ID ERG6_YEAST Reviewed; 383 AA. AC P25087; D6VZG6; DT 01-MAY-1992, integrated into UniProtKB/Swiss-Prot. DT 23-JAN-2007, sequence version 4. DT 27-MAR-2024, entry version 202. DE RecName: Full=Sterol 24-C-methyltransferase ERG6 {ECO:0000303|PubMed:6363386}; DE Short=SCMT {ECO:0000303|PubMed:6363386}; DE EC=2.1.1.41 {ECO:0000269|PubMed:6363386}; DE AltName: Full=Delta(24)-sterol C-methyltransferase ERG6 {ECO:0000305}; DE AltName: Full=Ergosterol biosynthetic protein 6 {ECO:0000303|PubMed:6363386}; GN Name=ERG6 {ECO:0000303|PubMed:6363386}; GN Synonyms=ISE1, LIS1 {ECO:0000303|PubMed:8038180}, SED6 GN {ECO:0000303|PubMed:8203167}; OrderedLocusNames=YML008C; GN ORFNames=YM9571.10C; OS Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). OC Eukaryota; Fungi; Dikarya; Ascomycota; Saccharomycotina; Saccharomycetes; OC Saccharomycetales; Saccharomycetaceae; Saccharomyces. OX NCBI_TaxID=559292; RN [1] RP NUCLEOTIDE SEQUENCE [GENOMIC DNA]. RX PubMed=8203167; DOI=10.1002/yea.320100213; RA Hardwick K.G., Pelham H.R.B.; RT "SED6 is identical to ERG6, and encodes a putative methyltransferase RT required for ergosterol synthesis."; RL Yeast 10:265-269(1994). RN [2] RP NUCLEOTIDE SEQUENCE [GENOMIC DNA]. RX PubMed=8038180; DOI=10.1016/0005-2736(94)90339-5; RA Welihinda A.A., Beavis A.D., Trumbly R.J.; RT "Mutations in LIS1 (ERG6) gene confer increased sodium and lithium uptake RT in Saccharomyces cerevisiae."; RL Biochim. Biophys. Acta 1193:107-117(1994). RN [3] RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA]. RC STRAIN=ATCC 204508 / S288c; RX PubMed=9169872; RA Bowman S., Churcher C.M., Badcock K., Brown D., Chillingworth T., RA Connor R., Dedman K., Devlin K., Gentles S., Hamlin N., Hunt S., Jagels K., RA Lye G., Moule S., Odell C., Pearson D., Rajandream M.A., Rice P., RA Skelton J., Walsh S.V., Whitehead S., Barrell B.G.; RT "The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII."; RL Nature 387:90-93(1997). RN [4] RP GENOME REANNOTATION. RC STRAIN=ATCC 204508 / S288c; RX PubMed=24374639; DOI=10.1534/g3.113.008995; RA Engel S.R., Dietrich F.S., Fisk D.G., Binkley G., Balakrishnan R., RA Costanzo M.C., Dwight S.S., Hitz B.C., Karra K., Nash R.S., Weng S., RA Wong E.D., Lloyd P., Skrzypek M.S., Miyasato S.R., Simison M., Cherry J.M.; RT "The reference genome sequence of Saccharomyces cerevisiae: Then and now."; RL G3 (Bethesda) 4:389-398(2014). RN [5] RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-258. RX PubMed=2060792; DOI=10.1016/0378-1119(91)90238-7; RA Hussain M., Lenard J.; RT "Characterization of PDR4, a Saccharomyces cerevisiae gene that confers RT pleiotropic drug resistance in high-copy number: identity with YAP1, RT encoding a transcriptional activator."; RL Gene 101:149-152(1991). RN [6] RP FUNCTION, CATALYTIC ACTIVITY, DISRUPTION PHENOTYPE, AND SUBCELLULAR RP LOCATION. RX PubMed=6363386; DOI=10.1128/jb.157.2.475-483.1984; RA McCammon M.T., Hartmann M.A., Bottema C.D., Parks L.W.; RT "Sterol methylation in Saccharomyces cerevisiae."; RL J. Bacteriol. 157:475-483(1984). RN [7] RP ACETYLATION AT SER-2. RX PubMed=9298649; DOI=10.1002/elps.1150180810; RA Garrels J.I., McLaughlin C.S., Warner J.R., Futcher B., Latter G.I., RA Kobayashi R., Schwender B., Volpe T., Anderson D.S., Mesquita-Fuentes R., RA Payne W.E.; RT "Proteome studies of Saccharomyces cerevisiae: identification and RT characterization of abundant proteins."; RL Electrophoresis 18:1347-1360(1997). RN [8] RP LEVEL OF PROTEIN EXPRESSION [LARGE SCALE ANALYSIS]. RX PubMed=14562106; DOI=10.1038/nature02046; RA Ghaemmaghami S., Huh W.