UniProtKB - P16861 (PFKA1_YEAST)
Your basket is currently empty. i <p>When browsing through different UniProt proteins, you can use the ‘basket’ to save them, so that you can back to find or analyse them later.<p><a href='/help/basket' target='_top'>More...</a></p>
Select item(s) and click on "Add to basket" to create your own collection here
(400 entries max)
- BLAST>sp|P16861|PFKA1_YEAST ATP-dependent 6-phosphofructokinase subunit alpha OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=PFK1 PE=1 SV=1 MQSQDSCYGVAFRSIITNDEALFKKTIHFYHTLGFATVKDFNKFKHGENSLLSSGTSQDS LREVWLESFKLSEVDASGFRIPQQEATNKAQSQGALLKIRLVMSAPIDETFDTNETATIT YFSTDLNKIVEKFPKQAEKLSDTLVFLKDPMGNNITFSGLANATDSAPTSKDAFLEATSE DEIISRASSDASDLLRQTLGSSQKKKKIAVMTSGGDSPGMNAAVRAVVRTGIHFGCDVFA VYEGYEGLLRGGKYLKKMAWEDVRGWLSEGGTLIGTARSMEFRKREGRRQAAGNLISQGI DALVVCGGDGSLTGADLFRHEWPSLVDELVAEGRFTKEEVAPYKNLSIVGLVGSIDNDMS GTDSTIGAYSALERICEMVDYIDATAKSHSRAFVVEVMGRHCGWLALMAGIATGADYIFI PERAVPHGKWQDELKEVCQRHRSKGRRNNTIIVAEGALDDQLNPVTANDVKDALIELGLD TKVTILGHVQRGGTAVAHDRWLATLQGVDAVKAVLEFTPETPSPLIGILENKIIRMPLVE SVKLTKSVATAIENKDFDKAISLRDTEFIELYENFLSTTVKDDGSELLPVSDRLNIGIVH VGAPSAALNAATRAATLYCLSHGHKPYAIMNGFSGLIQTGEVKELSWIDVENWHNLGGSE IGTNRSVASEDLGTIAYYFQKNKLDGLIILGGFEGFRSLKQLRDGRTQHPIFNIPMCLIP ATVSNNVPGTEYSLGVDTCLNALVNYTDDIKQSASATRRRVFVCEVQGGHSGYIASFTGL ITGAVSVYTPEKKIDLASIREDITLLKENFRHDKGENRNGKLLVRNEQASSVYSTQLLAD IISEASKGKFGVRTAIPGHVQQGGVPSSKDRVTASRFAVKCIKFIEQWNKKNEASPNTDA KVLRFKFDTHGEKVPTVEHEDDSAAVICVNGSHVSFKPIANLWENETNVELRKGFEVHWA EYNKIGDILSGRLKLRAEVAALAAENK
- Align
- Format
- Add to basketAdded to basket
- History
- Other tutorials and videos
- Help video
- Feedback
ATP-dependent 6-phosphofructokinase subunit alpha
PFK1
Annotation score:5 out of 5
<p>The annotation score provides a heuristic measure of the annotation content of a UniProtKB entry or proteome.<p><a href='/help/annotation_score' target='_top'>More...</a></p>-Experimental evidence at protein leveli <p>This indicates the type of evidence that supports the existence of the protein. Note that the ‘protein existence’ evidence does not give information on the accuracy or correctness of the sequence(s) displayed.<p><a href='/help/protein_existence' target='_top'>More...</a></p>Select a section on the left to see content.
<p>This section provides any useful information about the protein, mostly biological knowledge.<p><a href='/help/function_section' target='_top'>More...</a></p>Functioni
<p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi
8 Publications<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.9"Glycolysis mutants in Saccharomyces cerevisiae."
Clifton D., Weinstock S.B., Fraenkel D.G.
Genetics 88:1-11(1978) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION. - Ref.11"Mutant studies of yeast phosphofructokinase."
Clifton D., Fraenkel D.G.
Biochemistry 21:1935-1942(1982) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION. - Ref.12"Similarity of activation of yeast phosphofructokinase by AMP and fructose-2,6-bisphosphate."
Nissler K., Otto A., Schellenberger W., Hofmann E.
Biochem. Biophys. Res. Commun. 111:294-300(1983) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION, CATALYTIC ACTIVITY, BIOPHYSICOCHEMICAL PROPERTIES, ENZYME REGULATION. - Ref.13"Temporal organization of the phosphofructokinase/fructose-1,6-biphosphatase cycle."
Hofmann E., Eschrich K., Schellenberger W.
Adv. Enzyme Regul. 23:331-362(1985) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION. - Ref.15"Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast."
Heinisch J.
Mol. Gen. Genet. 202:75-82(1986) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION. - Ref.16"Studies on the function of yeast phosphofructokinase subunits by in vitro mutagenesis."
Arvanitidis A., Heinisch J.J.
J. Biol. Chem. 269:8911-8918(1994) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION, MUTAGENESIS OF ASP-309; ASP-356; ARG-447 AND HIS-488. - Ref.17"A yeast phosphofructokinase insensitive to the allosteric activator fructose 2,6-bisphosphate. Glycolysis/metabolic regulation/allosteric control."
Heinisch J.J., Boles E., Timpel C.
