Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P24928 (RPB1_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 159. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (6) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
DNA-directed RNA polymerase II subunit RPB1

Short name=RNA polymerase II subunit B1
EC=2.7.7.6
Alternative name(s):
DNA-directed RNA polymerase II subunit A
DNA-directed RNA polymerase III largest subunit
RNA-directed RNA polymerase II subunit RPB1
EC=2.7.7.48
Gene names
Name:POLR2A
Synonyms:POLR2
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length1970 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cleft, the clamp element that moves to open and close the cleft and the jaws that are thought to grab the incoming DNA template. At the start of transcription, a single-stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol II. A bridging helix emanates from RPB1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol II by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition. During transcription elongation, Pol II moves on the template as the transcript elongates. Elongation is influenced by the phosphorylation status of the C-terminal domain (CTD) of Pol II largest subunit (RPB1), which serves as a platform for assembly of factors that regulate transcription initiation, elongation, termination and mRNA processing. Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicate and transcriptase for the viral RNA circular genome. Ref.6 Ref.24 Ref.33 Ref.42

Catalytic activity

Nucleoside triphosphate + RNA(n) = diphosphate + RNA(n+1).

Subunit structure

Component of the RNA polymerase II (Pol II) complex consisting of 12 subunits. The phosphorylated C-terminal domain interacts with FNBP3 and SYNCRIP. Interacts with SAFB/SAFB1. Interacts with CCNL1 and MYO1C By similarity. Interacts with CCNL2 and SFRS19. Component of a complex which is at least composed of HTATSF1/Tat-SF1, the P-TEFb complex components CDK9 and CCNT1, RNA polymerase II, SUPT5H, and NCL/nucleolin. Interacts with PAF1. Interacts (via C-terminus) with CMTR1, CTDSP1 and SCAF8. Interacts via the phosphorylated C-terminal domain with WDR82 and with SETD1A and SETD1B only in the presence of WDR82. Interacts with ATF7IP. When phosphorylated at 'Ser-5', interacts with MEN1; the unphosphorylated form, or phosphorylated at 'Ser-2' does not interact. Interacts with DDX5. Interacts with RECQL5 and TCEA1; binding of RECQL5 prevents TCEA1 binding. When phosphorylated at 'Ser-2', interacts with SUPT6H (via SH2 domain). The large PER complex involved in the repression of transcriptional termination is composed of at least PER2, CDK9, DDX5, DHX9, NCBP1 and POLR2A (active). Ref.6 Ref.7 Ref.8 Ref.9 Ref.10 Ref.11 Ref.12 Ref.14 Ref.15 Ref.16 Ref.17 Ref.18 Ref.20 Ref.21 Ref.22 Ref.23 Ref.25 Ref.28 Ref.33 Ref.42

Subcellular location

Nucleus Ref.6.

Post-translational modification

The tandem 7 residues repeats in the C-terminal domain (CTD) can be highly phosphorylated. The phosphorylation activates Pol II. Phosphorylation occurs mainly at residues 'Ser-2' and 'Ser-5' of the heptapeptide repeat and is mediated, at least, by CDK7 and CDK9. CDK7 phosphorylation of POLR2A associated with DNA promotes transcription initiation by triggering dissociation from DNA. Phosphorylation also takes place at 'Ser-7' of the heptapeptide repeat, which is required for efficient transcription of snRNA genes and processing of the transcripts. The phosphorylation state is believed to result from the balanced action of site-specific CTD kinases and phosphatases, and a 'CTD code' that specifies the position of Pol II within the transcription cycle has been proposed. Ref.21 Ref.29 Ref.30 Ref.31 Ref.36 Ref.39 Ref.41

Dephosphorylated by the protein phosphatase CTDSP1. Ref.21 Ref.29 Ref.30 Ref.31 Ref.36 Ref.39 Ref.41

Ubiquitinated by WWP2 leading to proteasomal degradation By similarity. Following UV treatment, the elongating form of RNA polymerase II (RNA pol IIo) is ubiquitinated UV damage sites without leading to degradation: ubiquitination is facilitated by KIAA1530/UVSSA and promotes RNA pol IIo backtracking to allow access to the nucleotide excision repair machinery. Ref.40

Methylated at Arg-1810 by CARM1. Methylation occurs only when the CTD is hypophosphorylated, and phosphorylation at Ser-1805 and Ser-1808 prevent methylation (in vitro). It is assumed that methylation occurs prior to phosphorylation and transcription initiation. CTD methylation may facilitate the expression of select RNAs. Ref.21 Ref.29 Ref.30 Ref.31 Ref.36 Ref.39 Ref.41