-K., Bower K., Howson R.W., Belle A., Dephoure N., RA O'Shea E.K., Weissman J.S.; RT "Global analysis of protein expression in yeast."; RL Nature 425:737-741(2003). RN [9] RP FUNCTION, AND INTERACTION WITH ERG28. RX PubMed=15522820; DOI=10.1016/j.bbalip.2004.08.001; RA Mo C., Valachovic M., Bard M.; RT "The ERG28-encoded protein, Erg28p, interacts with both the sterol C-4 RT demethylation enzyme complex as well as the late biosynthetic protein, the RT C-24 sterol methyltransferase (Erg6p)."; RL Biochim. Biophys. Acta 1686:30-36(2004). RN [10] RP FUNCTION, AND INTERACTION WITH ERG28. RX PubMed=15995173; DOI=10.1194/jlr.m500153-jlr200; RA Mo C., Bard M.; RT "Erg28p is a key protein in the yeast sterol biosynthetic enzyme complex."; RL J. Lipid Res. 46:1991-1998(2005). RN [11] RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-99, AND IDENTIFICATION BY RP MASS SPECTROMETRY [LARGE SCALE ANALYSIS]. RX PubMed=18407956; DOI=10.1074/mcp.m700468-mcp200; RA Albuquerque C.P., Smolka M.B., Payne S.H., Bafna V., Eng J., Zhou H.; RT "A multidimensional chromatography technology for in-depth phosphoproteome RT analysis."; RL Mol. Cell. Proteomics 7:1389-1396(2008). RN [12] RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS]. RX PubMed=19779198; DOI=10.1126/science.1172867; RA Holt L.J., Tuch B.B., Villen J., Johnson A.D., Gygi S.P., Morgan D.O.; RT "Global analysis of Cdk1 substrate phosphorylation sites provides insights RT into evolution."; RL Science 325:1682-1686(2009). RN [13] RP FUNCTION. RX PubMed=29773647; DOI=10.1074/jbc.ra118.001781; RA Ward D.M., Chen O.S., Li L., Kaplan J., Bhuiyan S.A., Natarajan S.K., RA Bard M., Cox J.E.; RT "Altered sterol metabolism in budding yeast affects mitochondrial iron- RT sulfur (Fe-S) cluster synthesis."; RL J. Biol. Chem. 293:10782-10795(2018). RN [14] RP REVIEW ON ERGOSTEROL BIOSYNTHESIS. RX PubMed=32679672; DOI=10.3390/genes11070795; RA Jorda T., Puig S.; RT "Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae."; RL Genes (Basel) 11:0-0(2020). CC -!- FUNCTION: Sterol 24-C-methyltransferase; part of the third module of CC ergosterol biosynthesis pathway that includes the late steps of the CC pathway (PubMed:6363386). ERG6 catalyzes the methyl transfer from S- CC adenosyl-methionine to the C-24 of zymosterol to form fecosterol CC (PubMed:6363386). The third module or late pathway involves the CC ergosterol synthesis itself through consecutive reactions that mainly CC occur in the endoplasmic reticulum (ER) membrane. Firstly, the squalene CC synthase ERG9 catalyzes the condensation of 2 farnesyl pyrophosphate CC moieties to form squalene, which is the precursor of all steroids. CC Squalene synthase is crucial for balancing the incorporation of CC farnesyl diphosphate (FPP) into sterol and nonsterol isoprene CC synthesis. Secondly, the squalene epoxidase ERG1 catalyzes the CC stereospecific oxidation of squalene to (S)-2,3-epoxysqualene, which is CC considered to be a rate-limiting enzyme in steroid biosynthesis. Then, CC the lanosterol synthase ERG7 catalyzes the cyclization of (S)-2,3 CC oxidosqualene to lanosterol, a reaction that forms the sterol core. In CC the next steps, lanosterol is transformed to zymosterol through a CC complex process involving various demethylation, reduction and CC desaturation reactions. The lanosterol 14-alpha-demethylase ERG11 (also CC known as CYP51) catalyzes C14-demethylation of lanosterol to produce CC 4,4'-dimethyl cholesta-8,14,24-triene-3-beta-ol, which is critical for CC ergosterol biosynthesis. The C-14 reductase ERG24 reduces the C14=C15 CC double bond of 4,4-dimethyl-cholesta-8,14,24-trienol to produce 4,4- CC dimethyl-cholesta-8,24-dienol. 