J. Biol. Chem. 271:15928-15933(1996) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION, MUTAGENESIS OF SER-724 AND HIS-859. - Ref.18"Single point mutations in either gene encoding the subunits of the heterooctameric yeast phosphofructokinase abolish allosteric inhibition by ATP."
Rodicio R., Strauss A., Heinisch J.J.
J. Biol. Chem. 275:40952-40960(2000) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION, MUTAGENESIS OF PRO-728.
Miscellaneous
<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.19"Global analysis of protein expression in yeast."
Ghaemmaghami S., Huh W.-K., Bower K., Howson R.W., Belle A., Dephoure N., O'Shea E.K., Weissman J.S.
Nature 425:737-741(2003) [PubMed] [Europe PMC] [Abstract]Cited for: LEVEL OF PROTEIN EXPRESSION [LARGE SCALE ANALYSIS].
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">Function</a> section describes the catalytic activity of an enzyme, i.e. the chemical reaction it catalyzes. This information usually correlates with the presence of an EC (Enzyme Commission) number in the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section.<p><a href='/help/catalytic_activity' target='_top'>More...</a></p>Catalytic activityi
<p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi
1 Publication<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.12"Similarity of activation of yeast phosphofructokinase by AMP and fructose-2,6-bisphosphate."
Nissler K., Otto A., Schellenberger W., Hofmann E.
Biochem. Biophys. Res. Commun. 111:294-300(1983) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION, CATALYTIC ACTIVITY, BIOPHYSICOCHEMICAL PROPERTIES, ENZYME REGULATION.
<p>This subsection of the ‘Function’ section provides information relevant to cofactors. A cofactor is any non-protein substance required for a protein to be catalytically active. Some cofactors are inorganic, such as the metal atoms zinc, iron, and copper in various oxidation states. Others, such as most vitamins, are organic.<p><a href='/help/cofactor' target='_top'>More...</a></p>Cofactori
<p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi
By similarity<p>Manually curated information which has been propagated from a related experimentally characterized protein.</p> <p><a href="/manual/evidences#ECO:0000250">More…</a></p> Manual assertion inferred from sequence similarity toi
<p>This subsection of the ‘Function’ section describes an enzyme regulatory mechanism and reports the components which regulate (by activation or inhibition) the reaction.<p><a href='/help/enzyme_regulation' target='_top'>More...</a></p>Enzyme regulationi
<p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi
3 Publications<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.8"Activation by phosphate of yeast phosphofructokinase."
Banuelos M., Gancedo C., Gancedo J.M.
J. Biol. Chem. 252:6394-6398(1977) [PubMed] [Europe PMC] [Abstract]Cited for: ENZYME REGULATION. - Ref.10"Stimulation of yeast phosphofructokinase activity by fructose 2,6-bisphosphate."
Avigad G.
Biochem. Biophys. Res. Commun. 102:985-991(1981) [PubMed] [Europe PMC] [Abstract]Cited for: ENZYME REGULATION. - Ref.12"Similarity of activation of yeast phosphofructokinase by AMP and fructose-2,6-bisphosphate."
Nissler K., Otto A., Schellenberger W., Hofmann E.
Biochem. Biophys. Res. Commun. 111:294-300(1983) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION, CATALYTIC ACTIVITY, BIOPHYSICOCHEMICAL PROPERTIES, ENZYME REGULATION.
<p>This subsection of the ‘Function’ section describes biophysical and chemical properties, such as maximal absorption, kinetic parameters, pH dependence, redox potentials and temperature dependence.<p><a href='/help/biophysicochemical_properties' target='_top'>More...</a></p>Kineticsi
- KM=0.24 mM for ATP (without effector)1 Publication
<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.12"Similarity of activation of yeast phosphofructokinase by AMP and fructose-2,6-bisphosphate."
Nissler K., Otto A., Schellenberger W., Hofmann E.
Biochem. Biophys. Res. Commun. 111:294-300(1983) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION, CATALYTIC ACTIVITY, BIOPHYSICOCHEMICAL PROPERTIES, ENZYME REGULATION.
- KM=0.3 mM for ATP (with 1 mM AMP)1 Publication
<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.12"Similarity of activation of yeast phosphofructokinase by AMP and fructose-2,6-bisphosphate."
Nissler K., Otto A., Schellenberger W., Hofmann E.
Biochem. Biophys. Res. Commun. 111:294-300(1983) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION, CATALYTIC ACTIVITY, BIOPHYSICOCHEMICAL PROPERTIES, ENZYME REGULATION.
- KM=0.31 mM for ATP (with 20 µM fructose 2,6-bisphosphate)1 Publication
<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.12"Similarity of activation of yeast phosphofructokinase by AMP and fructose-2,6-bisphosphate."
Nissler K., Otto A., Schellenberger W., Hofmann E.
Biochem. Biophys. Res. Commun. 111:294-300(1983) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION, CATALYTIC ACTIVITY, BIOPHYSICOCHEMICAL PROPERTIES, ENZYME REGULATION.
- KM=1.65 mM for fructose 6-phosphate (without effector)1 Publication
<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.12"Similarity of activation of yeast phosphofructokinase by AMP and fructose-2,6-bisphosphate."
Nissler K., Otto A., Schellenberger W., Hofmann E.
Biochem. Biophys. Res. Commun. 111:294-300(1983) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION, CATALYTIC ACTIVITY, BIOPHYSICOCHEMICAL PROPERTIES, ENZYME REGULATION.