Miscellaneous

The binding of ribonucleoside triphosphate to the RNA polymerase II transcribing complex probably involves a two-step mechanism. The initial binding seems to occur at the entry (E) site and involves a magnesium ion temporarily coordinated by three conserved aspartate residues of the two largest RNA Pol II subunits. The ribonucleoside triphosphate is transferred by a rotation to the nucleotide addition (A) site for pairing with the template DNA. The catalytic A site involves three conserved aspartate residues of the RNA Pol II largest subunit which permanently coordinate a second magnesium ion.

Sequence similarities

Belongs to the RNA polymerase beta' chain family.

Ontologies

Keywords
   Biological processTranscription
   Cellular componentDNA-directed RNA polymerase
Nucleus
   Coding sequence diversityPolymorphism
   DomainRepeat
   LigandDNA-binding
Magnesium
Metal-binding
Zinc
   Molecular functionNucleotidyltransferase
RNA-directed RNA polymerase
Transferase
   PTMAcetylation
Methylation
Phosphoprotein
Ubl conjugation
   Technical term3D-structure
Complete proteome
Reference proteome
Gene Ontology (GO)
   Biological_process7-methylguanosine mRNA capping

Traceable author statement. Source: Reactome

DNA repair

Traceable author statement. Source: Reactome

RNA splicing

Traceable author statement. Source: Reactome

gene expression

Traceable author statement. Source: Reactome

mRNA splicing, via spliceosome

Traceable author statement. Source: Reactome

nucleotide-excision repair

Traceable author statement. Source: Reactome

positive regulation of viral transcription

Traceable author statement. Source: Reactome

regulation of transcription, DNA-templated

Non-traceable author statement Ref.2. Source: UniProtKB

transcription elongation from RNA polymerase II promoter

Traceable author statement. Source: Reactome

transcription from RNA polymerase II promoter

Inferred from direct assay Ref.6. Source: UniProtKB

transcription initiation from RNA polymerase II promoter

Traceable author statement. Source: Reactome

transcription-coupled nucleotide-excision repair

Traceable author statement. Source: Reactome

viral process

Traceable author statement. Source: Reactome

   Cellular_componentDNA-directed RNA polymerase II, core complex

Inferred from direct assay Ref.6. Source: UniProtKB

nucleoplasm

Traceable author statement. Source: Reactome

nucleus

Inferred from direct assay Ref.6. Source: UniProtKB

   Molecular_functionDNA binding

Non-traceable author statement Ref.2. Source: UniProtKB

DNA-directed RNA polymerase activity

Non-traceable author statement Ref.2. Source: UniProtKB

RNA-directed RNA polymerase activity

Inferred from electronic annotation. Source: UniProtKB-KW

metal ion binding

Inferred from electronic annotation. Source: UniProtKB-KW

poly(A) RNA binding

Inferred from direct assay PubMed 22658674PubMed 22681889. Source: UniProtKB

protein binding

Inferred from physical interaction PubMed 10075709PubMed 10944529Ref.15PubMed 16239144Ref.21Ref.25Ref.23. Source: UniProtKB

ubiquitin protein ligase binding

Inferred from physical interaction PubMed 17996703. Source: BHF-UCL

Complete GO annotation...

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 19701970DNA-directed RNA polymerase II subunit RPB1
PRO_0000073940

Regions

Repeat1593 – 159971
Repeat1600 – 160672; approximate
Repeat1608 – 161473
Repeat1615 – 162174
Repeat1622 – 162875
Repeat1629 – 163576
Repeat1636 – 164277
Repeat1643 – 164978
Repeat1650 – 165679
Repeat1657 – 1663710
Repeat1664 – 1670711
Repeat1671 – 1677712
Repeat1678 – 1684713
Repeat1685 – 1691714
Repeat1692 – 1698715
Repeat1699 – 1705716
Repeat1706 – 1712717
Repeat1713 – 1719718
Repeat1720 – 1726719
Repeat1727 – 1733720
Repeat1734 – 1740721
Repeat1741 – 1747722
Repeat1748 – 1754723
Repeat1755 – 1761724
Repeat1762 – 1768725
Repeat1769 – 1775726
Repeat1776 – 1782727
Repeat1783 – 1789728
Repeat1790 – 1796729
Repeat1797 – 1803730
Repeat1804 – 1810731
Repeat1811 – 1817732
Repeat1818 – 1824733
Repeat1825 – 1831734
Repeat1832 – 1838735
Repeat1839 – 1845736
Repeat1846 – 1852737
Repeat1853 – 1859738
Repeat1860 – 1866739
Repeat1867 – 1873740
Repeat1874 – 1880741
Repeat1881 – 1887742
Repeat1888 – 1894743
Repeat1895 – 1901744
Repeat1902 – 1908745
Repeat1909 – 1915746
Repeat1916 – 1922747
Repeat1923 – 1929748
Repeat1930 – 1936749
Repeat1940 – 1946750
Repeat1947 – 1953751; approximate
Repeat1954 – 1960752; approximate
Region833 – 84513Bridging helix
Region1593 – 196036852 X 7 AA approximate tandem repeats of Y-[ST]-P-[STQ]-[ST]-P-[SRTEVKGN]