4,4-dimethyl-cholesta-8,24-dienol is CC substrate of the C-4 demethylation complex ERG25-ERG26-ERG27 in which CC ERG25 catalyzes the three-step monooxygenation required for the CC demethylation of 4,4-dimethyl and 4alpha-methylsterols, ERG26 catalyzes CC the oxidative decarboxylation that results in a reduction of the 3- CC beta-hydroxy group at the C-3 carbon to an oxo group, and ERG27 is CC responsible for the reduction of the keto group on the C-3. ERG28 has a CC role as a scaffold to help anchor ERG25, ERG26 and ERG27 to the CC endoplasmic reticulum and ERG29 regulates the activity of the iron- CC containing C4-methylsterol oxidase ERG25. Then, the sterol 24-C- CC methyltransferase ERG6 catalyzes the methyl transfer from S-adenosyl- CC methionine to the C-24 of zymosterol to form fecosterol. The C-8 sterol CC isomerase ERG2 catalyzes the reaction which results in unsaturation at CC C-7 in the B ring of sterols and thus converts fecosterol to episterol. CC The sterol-C5-desaturase ERG3 then catalyzes the introduction of a C-5 CC double bond in the B ring to produce 5-dehydroepisterol. The C-22 CC sterol desaturase ERG5 further converts 5-dehydroepisterol into CC ergosta-5,7,22,24(28)-tetraen-3beta-ol by forming the C-22(23) double CC bond in the sterol side chain. Finally, ergosta-5,7,22,24(28)-tetraen- CC 3beta-ol is substrate of the C-24(28) sterol reductase ERG4 to produce CC ergosterol (PubMed:32679672). {ECO:0000269|PubMed:6363386, CC ECO:0000303|PubMed:32679672}. CC -!- CATALYTIC ACTIVITY: CC Reaction=S-adenosyl-L-methionine + zymosterol = fecosterol + H(+) + S- CC adenosyl-L-homocysteine; Xref=Rhea:RHEA:21128, ChEBI:CHEBI:15378, CC ChEBI:CHEBI:17038, ChEBI:CHEBI:18252, ChEBI:CHEBI:57856, CC ChEBI:CHEBI:59789; EC=2.1.1.41; CC Evidence={ECO:0000269|PubMed:6363386}; CC PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:21129; CC Evidence={ECO:0000269|PubMed:6363386}; CC -!- PATHWAY: Steroid metabolism; ergosterol biosynthesis; ergosterol from CC zymosterol: step 1/5. {ECO:0000269|PubMed:6363386}. CC -!- SUBUNIT: Interacts with ERG28. {ECO:0000269|PubMed:15522820, CC ECO:0000269|PubMed:15995173}. CC -!- INTERACTION: CC P25087; P25087: ERG6; NbExp=3; IntAct=EBI-6567, EBI-6567; CC -!- SUBCELLULAR LOCATION: Microsome {ECO:0000269|PubMed:6363386}. CC Mitochondrion {ECO:0000269|PubMed:6363386}. CC -!- DISRUPTION PHENOTYPE: Abolishes the production of ergosterol. CC {ECO:0000269|PubMed:6363386}. CC -!- MISCELLANEOUS: Present with 53800 molecules/cell in log phase SD CC medium. {ECO:0000269|PubMed:14562106}. CC -!