- KM=0.51 mM for fructose 6-phosphate (with 1 mM AMP)1 Publication
<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.12"Similarity of activation of yeast phosphofructokinase by AMP and fructose-2,6-bisphosphate."
Nissler K., Otto A., Schellenberger W., Hofmann E.
Biochem. Biophys. Res. Commun. 111:294-300(1983) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION, CATALYTIC ACTIVITY, BIOPHYSICOCHEMICAL PROPERTIES, ENZYME REGULATION.
- KM=0.11 mM for fructose 6-phosphate (with 20 µM fructose 2,6-bisphosphate)1 Publication
<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.12"Similarity of activation of yeast phosphofructokinase by AMP and fructose-2,6-bisphosphate."
Nissler K., Otto A., Schellenberger W., Hofmann E.
Biochem. Biophys. Res. Commun. 111:294-300(1983) [PubMed] [Europe PMC] [Abstract]Cited for: FUNCTION, CATALYTIC ACTIVITY, BIOPHYSICOCHEMICAL PROPERTIES, ENZYME REGULATION.
<p>This subsection of the <a href="http://www.uniprot.org/help/function_section">‘Function’</a> section describes the metabolic pathway(s) associated with a protein.<p><a href='/help/pathway' target='_top'>More...</a></p>Pathwayi: glycolysis
This protein is involved in step 3 of the subpathway that synthesizes D-glyceraldehyde 3-phosphate and glycerone phosphate from D-glucose.UniRule annotation<p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi
Proteins known to be involved in the 4 steps of the subpathway in this organism are:
- no protein annotated in this organism
- Glucose-6-phosphate isomerase (PGI1)
- ATP-dependent 6-phosphofructokinase subunit beta (PFK2), ATP-dependent 6-phosphofructokinase subunit alpha (PFK1)
- Fructose-bisphosphate aldolase (FBA1)
View all proteins of this organism that are known to be involved in the subpathway that synthesizes D-glyceraldehyde 3-phosphate and glycerone phosphate from D-glucose, the pathway glycolysis and in Carbohydrate degradation.
Sites
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei | 215 | ATP; via amide nitrogenUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi By similarity<p>Manually curated information which has been propagated from a related experimentally characterized protein.</p> <p><a href="/manual/evidences#ECO:0000250">More…</a></p> Manual assertion inferred from sequence similarity toi | 1 | |
<p>This subsection of the ‘Function’ section indicates at which position the protein binds a given metal ion. The nature of the metal is indicated in the ‘Description’ field.<p><a href='/help/metal' target='_top'>More...</a></p>Metal bindingi | 309 | Magnesium; catalyticUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi By similarity<p>Manually curated information which has been propagated from a related experimentally characterized protein.</p> <p><a href="/manual/evidences#ECO:0000250">More…</a></p> Manual assertion inferred from sequence similarity toi | 1 | |
<p>This subsection of the ‘Function’ section is used for enzymes and indicates the residues directly involved in catalysis.<p><a href='/help/act_site' target='_top'>More...</a></p>Active sitei | 356 | Proton acceptorUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi By similarity<p>Manually curated information which has been propagated from a related experimentally characterized protein.</p> <p><a href="/manual/evidences#ECO:0000250">More…</a></p> Manual assertion inferred from sequence similarity toi | 1 | |
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei | 391 | Substrate; shared with subunit beta1 Publication <p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 | |
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei | 455 | Substrate1 Publication <p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 | |
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei | 482 | Substrate; shared with subunit beta1 Publication <p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 | |
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei | 665 | Allosteric activator fructose 2,6-bisphosphateUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi 1 Publication<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 | |
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei | 760 | Allosteric activator fructose 2,6-bisphosphate; shared with subunit betaUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi 1 Publication<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 | |
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei | 827 | Allosteric activator fructose 2,6-bisphosphateUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi 1 Publication<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 | |
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei | 853 | Allosteric activator fructose 2,6-bisphosphate; shared with subunit betaUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi 1 Publication<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 | |
<p>This subsection of the ‘Function’ section describes the interaction between a single amino acid and another chemical entity. Priority is given to the annotation of physiological ligands.<p><a href='/help/binding' target='_top'>More...</a></p>Binding sitei | 952 | Allosteric activator fructose 2,6-bisphosphateUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi 1 Publication<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 |
Regions
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the ‘Function’ section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi | 278 – 279 | ATPUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi By similarity<p>Manually curated information which has been propagated from a related experimentally characterized protein.</p> <p><a href="/manual/evidences#ECO:0000250">More…</a></p> Manual assertion inferred from sequence similarity toi | 2 | |
<p>This subsection of the ‘Function’ section describes a region in the protein which binds nucleotide phosphates. It always involves more than one amino acid and includes all residues involved in nucleotide-binding.<p><a href='/help/np_bind' target='_top'>More...</a></p>Nucleotide bindingi | 308 – 311 | ATPUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi By similarity<p>Manually curated information which has been propagated from a related experimentally characterized protein.</p> <p><a href="/manual/evidences#ECO:0000250">More…</a></p> Manual assertion inferred from sequence similarity toi | 4 |
<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Molecular functioni