Sites

Metal binding711Zinc 1 By similarity
Metal binding741Zinc 1 By similarity
Metal binding811Zinc 1 By similarity
Metal binding841Zinc 1 By similarity
Metal binding1111Zinc 2 By similarity
Metal binding1141Zinc 2 By similarity
Metal binding1541Zinc 2 By similarity
Metal binding1841Zinc 2 By similarity
Metal binding4951Magnesium 1; catalytic By similarity
Metal binding4951Magnesium 2; shared with RPB2 By similarity
Metal binding4971Magnesium 1; catalytic By similarity
Metal binding4971Magnesium 2; shared with RPB2 By similarity
Metal binding4991Magnesium 1; catalytic By similarity

Amino acid modifications

Modified residue11N-acetylmethionine Ref.27
Modified residue18101Omega-N-methylated arginine; by CARM1 Ref.38
Modified residue18431Phosphoserine Ref.32
Modified residue18491Phosphoserine Ref.26
Modified residue18541Phosphothreonine Ref.32
Modified residue18741Phosphotyrosine Ref.26
Modified residue18781Phosphoserine Ref.32
Modified residue18821Phosphoserine Ref.32
Modified residue18961Phosphoserine Ref.26
Modified residue18991Phosphoserine Ref.32
Modified residue19091Phosphotyrosine Ref.19 Ref.26
Modified residue19131Phosphoserine Ref.26 Ref.32
Modified residue19171Phosphoserine Ref.32 Ref.37
Modified residue19201Phosphoserine Ref.26 Ref.32
Modified residue19231Phosphotyrosine Ref.19 Ref.26
Modified residue19271Phosphoserine Ref.26 Ref.32
Modified residue19311Phosphoserine Ref.32 Ref.37
Modified residue19331Phosphothreonine By similarity
Modified residue19341Phosphoserine Ref.26 Ref.32

Natural variations

Natural variant2921R → C.
Corresponds to variant rs2229198 [ dbSNP | Ensembl ].
VAR_051872

Experimental info

Mutagenesis18101R → A: Misexpression of a variety of small nuclear RNAs and small nucleolar RNAs. Ref.38
Sequence conflict10671W → L in CAA52862. Ref.2
Sequence conflict14491D → Y in CAA52862. Ref.2
Sequence conflict18351A → T in CAA45125. Ref.1
Sequence conflict18351A → T in CAA52862. Ref.2

Sequences

Sequence LengthMass (Da)Tools
P24928 [UniParc].

Last modified December 15, 2009. Version 2.
Checksum: 28D6FD25693A6472

FASTA1,970217,176
        10         20         30         40         50         60 
MHGGGPPSGD SACPLRTIKR VQFGVLSPDE LKRMSVTEGG IKYPETTEGG RPKLGGLMDP 

        70         80         90        100        110        120 
RQGVIERTGR CQTCAGNMTE CPGHFGHIEL AKPVFHVGFL VKTMKVLRCV CFFCSKLLVD 

       130        140        150        160        170        180 
SNNPKIKDIL AKSKGQPKKR LTHVYDLCKG KNICEGGEEM DNKFGVEQPE GDEDLTKEKG 

       190        200        210        220        230        240 
HGGCGRYQPR IRRSGLELYA EWKHVNEDSQ EKKILLSPER VHEIFKRISD EECFVLGMEP 

       250        260        270        280        290        300 
RYARPEWMIV TVLPVPPLSV RPAVVMQGSA RNQDDLTHKL ADIVKINNQL RRNEQNGAAA 

