. PAT1. 2 hits.
[Graphical view]
ProtoNetSearch...

Other

NextBio966042.
PROP25644.

Entry information

Entry namePAT1_YEAST
AccessionPrimary (citable) accession number: P25644
Secondary accession number(s): D6VR80, Q8NKJ3
Entry history
Integrated into UniProtKB/Swiss-Prot: May 1, 1992
Last sequence update: July 27, 2011
Last modified: April 16, 2014
This is version 119 of the entry and version 4 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

Relevant documents

Yeast chromosome III

Yeast (Saccharomyces cerevisiae) chromosome III: entries and gene names

Yeast

Yeast (Saccharomyces cerevisiae): entries, gene names and cross-references to SGD

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references