- 6-phosphofructokinase activity Source: UniProtKB-EC
- ATP binding Source: UniProtKB-KW
- metal ion binding Source: UniProtKB-KW
<p>The <a href="http://www.geneontology.org/">Gene Ontology (GO)</a> project provides a set of hierarchical controlled vocabulary split into 3 categories:<p><a href='/help/gene_ontology' target='_top'>More...</a></p>GO - Biological processi
- fructose 6-phosphate metabolic process Source: InterPro
- glycolytic process Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
- hydrogen ion transmembrane transport Source: UniProtKB <p>Inferred from Genetic Interaction</p> <p>Used to describe “traditional” genetic interactions such as suppressors and synthetic lethals as well as other techniques such as functional complementation, rescue experiments, or inferences about a gene drawn from the phenotype of a mutation in a different gene.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#igi">GO evidence code guide</a></p> Inferred from genetic interactioni
- regulation of intracellular pH Source: SGD <p>Inferred from Mutant Phenotype</p> <p>Describes annotations that are concluded from looking at variations or changes in a gene product such as mutations or abnormal levels and includes techniques such as knockouts, overexpression, anti-sense experiments and use of specific protein inhibitors.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#imp">GO evidence code guide</a></p> Inferred from mutant phenotypei
<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywordsi
Molecular function | Allosteric enzyme, Kinase, Transferase |
Biological process | Glycolysis |
Ligand | ATP-binding, Magnesium, Metal-binding, Nucleotide-binding |
Enzyme and pathway databases
BioCyc Collection of Pathway/Genome Databases More...BioCyci | YEAST:YGR240C-MONOMER. |
Reactome - a knowledgebase of biological pathways and processes More...Reactomei | R-SCE-6798695. Neutrophil degranulation. R-SCE-70171. Glycolysis. |
SABIO-RK: Biochemical Reaction Kinetics Database More...SABIO-RKi | P16861. |
UniPathway: a resource for the exploration and annotation of metabolic pathways More...UniPathwayi | UPA00109; UER00182. |
<p>This section provides information about the protein and gene name(s) and synonym(s) and about the organism that is the source of the protein sequence.<p><a href='/help/names_and_taxonomy_section' target='_top'>More...</a></p>Names & Taxonomyi
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides an exhaustive list of all names of the protein, from commonly used to obsolete, to allow unambiguous identification of a protein.<p><a href='/help/protein_names' target='_top'>More...</a></p>Protein namesi | Recommended name: ATP-dependent 6-phosphofructokinase subunit alphaUniRule annotation<p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi (EC:2.7.1.11UniRule annotation<p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi )Alternative name(s): ATP-dependent 6-phosphofructokinaseUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi Short name: ATP-PFKUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi Short name: Phosphofructokinase 1UniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi PhosphohexokinaseUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi |
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section indicates the name(s) of the gene(s) that code for the protein sequence(s) described in the entry. Four distinct tokens exist: ‘Name’, ‘Synonyms’, ‘Ordered locus names’ and ‘ORF names’.<p><a href='/help/gene_name' target='_top'>More...</a></p>Gene namesi | Name:PFK1 Ordered Locus Names:YGR240C ORF Names:G8599 |
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section provides information on the name(s) of the organism that is the source of the protein sequence.<p><a href='/help/organism-name' target='_top'>More...</a></p>Organismi | Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) |
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section shows the unique identifier assigned by the <span class="caps">NCBI</span> to the source organism of the protein. This is known as the ‘taxonomic identifier’ or ‘taxid’.<p><a href='/help/taxonomic_identifier' target='_top'>More...</a></p>Taxonomic identifieri | 559292 [NCBI] |
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section contains the taxonomic hierarchical classification lineage of the source organism. It lists the nodes as they appear top-down in the taxonomic tree, with the more general grouping listed first.<p><a href='/help/taxonomic_lineage' target='_top'>More...</a></p>Taxonomic lineagei | cellular organisms › Eukaryota › Opisthokonta › Fungi › Dikarya › Ascomycota › saccharomyceta › Saccharomycotina › Saccharomycetes › Saccharomycetales › Saccharomycetaceae › Saccharomyces › Saccharomyces cerevisiae |
<p>This subsection of the <a href="http://www.uniprot.org/help/names_and_taxonomy_section">Names and taxonomy</a> section is present for entries that are part of a <a href="http://www.uniprot.org/proteomes">proteome</a>, i.e. of a set of proteins thought to be expressed by organisms whose genomes have been completely sequenced.<p><a href='/help/proteomes_manual' target='_top'>More...</a></p>Proteomesi |
|
Organism-specific databases
Eukaryotic Pathogen Database Resources More...EuPathDBi | FungiDB:YGR240C. |
Saccharomyces Genome Database More...SGDi | S000003472. PFK1. |
<p>This section provides information on the location and the topology of the mature protein in the cell.<p><a href='/help/subcellular_location_section' target='_top'>More...</a></p>Subcellular locationi
Mitochondrion
- Mitochondrion outer membrane ; Peripheral membrane protein ; Cytoplasmic side 1 Publication
<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.21"Enolase takes part in a macromolecular complex associated to mitochondria in yeast."
Brandina I., Graham J., Lemaitre-Guillier C., Entelis N., Krasheninnikov I., Sweetlove L., Tarassov I., Martin R.P.
Biochim. Biophys. Acta 1757:1217-1228(2006) [PubMed] [Europe PMC] [Abstract]Cited for: SUBCELLULAR LOCATION.
- Mitochondrion outer membrane ; Peripheral membrane protein ; Cytoplasmic side 1 Publication
Other locations
- Cytoplasm UniRule annotation
<p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi
1 Publication<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.23"Detection and localisation of protein-protein interactions in Saccharomyces cerevisiae using a split-GFP method."