       310        320        330        340        350        360 
HVIAEDVKLL QFHVATMVDN ELPGLPRAMQ KSGRPLKSLK QRLKGKEGRV RGNLMGKRVD 

       370        380        390        400        410        420 
FSARTVITPD PNLSIDQVGV PRSIAANMTF AEIVTPFNID RLQELVRRGN SQYPGAKYII 

       430        440        450        460        470        480 
RDNGDRIDLR FHPKPSDLHL QTGYKVERHM CDGDIVIFNR QPTLHKMSMM GHRVRILPWS 

       490        500        510        520        530        540 
TFRLNLSVTT PYNADFDGDE MNLHLPQSLE TRAEIQELAM VPRMIVTPQS NRPVMGIVQD 

       550        560        570        580        590        600 
TLTAVRKFTK RDVFLERGEV MNLLMFLSTW DGKVPQPAIL KPRPLWTGKQ IFSLIIPGHI 

       610        620        630        640        650        660 
NCIRTHSTHP DDEDSGPYKH ISPGDTKVVV ENGELIMGIL CKKSLGTSAG SLVHISYLEM 

       670        680        690        700        710        720 
GHDITRLFYS NIQTVINNWL LIEGHTIGIG DSIADSKTYQ DIQNTIKKAK QDVIEVIEKA 

       730        740        750        760        770        780 
HNNELEPTPG NTLRQTFENQ VNRILNDARD KTGSSAQKSL SEYNNFKSMV VSGAKGSKIN 

       790        800        810        820        830        840 
ISQVIAVVGQ QNVEGKRIPF GFKHRTLPHF IKDDYGPESR GFVENSYLAG LTPTEFFFHA 

       850        860        870        880        890        900 
MGGREGLIDT AVKTAETGYI QRRLIKSMES VMVKYDATVR NSINQVVQLR YGEDGLAGES 

       910        920        930        940        950        960 
VEFQNLATLK PSNKAFEKKF RFDYTNERAL RRTLQEDLVK DVLSNAHIQN ELEREFERMR 

       970        980        990       1000       1010       1020 
EDREVLRVIF PTGDSKVVLP CNLLRMIWNA QKIFHINPRL PSDLHPIKVV EGVKELSKKL 

      1030       1040       1050       1060       1070       1080 
VIVNGDDPLS RQAQENATLL FNIHLRSTLC SRRMAEEFRL SGEAFDWLLG EIESKFNQAI 

      1090       1100       1110       1120       1130       1140 
AHPGEMVGAL AAQSLGEPAT QMTLNTFHYA GVSAKNVTLG VPRLKELINI SKKPKTPSLT 

      1150       1160       1170       1180       1190       1200 
VFLLGQSARD AERAKDILCR LEHTTLRKVT ANTAIYYDPN PQSTVVAEDQ EWVNVYYEMP 

      1210       1220       1230       1240       1250       1260 
DFDVARISPW LLRVELDRKH MTDRKLTMEQ IAEKINAGFG DDLNCIFNDD NAEKLVLRIR 

      1270       1280       1290       1300       1310       1320 
IMNSDENKMQ EEEEVVDKMD DDVFLRCIES NMLTDMTLQG IEQISKVYMH LPQTDNKKKI 

      1330       1340       1350       1360       1370       1380 
IITEDGEFKA LQEWILETDG VSLMRVLSEK DVDPVRTTSN DIVEIFTVLG IEAVRKALER 

      1390       1400       1410       1420       1430       1440 
ELYHVISFDG SYVNYRHLAL LCDTMTCRGH LMAITRHGVN RQDTGPLMKC SFEETVDVLM 

      1450       1460       1470       1480       1490       1500 
EAAAHGESDP MKGVSENIML GQLAPAGTGC FDLLLDAEKC KYGMEIPTNI PGLGAAGPTG 

      1510       1520       1530       1540       1550       1560 
MFFGSAPSPM GGISPAMTPW NQGATPAYGA WSPSVGSGMT PGAAGFSPSA ASDASGFSPG 

      1570       1580       1590       1600       1610       1620 
YSPAWSPTPG SPGSPGPSSP YIPSPGGAMS PSYSPTSPAY EPRSPGGYTP QSPSYSPTSP 

      1630       1640       1650       1660       1670       1680 
SYSPTSPSYS PTSPNYSPTS PSYSPTSPSY SPTSPSYSPT SPSYSPTSPS YSPTSPSYSP 

      1690       1700       1710       1720       1730       1740 
TSPSYSPTSP SYSPTSPSYS PTSPSYSPTS PSYSPTSPSY SPTSPSYSPT SPSYSPTSPS 