- SIMILARITY: Belongs to the class I-like SAM-binding methyltransferase CC superfamily. Erg6/SMT family. {ECO:0000255|PROSITE-ProRule:PRU01022}. CC --------------------------------------------------------------------------- CC Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms CC Distributed under the Creative Commons Attribution (CC BY 4.0) License CC --------------------------------------------------------------------------- DR EMBL; X74249; CAA52308.1; -; Genomic_DNA. DR EMBL; S72460; AAB31378.1; -; Genomic_DNA. DR EMBL; Z49810; CAA89944.1; -; Genomic_DNA. DR EMBL; X53830; CAA37826.1; -; Genomic_DNA. DR EMBL; BK006946; DAA09890.1; -; Genomic_DNA. DR PIR; S42003; S42003. DR RefSeq; NP_013706.1; NM_001182363.1. DR AlphaFoldDB; P25087; -. DR SMR; P25087; -. DR BioGRID; 35161; 632. DR DIP; DIP-3816N; -. DR IntAct; P25087; 16. DR MINT; P25087; -. DR STRING; 4932.YML008C; -. DR iPTMnet; P25087; -. DR MaxQB; P25087; -. DR PaxDb; 4932-YML008C; -. DR PeptideAtlas; P25087; -. DR EnsemblFungi; YML008C_mRNA; YML008C; YML008C. DR GeneID; 855003; -. DR KEGG; sce:YML008C; -. DR AGR; SGD:S000004467; -. DR SGD; S000004467; ERG6. DR VEuPathDB; FungiDB:YML008C; -. DR eggNOG; KOG1269; Eukaryota. DR HOGENOM; CLU_039068_5_3_1; -. DR InParanoid; P25087; -. DR OMA; NGIATMM; -. DR OrthoDB; 275921at2759; -. DR BioCyc; MetaCyc:MONOMER3O-188; -. DR BioCyc; YEAST:MONOMER3O-188; -. DR BRENDA; 2.1.1.41; 984. DR SABIO-RK; P25087; -. DR UniPathway; UPA00768; UER00760. DR BioGRID-ORCS; 855003; 1 hit in 10 CRISPR screens. DR PRO; PR:P25087; -. DR Proteomes; UP000002311; Chromosome XIII. DR RNAct; P25087; Protein. DR GO; GO:0005783; C:endoplasmic reticulum; IDA:SGD. DR GO; GO:0005811; C:lipid droplet; IDA:SGD. DR GO; GO:0005741; C:mitochondrial outer membrane; HDA:SGD. DR GO; GO:0005739; C:mitochondrion; HDA:SGD. DR GO; GO:0042802; F:identical protein binding; IPI:IntAct. DR GO; GO:0003838; F:sterol 24-C-methyltransferase activity; IDA:SGD. DR GO; GO:0006696; P:ergosterol biosynthetic process; IDA:UniProt. DR GO; GO:0032259; P:methylation; IEA:UniProtKB-KW. DR CDD; cd02440; AdoMet_MTases; 1. DR Gene3D; 3.40.50.150; Vaccinia Virus protein VP39; 1. DR InterPro; IPR013216; Methyltransf_11. DR InterPro; IPR030384; MeTrfase_SMT. DR InterPro; IPR029063; SAM-dependent_MTases_sf. DR InterPro; IPR013705; Sterol_MeTrfase_C. DR PANTHER; PTHR44068:SF1; HYPOTHETICAL LOC100005854; 1. DR PANTHER; PTHR44068; ZGC:194242; 1. DR Pfam; PF08241; Methyltransf_11; 1. DR Pfam; PF08498; Sterol_MT_C; 1. DR SUPFAM; SSF53335; S-adenosyl-L-methionine-dependent methyltransferases; 1. DR PROSITE; PS51685; SAM_MT_ERG6_SMT; 1. DR SWISS-2DPAGE; P25087; -. PE 1: Evidence at protein level; KW Acetylation; Endoplasmic reticulum; Lipid biosynthesis; Lipid metabolism; KW Methyltransferase; Microsome; Mitochondrion; Phosphoprotein; KW Reference proteome; S-adenosyl-L-methionine; Steroid biosynthesis; KW Steroid metabolism; Sterol biosynthesis; Sterol metabolism; Transferase. FT INIT_MET 1 FT /note="Removed" FT /evidence="ECO:0000269|PubMed:9298649" FT CHAIN 2..383 FT /note="Sterol 24-C-methyltransferase ERG6" FT /id="PRO_0000124799" FT MOD_RES 2 FT /note="N-acetylserine" FT /evidence="ECO:0000269|PubMed:9298649" FT MOD_RES 99 FT /note="Phosphoserine" FT /evidence="ECO:0007744|PubMed:18407956" FT CONFLICT 380 FT /note="E -> EE (in Ref. 2; AAB31378)" FT /evidence="ECO:0000305" SQ SEQUENCE 383 AA; 43431 MW; C3A2B6DF2C14ED63 CRC64; MSETELRKRQ AQFTRELHGD DIGKKTGLSA LMSKNNSAQK EAVQKYLRNW DGRTDKDAEE RRLEDYNEAT HSYYNVVTDF YEYGWGSSFH FSRFYKGESF AASIARHEHY LAYKAGIQRG DLVLDVGCGV GGPAREIARF TGCNVIGLNN NDYQIAKAKY YAKKYNLSDQ MDFVKGDFMK MDFEENTFDK VYAIEATCHA PKLEGVYSEI YKVLKPGGTF AVYEWVMTDK YDENNPEHRK IAYEIELGDG IPKMFHVDVA RKALKNCGFE VLVSEDLADN DDEIPWYYPL TGEWKYVQNL ANLATFFRTS YLGRQFTTAM VTVMEKLGLA PEGSKEVTAA LENAAVGLVA GGKSKLFTPM MLFVARKPEN AETPSQTSQE ATQ //