Barnard E., McFerran N.V., Trudgett A., Nelson J., Timson D.J.
Fungal Genet. Biol. 45:597-604(2008) [PubMed] [Europe PMC] [Abstract]Cited for: SUBCELLULAR LOCATION.
- Cytoplasm UniRule annotation
Cytosol
- 6-phosphofructokinase complex Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
Mitochondrion
- mitochondrial outer membrane Source: UniProtKB-SubCell
- mitochondrion Source: SGD <p>Inferred from Direct Assay</p> <p>Used to indicate a direct assay for the function, process or component indicated by the GO term.</p> <p>More information in the <a href="http://geneontology.org/page/guide-go-evidence-codes#ida">GO evidence code guide</a></p> Inferred from direct assayi
<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywords - Cellular componenti
Cytoplasm, Membrane, Mitochondrion, Mitochondrion outer membrane<p>This section provides information on the disease(s) and phenotype(s) associated with a protein.<p><a href='/help/pathology_and_biotech_section' target='_top'>More...</a></p>Pathology & Biotechi
Mutagenesis
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the <a href="http://www.uniprot.org/manual/pathology_and_biotech_section">‘Pathology and Biotech’</a> section describes the effect of the experimental mutation of one or more amino acid(s) on the biological properties of the protein.<p><a href='/help/mutagen' target='_top'>More...</a></p>Mutagenesisi | 309 | D → T: Reduces maximal activity of the holoenzyme by 50%. Completely abolishes catalytic activity; when associated with 'S-348' in subunit beta. 1 Publication <p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 | |
<p>This subsection of the <a href="http://www.uniprot.org/manual/pathology_and_biotech_section">‘Pathology and Biotech’</a> section describes the effect of the experimental mutation of one or more amino acid(s) on the biological properties of the protein.<p><a href='/help/mutagen' target='_top'>More...</a></p>Mutagenesisi | 356 | D → S: Reduces maximal activity of the holoenzyme by 50%. Completely abolishes catalytic activity; when associated with 'S-348' in subunit beta. 1 Publication <p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 | |
<p>This subsection of the <a href="http://www.uniprot.org/manual/pathology_and_biotech_section">‘Pathology and Biotech’</a> section describes the effect of the experimental mutation of one or more amino acid(s) on the biological properties of the protein.<p><a href='/help/mutagen' target='_top'>More...</a></p>Mutagenesisi | 447 | R → S: Reduces maximal activity of the holoenzyme by less than 25%. 1 Publication <p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 | |
<p>This subsection of the <a href="http://www.uniprot.org/manual/pathology_and_biotech_section">‘Pathology and Biotech’</a> section describes the effect of the experimental mutation of one or more amino acid(s) on the biological properties of the protein.<p><a href='/help/mutagen' target='_top'>More...</a></p>Mutagenesisi | 488 | H → S: Increases the KM for fructose 6-phosphate 20 fold. 1 Publication <p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 | |
<p>This subsection of the <a href="http://www.uniprot.org/manual/pathology_and_biotech_section">‘Pathology and Biotech’</a> section describes the effect of the experimental mutation of one or more amino acid(s) on the biological properties of the protein.<p><a href='/help/mutagen' target='_top'>More...</a></p>Mutagenesisi | 724 | S → D: Abolishes sensitivity of the holoenzyme to fructose 2,6-bisphosphate activation; when associated with 'D-718' in subunit beta. 1 Publication <p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 | |
<p>This subsection of the <a href="http://www.uniprot.org/manual/pathology_and_biotech_section">‘Pathology and Biotech’</a> section describes the effect of the experimental mutation of one or more amino acid(s) on the biological properties of the protein.<p><a href='/help/mutagen' target='_top'>More...</a></p>Mutagenesisi | 728 | P → L: Drastically reduces sensitivity of the holoenzyme to ATP inhibition. 1 Publication <p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 | |
<p>This subsection of the <a href="http://www.uniprot.org/manual/pathology_and_biotech_section">‘Pathology and Biotech’</a> section describes the effect of the experimental mutation of one or more amino acid(s) on the biological properties of the protein.<p><a href='/help/mutagen' target='_top'>More...</a></p>Mutagenesisi | 859 | H → S: Reduces sensitivity of the holoenzyme to fructose 2,6-bisphosphate activation; when associated with 'S-853' in subunit beta. 1 Publication <p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 1 |
<p>This section describes post-translational modifications (PTMs) and/or processing events.<p><a href='/help/ptm_processing_section' target='_top'>More...</a></p>PTM / Processingi
Molecule processing
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the ‘PTM / Processing’ section describes the extent of a polypeptide chain in the mature protein following processing.<p><a href='/help/chain' target='_top'>More...</a></p>ChainiPRO_0000112045 | 1 – 987 | ATP-dependent 6-phosphofructokinase subunit alphaAdd BLAST | 987 |