      1750       1760       1770       1780       1790       1800 
YSPTSPNYSP TSPNYTPTSP SYSPTSPSYS PTSPNYTPTS PNYSPTSPSY SPTSPSYSPT 

      1810       1820       1830       1840       1850       1860 
SPSYSPSSPR YTPQSPTYTP SSPSYSPSSP SYSPASPKYT PTSPSYSPSS PEYTPTSPKY 

      1870       1880       1890       1900       1910       1920 
SPTSPKYSPT SPKYSPTSPT YSPTTPKYSP TSPTYSPTSP VYTPTSPKYS PTSPTYSPTS 

      1930       1940       1950       1960       1970 
PKYSPTSPTY SPTSPKGSTY SPTSPGYSPT SPTYSLTSPA ISPDDSDEEN 

« Hide

References

« Hide 'large scale' references
[1]"Complete sequence of the human RNA polymerase II largest subunit."
Wintzerith M., Acker J., Vicaire S., Vigneron M., Kedinger C.
Nucleic Acids Res. 20:910-910(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA].
[2]"The human gene encoding the largest subunit of RNA polymerase II."
Mita K., Tsuji H., Morimyo M., Takahashi E., Nenoi M., Ichimura S., Yamauchi M., Hongo E., Hayashi A.
Gene 159:285-286(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
[3]"DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage."
Zody M.C., Garber M., Adams D.J., Sharpe T., Harrow J., Lupski J.R., Nicholson C., Searle S.M., Wilming L., Young S.K., Abouelleil A., Allen N.R., Bi W., Bloom T., Borowsky M.L., Bugalter B.E., Butler J., Chang J.L. expand/collapse author list , Chen C.-K., Cook A., Corum B., Cuomo C.A., de Jong P.J., DeCaprio D., Dewar K., FitzGerald M., Gilbert J., Gibson R., Gnerre S., Goldstein S., Grafham D.V., Grocock R., Hafez N., Hagopian D.S., Hart E., Norman C.H., Humphray S., Jaffe D.B., Jones M., Kamal M., Khodiyar V.K., LaButti K., Laird G., Lehoczky J., Liu X., Lokyitsang T., Loveland J., Lui A., Macdonald P., Major J.E., Matthews L., Mauceli E., McCarroll S.A., Mihalev A.H., Mudge J., Nguyen C., Nicol R., O'Leary S.B., Osoegawa K., Schwartz D.C., Shaw-Smith C., Stankiewicz P., Steward C., Swarbreck D., Venkataraman V., Whittaker C.A., Yang X., Zimmer A.R., Bradley A., Hubbard T., Birren B.W., Rogers J., Lander E.S., Nusbaum C.
Nature 440:1045-1049(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[4]Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L., Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R., Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V., Hannenhalli S., Turner R. expand/collapse author list , Yooseph S., Lu F., Nusskern D.R., Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H., Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G., Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W., Venter J.C.
Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[5]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Tissue: Brain.
[6]"Immunoaffinity purification and functional characterization of human transcription factor IIH and RNA polymerase II from clonal cell lines that conditionally express epitope-tagged subunits of the multiprotein complexes."
Kershnar E., Wu S.-Y., Chiang C.-M.
J. Biol. Chem. 273:34444-34453(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, IDENTIFICATION IN THE RNA POLYMERASE II CORE-COMPLEX, SUBCELLULAR LOCATION.
[7]"SAF-B couples transcription and pre-mRNA splicing to SAR/MAR elements."
Nayler O., Straetling W., Bourquin J.-P., Stagljar I., Lindemann L., Jasper H., Hartmann A.M., Fackelmeyer F.O., Ullrich A., Stamm S.
Nucleic Acids Res. 26:3542-3549(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SAFB.
[8]"A novel RNA polymerase II-containing complex potentiates Tat-enhanced HIV-1 transcription."
Parada C.A., Roeder R.G.
EMBO J. 18:3688-3701(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN A COMPLEX WITH HTATSF1; CCNT1; NCL; SUPT5H AND CDK9.
[9]"Tat-SF1 protein associates with RAP30 and human SPT5 proteins."
Kim J.B., Yamaguchi Y., Wada T., Handa H., Sharp P.A.
Mol. Cell. Biol. 19:5960-5968(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH HTATSF1.
[10]"The structure of an FF domain from human HYPA/FBP11."
Allen M., Friedler A., Schon O., Bycroft M.
J. Mol. Biol. 323:411-416(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH FNBP3.
[11]"Hyperphosphorylated C-terminal repeat domain-associating proteins in the nuclear proteome link transcription to DNA/chromatin modification and RNA processing."
Carty S.M., Greenleaf A.L.
Mol. Cell. Proteomics 1:598-610(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SYNCRIP.
[12]"Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300."
Rossow K.L., Janknecht R.
Oncogene 22:151-156(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DDX5.