Amino acid modifications
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei | 3 | PhosphoserineCombined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei
| 1 | |
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section"><span class="caps">PTM</span> / Processing</a> section describes covalent linkages of various types formed between two proteins (interchain cross-links) or between two parts of the same protein (intrachain cross-links), except the disulfide bonds that are annotated in the <a href="http://www.uniprot.org/manual/disulfid">‘Disulfide bond’</a> subsection.<p><a href='/help/crosslnk' target='_top'>More...</a></p>Cross-linki | 89 | Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei
| ||
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei | 166 | PhosphoserineCombined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei
| 1 | |
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei | 179 | PhosphoserineCombined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei
| 1 | |
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei | 185 | PhosphoserineCombined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei
| 1 | |
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei | 189 | PhosphoserineCombined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei
| 1 | |
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei | 192 | PhosphoserineCombined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei
| 1 | |
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei | 217 | PhosphoserineCombined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei
| 1 | |
<p>This subsection of the ‘PTM / Processing’ section specifies the position and type of each modified residue excluding <a href="http://www.uniprot.org/manual/lipid">lipids</a>, <a href="http://www.uniprot.org/manual/carbohyd">glycans</a> and <a href="http://www.uniprot.org/manual/crosslnk">protein cross-links</a>.<p><a href='/help/mod_res' target='_top'>More...</a></p>Modified residuei | 450 | PhosphothreonineCombined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei
| 1 | |
<p>This subsection of the <a href="http://www.uniprot.org/help/ptm_processing_section"><span class="caps">PTM</span> / Processing</a> section describes covalent linkages of various types formed between two proteins (interchain cross-links) or between two parts of the same protein (intrachain cross-links), except the disulfide bonds that are annotated in the <a href="http://www.uniprot.org/manual/disulfid">‘Disulfide bond’</a> subsection.<p><a href='/help/crosslnk' target='_top'>More...</a></p>Cross-linki | 625 | Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei
|
<p>UniProtKB Keywords constitute a <a href="http://www.uniprot.org/keywords">controlled vocabulary</a> with a hierarchical structure. Keywords summarise the content of a UniProtKB entry and facilitate the search for proteins of interest.<p><a href='/help/keywords' target='_top'>More...</a></p>Keywords - PTMi
Isopeptide bond, Phosphoprotein, Ubl conjugationProteomic databases
MaxQB - The MaxQuant DataBase More...MaxQBi | P16861. |
PaxDb, a database of protein abundance averages across all three domains of life More...PaxDbi | P16861. |
PRoteomics IDEntifications database More...PRIDEi | P16861. |
PTM databases
iPTMnet integrated resource for PTMs in systems biology context More...iPTMneti | P16861. |
<p>This section provides information on the quaternary structure of a protein and on interaction(s) with other proteins or protein complexes.<p><a href='/help/interaction_section' target='_top'>More...</a></p>Interactioni
<p>This subsection of the <a href="http://www.uniprot.org/help/interaction_section">‘Interaction’</a> section provides information about the protein quaternary structure and interaction(s) with other proteins or protein complexes (with the exception of physiological receptor-ligand interactions which are annotated in the <a href="http://www.uniprot.org/help/function_section">‘Function’</a> section).<p><a href='/help/subunit_structure' target='_top'>More...</a></p>Subunit structurei
<p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi
3 Publications<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
- Ref.7"Physicochemical parameters and subunit composition of yeast phosphofructokinase."
Kopperschlaeger G., Baer J., Nissler K., Hofmann E.
Eur. J. Biochem. 81:317-325(1977) [PubMed] [Europe PMC] [Abstract]Cited for: SUBUNIT. - Ref.14"An electron microscopy study of the quarternary structure of yeast phosphofructokinase."
Nissler K., Hofmann E., Stel'maschchuk V., Orlova E., Kiselev N.
Biomed. Biochim. Acta 44:251-259(1985) [PubMed] [Europe PMC] [Abstract]Cited for: SUBUNIT. - Ref.28"The crystal structures of eukaryotic phosphofructokinases from baker's yeast and rabbit skeletal muscle."
Banaszak K., Mechin I., Obmolova G., Oldham M., Chang S.H., Ruiz T., Radermacher M., Kopperschlager G., Rypniewski W.
J. Mol. Biol. 407:284-297(2011) [PubMed] [Europe PMC] [Abstract]Cited for: X-RAY CRYSTALLOGRAPHY (2.9 ANGSTROMS) OF 201-987 IN COMPLEX WITH SUBSTRATE FRUCTOSE 6-PHOSPHATE AND ALLOSTERIC ACTIVATOR FRUCTOSE 2,6-BISPHOSPHATE.
<p>This subsection of the ‘<a href="http://www.uniprot.org/help/interaction_section">Interaction</a>’ section provides information about binary protein-protein interactions. The data presented in this section are a quality-filtered subset of binary interactions automatically derived from the <a href="http://www.ebi.ac.uk/intact/">IntAct database</a>. It is updated on a monthly basis. Each binary interaction is displayed on a separate line.<p><a href='/help/binary_interactions' target='_top'>More...</a></p>Binary interactionsi
With | Entry | #Exp. | IntAct | Notes |
---|---|---|---|---|
CMD1 | P06787 | 4 | EBI-9428,EBI-3976 | |
PFK2 | P16862 | 64 | EBI-9428,EBI-9435 | |
SSA1 | P10591 | 3 | EBI-9428,EBI-8591 |
Protein-protein interaction databases
The Biological General Repository for Interaction Datasets (BioGrid) More...BioGridi | 33492. 249 interactors. |
Database of interacting proteins More...DIPi | DIP-1505N. |
Protein interaction database and analysis system More...IntActi | P16861. 84 interactors. |
Molecular INTeraction database More...MINTi | P16861. |
STRING: functional protein association networks More...STRINGi | 4932.YGR240C. |
<p>This section provides information on the tertiary and secondary structure of a protein.<p><a href='/help/structure_section' target='_top'>More...</a></p>Structurei
Secondary structure
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 207 – 215 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 9 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 220 – 233 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 14 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 237 – 241 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 5 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 244 – 250 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 7 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 254 – 257 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 260 – 263 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 266 – 268 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 281 – 283 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 285 – 297 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 13 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 300 – 307 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 8 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 309 – 319 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 11 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 322 – 330 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 9 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 331 – 334 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 337 – 343 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 7 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 347 – 356 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 10 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 368 – 388 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 21 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 392 – 397 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 6 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 404 – 412 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 9 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 416 – 419 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 421 – 423 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 427 – 429 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 430 – 443 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 14 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 449 – 454 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 6 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 467 – 477 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 11 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 481 – 485 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 5 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 487 – 490 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 497 – 515 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 19 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 524 – 537 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 14 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 538 – 553 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 16 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 557 – 562 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 6 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 568 – 579 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 12 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 595 – 603 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 9 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 608 – 622 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 15 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 625 – 629 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 5 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 632 – 639 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 8 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 642 – 644 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 647 – 652 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 6 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 653 – 655 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 668 – 670 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 672 – 681 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 10 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 685 – 692 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 8 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 693 – 705 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 13 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 706 – 708 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 710 – 713 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 716 – 721 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 6 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 736 – 757 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 22 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 758 – 766 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 9 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 773 – 780 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 8 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 781 – 783 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 785 – 788 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 790 – 792 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 796 – 812 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 17 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 821 – 826 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 6 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 831 – 833 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 835 – 846 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 12 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 849 – 856 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 8 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 858 – 862 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 5 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 868 – 890 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 23 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 921 – 923 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 924 – 930 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 7 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 933 – 938 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 6 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 939 – 942 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined hydrogen-bonded turns within the protein sequence. These elements correspond to the <span class="caps">DSSP</span> secondary structure code ‘T’.<p><a href='/help/turn' target='_top'>More...</a></p>Turni | 948 – 951 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 4 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined beta strands within the protein sequence.<p><a href='/help/strand' target='_top'>More...</a></p>Beta strandi | 953 – 955 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 3 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 960 – 969 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 10 | |