[13]"Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry."
Brill L.M., Salomon A.R., Ficarro S.B., Mukherji M., Stettler-Gill M., Peters E.C.
Anal. Chem. 76:2763-2772(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Leukemic T-cell.
[14]"Cyclin L2, a novel RNA polymerase II-associated cyclin, is involved in pre-mRNA splicing and induces apoptosis of human hepatocellular carcinoma cells."
Yang L., Li N., Wang C., Yu Y., Yuan L., Zhang M., Cao X.
J. Biol. Chem. 279:11639-11648(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CCNL2.
[15]"Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus."
Hughes C.M., Rozenblatt-Rosen O., Milne T.A., Copeland T.D., Levine S.S., Lee J.C., Hayes D.N., Shanmugam K.S., Bhattacharjee A., Biondi C.A., Kay G.F., Hayward N.K., Hess J.L., Meyerson M.
Mol. Cell 13:587-597(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH MEN1.
[16]"Expression of the C-terminal domain of novel human SR-A1 protein: interaction with the CTD domain of RNA polymerase II."
Katsarou M.E., Papakyriakou A., Katsaros N., Scorilas A.
Biochem. Biophys. Res. Commun. 334:61-68(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SFRS19.
[17]"Identification and characterization of a novel human histone H3 lysine 36 specific methyltransferase."
Sun X.-J., Wei J., Wu X.-Y., Hu M., Wang L., Wang H.-H., Zhang Q.-H., Chen S.-J., Huang Q.-H., Chen Z.
J. Biol. Chem. 280:35261-35271(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SETD2.
[18]"Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1."
Li M., Phatnani H.P., Guan Z., Sage H., Greenleaf A.L., Zhou P.
Proc. Natl. Acad. Sci. U.S.A. 102:17636-17641(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SETD2.
[19]"A probability-based approach for high-throughput protein phosphorylation analysis and site localization."
Beausoleil S.A., Villen J., Gerber S.A., Rush J., Gygi S.P.
Nat. Biotechnol. 24:1285-1292(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-1909 AND TYR-1923, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[20]"The human homologue of the RNA polymerase II-associated factor 1 (hPaf1), localized on the 19q13 amplicon, is associated with tumorigenesis."
Moniaux N., Nemos C., Schmied B.M., Chauhan S.C., Deb S., Morikane K., Choudhury A., Vanlith M., Sutherlin M., Sikela J.M., Hollingsworth M.A., Batra S.K.
Oncogene 25:3247-3257(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH PAF1 IN PAF1/RNA POLYMERASE II.
Tissue: Fetal pancreas.
[21]"The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export."
Yoh S.M., Cho H., Pickle L., Evans R.M., Jones K.A.
Genes Dev. 21:160-174(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SUPT6H, PHOSPHORYLATION.
[22]"The human interferon-regulated ISG95 protein interacts with RNA polymerase II and shows methyltransferase activity."
Haline-Vaz T., Silva T.C.L., Zanchin N.I.T.
Biochem. Biophys. Res. Commun. 372:719-724(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CMTR1.
[23]"Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the carboxyl-terminal domain of RNA polymerase II."
Becker R., Loll B., Meinhart A.
J. Biol. Chem. 283:22659-22669(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SCAF8.
[24]"Transcription of hepatitis delta virus RNA by RNA polymerase II."
Chang J., Nie X., Chang H.E., Han Z., Taylor J.
J. Virol. 82:1118-1127(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS RNA-DIRECTED RNA POLYMERASE.
[25]"Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes."
Lee J.H., Skalnik D.G.
Mol. Cell. Biol. 28:609-618(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SETD1A; SETD1B AND WDR82.
[26]"A quantitative atlas of mitotic phosphorylation."
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E., Elledge S.J., Gygi S.P.
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-1849; TYR-1874; SER-1896; TYR-1909; SER-1913; SER-1920; TYR-1923; SER-1927 AND SER-1934, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[27]"Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach."
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J., Mohammed S.
Anal. Chem. 81:4493-4501(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[28]"MCAF1/AM is involved in Sp1-mediated maintenance of cancer-associated telomerase activity."
Liu L., Ishihara K., Ichimura T., Fujita N., Hino S., Tomita S., Watanabe S., Saitoh N., Ito T., Nakao M.
J. Biol. Chem. 284:5165-5174(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH ATF7IP.
[29]"TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II."
Akhtar M.S., Heidemann M., Tietjen J.R., Zhang D.W., Chapman R.D., Eick D., Ansari A.Z.
Mol. Cell 34:387-393(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION BY CDK7.
[30]"TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II."
Glover-Cutter K., Larochelle S., Erickson B., Zhang C., Shokat K., Fisher R.P., Bentley D.L.
Mol. Cell. Biol. 29:5455-5464(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION BY CDK7 AND CDK9.
[31]"Binding to DNA of the RNA-polymerase II C-terminal domain allows discrimination between Cdk7 and Cdk9 phosphorylation."
Lolli G.
Nucleic Acids Res. 37:1260-1268(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION BY CDK7.
[32]"Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions."
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K., Rodionov V., Han D.K.
Sci. Signal. 2:RA46-RA46(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-1843; THR-1854; SER-1878; SER-1882; SER-1899; SER-1913; SER-1917; SER-1920; SER-1927; SER-1931 AND SER-1934, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Leukemic T-cell.
[33]"RecQL5 promotes genome stabilization through two parallel mechanisms--interacting with RNA polymerase II and acting as a helicase."
Islam M.N., Fox D. III, Guo R., Enomoto T., Wang W.
Mol. Cell. Biol. 30:2460-2472(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RECQL5, FUNCTION.
[34]"Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis."
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L., Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.
Sci. Signal. 3:RA3-RA3(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[35]"Initial characterization of the human central proteome."
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17-17(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[36]"Transcription factor IIS cooperates with the E3 ligase UBR5 to ubiquitinate the CDK9 subunit of the positive transcription elongation factor B."
Cojocaru M., Bouchard A., Cloutier P., Cooper J.J., Varzavand K., Price D.H., Coulombe B.
J. Biol. Chem. 286:5012-5022(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION BY CDK9.
[37]"System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation."
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J., Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V., Blagoev B.
Sci. Signal. 4:RS3-RS3(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-1917 AND SER-1931, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[38]"The C-terminal domain of RNA polymerase II is modified by site-specific methylation."
Sims R.J. III, Rojas L.A., Beck D., Bonasio R., Schuller R., Drury W.J. III, Eick D., Reinberg D.
Science 332:99-103(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: METHYLATION AT ARG-1810 BY CARM1, MUTAGENESIS OF ARG-1810.
[39]"Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes."
Egloff S., Zaborowska J., Laitem C., Kiss T., Murphy S.
Mol. Cell 45:111-122(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION.
[40]"Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair."
Nakazawa Y., Sasaki K., Mitsutake N., Matsuse M., Shimada M., Nardo T., Takahashi Y., Ohyama K., Ito K., Mishima H., Nomura M., Kinoshita A., Ono S., Takenaka K., Masuyama R., Kudo T., Slor H., Utani A. expand/collapse author list , Tateishi S., Yamashita S., Stefanini M., Lehmann A.R., Yoshiura K.I., Ogi T.
Nat. Genet. 44:586-592(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: UBIQUITINATION.
[41]"Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1."
Zhang Y., Kim Y., Genoud N., Gao J., Kelly J.W., Pfaff S.L., Gill G.N., Dixon J.E., Noel J.P.
Mol. Cell 24:759-770(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) OF 1796-1803 IN COMPLEX WITH CTDSP1, DEPHOSPHORYLATION.
[42]"Structural mimicry in transcription regulation of human RNA polymerase II by the DNA helicase RECQL5."
Kassube S.A., Jinek M., Fang J., Tsutakawa S., Nogales E.
Nat. Struct. Mol. Biol. 20:892-899(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY ELECTRON MICROSCOPY IN COMPLEX WITH RECQL5, INTERACTION WITH RECQL5 AND TCEA1, SUBUNIT, FUNCTION.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
X63564 mRNA. Translation: CAA45125.1.
X74874 expand/collapse EMBL AC list , X74873, X74872, X74871, X74870 Genomic DNA. Translation: CAA52862.1.
AC113189 Genomic DNA. No translation available.
CH471108 Genomic DNA. Translation: EAW90181.1.
BC137231 mRNA. Translation: AAI37232.1.
CCDSCCDS32548.1.
PIRI38186.
S21054.
RefSeqNP_000928.1. NM_000937.4.
UniGeneHs.270017.

3D structure databases

PDBe
RCSB-PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
2GHQX-ray2.05C/D1795-1803[»]
2GHTX-ray1.80C/D1796-1803[»]
2LTONMR-B1804-1816[»]
3D9KX-ray2.20Y/Z1790-1803[»]
3D9LX-ray2.20Y/Z1790-1803[»]
3D9MX-ray1.75Y/Z1790-1803[»]
3D9NX-ray1.60Y/Z1790-1803[»]
3D9OX-ray2.00Z1790-1803[»]
3D9PX-ray2.10Y/Z1790-1803[»]
4JXTX-ray1.90B1787-1805[»]
ProteinModelPortalP24928.
SMRP24928. Positions 16-896, 1072-1475.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid111426. 214 interactions.
DIPDIP-29011N.
IntActP24928. 40 interactions.
MINTMINT-156582.
STRING9606.ENSP00000314949.

Chemistry

BindingDBP24928.
ChEMBLCHEMBL1641353.

PTM databases

PhosphoSiteP24928.

Polymorphism databases

DMDM281185484.

Proteomic databases

MaxQBP24928.
PaxDbP24928.
PRIDEP24928.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000322644; ENSP00000314949; ENSG00000181222.
GeneID5430.
KEGGhsa:5430.
UCSCuc002ghf.4. human.

Organism-specific databases

CTD5430.
GeneCardsGC17P007387.
H-InvDBHIX0173727.
HGNCHGNC:9187. POLR2A.
HPACAB012226.
CAB016388.
CAB022311.
HPA021563.
HPA053012.
MIM180660. gene+phenotype.
neXtProtNX_P24928.
PharmGKBPA33507.
GenAtlasSearch...

Phylogenomic databases

eggNOGCOG0086.
HOGENOMHOG000222975.
HOVERGENHBG004339.
InParanoidP24928.
KOK03006.
OMAIVFNRQP.
OrthoDBEOG7K0ZB8.
PhylomeDBP24928.
TreeFamTF103036.

Enzyme and pathway databases

ReactomeREACT_116125. Disease.
REACT_1788. Transcription.
REACT_1892. Elongation arrest and recovery.
REACT_216. DNA Repair.
REACT_71. Gene Expression.

Gene expression databases

ArrayExpressP24928.
BgeeP24928.
CleanExHS_POLR2A.
GenevestigatorP24928.

Family and domain databases

InterProIPR000722. RNA_pol_asu.
IPR000684. RNA_pol_II_repeat_euk.
IPR006592. RNA_pol_N.
IPR007080. RNA_pol_Rpb1_1.
IPR007066. RNA_pol_Rpb1_3.
IPR007083. RNA_pol_Rpb1_4.
IPR007081. RNA_pol_Rpb1_5.
IPR007075. RNA_pol_Rpb1_6.
IPR007073. RNA_pol_Rpb1_7.
[Graphical view]
PfamPF04997. RNA_pol_Rpb1_1. 1 hit.
PF00623. RNA_pol_Rpb1_2. 1 hit.
PF04983. RNA_pol_Rpb1_3. 1 hit.
PF05000. RNA_pol_Rpb1_4. 1 hit.
PF04998. RNA_pol_Rpb1_5. 1 hit.
PF04992. RNA_pol_Rpb1_6. 1 hit.
PF04990. RNA_pol_Rpb1_7. 1 hit.
PF05001. RNA_pol_Rpb1_R. 46 hits.
[Graphical view]
SMARTSM00663. RPOLA_N. 1 hit.
[Graphical view]
PROSITEPS00115. RNA_POL_II_REPEAT. 42 hits.
[Graphical view]
ProtoNetSearch...

Other

ChiTaRSPOLR2A. human.
EvolutionaryTraceP24928.
GeneWikiPOLR2A.
GenomeRNAi5430.
NextBio21009.
PROP24928.
SOURCESearch...

Entry information

Entry nameRPB1_HUMAN
AccessionPrimary (citable) accession number: P24928
Secondary accession number(s): A6NN93, B9EH88
Entry history
Integrated into UniProtKB/Swiss-Prot: March 1, 1992
Last sequence update: December 15, 2009
Last modified: July 9, 2014
This is version 159 of the entry and version 2 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 17

Human chromosome 17: entries, gene names and cross-references to MIM