<p>This subsection of the ‘Structure’ section is used to indicate the positions of experimentally determined helical regions within the protein sequence.<p><a href='/help/helix' target='_top'>More...</a></p>Helixi | 972 – 978 | Combined sources <p>Manually validated information inferred from a combination of experimental and computational evidence.</p> <p><a href="/manual/evidences#ECO:0000244">More…</a></p> Manual assertion inferred from combination of experimental and computational evidencei | 7 |
3D structure databases
Select the link destinations: Protein Data Bank Europe More...PDBeiProtein Data Bank RCSB More...RCSB PDBiProtein Data Bank Japan More...PDBjiLinks Updated | PDB entry | Method | Resolution (Å) | Chain | Positions | PDBsum |
3O8O | X-ray | 2.90 | A/C/E/G | 201-987 | [»] | |
Protein Model Portal of the PSI-Nature Structural Biology Knowledgebase More...ProteinModelPortali | P16861. | |||||
SWISS-MODEL Repository - a database of annotated 3D protein structure models More...SMRi | P16861. | |||||
Database of comparative protein structure models More...ModBasei | Search... | |||||
MobiDB: a database of protein disorder and mobility annotations More...MobiDBi | Search... |
<p>This section provides information on sequence similarities with other proteins and the domain(s) present in a protein.<p><a href='/help/family_and_domains_section' target='_top'>More...</a></p>Family & Domainsi
Region
Feature key | Position(s) | DescriptionActions | Graphical view | Length |
---|---|---|---|---|
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni | 1 – 580 | N-terminal catalytic PFK domain 1UniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi 1 Publication<p>Manually curated information which has been inferred by a curator based on his/her scientific knowledge or on the scientific content of an article.</p> <p><a href="/manual/evidences#ECO:0000305">More…</a></p> Manual assertion inferred by curator fromi
| 580 | |
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni | 354 – 356 | Substrate bindingUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi 1 Publication<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 3 | |
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni | 398 – 400 | Substrate bindingUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi 1 Publication<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 3 | |
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni | 488 – 491 | Substrate bindingUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi 1 Publication<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 4 | |
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni | 581 – 594 | Interdomain linkerUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi 1 Publication<p>Manually curated information which has been inferred by a curator based on his/her scientific knowledge or on the scientific content of an article.</p> <p><a href="/manual/evidences#ECO:0000305">More…</a></p> Manual assertion inferred by curator fromi
| 14 | |
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni | 595 – 987 | C-terminal regulatory PFK domain 2UniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi 1 Publication<p>Manually curated information which has been inferred by a curator based on his/her scientific knowledge or on the scientific content of an article.</p> <p><a href="/manual/evidences#ECO:0000305">More…</a></p> Manual assertion inferred by curator fromi
| 393 | |
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni | 722 – 726 | Allosteric activator fructose 2,6-bisphosphate bindingUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi 1 Publication<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 5 | |
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni | 767 – 769 | Allosteric activator fructose 2,6-bisphosphate bindingUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi 1 Publication<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 3 | |
<p>This subsection of the ‘Family and Domains’ section describes a region of interest that cannot be described in other subsections.<p><a href='/help/region' target='_top'>More...</a></p>Regioni | 859 – 862 | Allosteric activator fructose 2,6-bisphosphate bindingUniRule annotation <p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi 1 Publication<p>Manually curated information for which there is published experimental evidence.</p> <p><a href="/manual/evidences#ECO:0000269">More…</a></p> Manual assertion based on experiment ini
| 4 |
<p>This subsection of the ‘Family and domains’ section provides information about the sequence similarity with other proteins.<p><a href='/help/sequence_similarities' target='_top'>More...</a></p>Sequence similaritiesi
<p>Manual validated information which has been generated by the UniProtKB automatic annotation system.</p> <p><a href="/manual/evidences#ECO:0000255">More…</a></p> Manual assertion according to rulesi
Phylogenomic databases
Ensembl GeneTree More...GeneTreei | ENSGT00390000013209. |
The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms More...HOGENOMi | HOG000200154. |
InParanoid: Eukaryotic Ortholog Groups More...InParanoidi | P16861. |
KEGG Orthology (KO) More...KOi | K00850. |
Identification of Orthologs from Complete Genome Data More...OMAi | KQYDELC. |
Database of Orthologous Groups More...OrthoDBi | EOG092C0LOE. |
Family and domain databases
HAMAP database of protein families More...HAMAPi | MF_03184. Phosphofructokinase_I_E. 1 hit. |
Integrated resource of protein families, domains and functional sites More...InterProi | View protein in InterPro IPR009161. 6-Pfructokinase_euk. IPR022953. ATP_PFK. IPR015912. Phosphofructokinase_CS. IPR000023. Phosphofructokinase_dom. IPR035966. PKF_sf. |
Pfam protein domain database More...Pfami | View protein in Pfam PF00365. PFK. 2 hits. |
PIRSF; a whole-protein classification database More...PIRSFi | PIRSF000533. ATP_PFK_euk. 1 hit. |
Protein Motif fingerprint database; a protein domain database More...PRINTSi | PR00476. PHFRCTKINASE. |
Superfamily database of structural and functional annotation More...SUPFAMi | SSF53784. SSF53784. 3 hits. |
TIGRFAMs; a protein family database More...TIGRFAMsi | TIGR02478. 6PF1K_euk. 1 hit. |
PROSITE; a protein domain and family database More...PROSITEi | View protein in PROSITE PS00433. PHOSPHOFRUCTOKINASE. 2 hits. |
<p>This section displays by default the canonical protein sequence and upon request all isoforms described in the entry. It also includes information pertinent to the sequence(s), including <a href="http://www.uniprot.org/help/sequence_length">length</a> and <a href="http://www.uniprot.org/help/sequences">molecular weight</a>.<p><a href='/help/sequences_section' target='_top'>More...</a></p>Sequencei
<p>This subsection of the <a href="http://www.uniprot.org/help/sequences_section">Sequence</a> section indicates if the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> displayed by default in the entry is complete or not.<p><a href='/help/sequence_status' target='_top'>More...</a></p>Sequence statusi: Complete.
10 20 30 40 50
MQSQDSCYGV AFRSIITNDE ALFKKTIHFY HTLGFATVKD FNKFKHGENS
60 70 80 90 100
LLSSGTSQDS LREVWLESFK LSEVDASGFR IPQQEATNKA QSQGALLKIR
110 120 130 140 150
LVMSAPIDET FDTNETATIT YFSTDLNKIV EKFPKQAEKL SDTLVFLKDP
160 170 180 190 200
MGNNITFSGL ANATDSAPTS KDAFLEATSE DEIISRASSD ASDLLRQTLG
210 220 230 240 250
SSQKKKKIAV MTSGGDSPGM NAAVRAVVRT GIHFGCDVFA VYEGYEGLLR
260 270 280 290 300
GGKYLKKMAW EDVRGWLSEG GTLIGTARSM EFRKREGRRQ AAGNLISQGI
310 320 330 340 350
DALVVCGGDG SLTGADLFRH EWPSLVDELV AEGRFTKEEV APYKNLSIVG
360 370 380 390 400
LVGSIDNDMS GTDSTIGAYS ALERICEMVD YIDATAKSHS RAFVVEVMGR
410 420 430 440 450
HCGWLALMAG IATGADYIFI PERAVPHGKW QDELKEVCQR HRSKGRRNNT
460 470 480 490 500
IIVAEGALDD QLNPVTANDV KDALIELGLD TKVTILGHVQ RGGTAVAHDR
510 520 530 540 550
WLATLQGVDA VKAVLEFTPE TPSPLIGILE NKIIRMPLVE SVKLTKSVAT
560 570 580 590 600
AIENKDFDKA ISLRDTEFIE LYENFLSTTV KDDGSELLPV SDRLNIGIVH
610 620 630 640 650
VGAPSAALNA ATRAATLYCL SHGHKPYAIM NGFSGLIQTG EVKELSWIDV
660 670 680 690 700
ENWHNLGGSE IGTNRSVASE DLGTIAYYFQ KNKLDGLIIL GGFEGFRSLK
710 720 730 740 750
QLRDGRTQHP IFNIPMCLIP ATVSNNVPGT EYSLGVDTCL NALVNYTDDI
760 770 780 790 800
KQSASATRRR VFVCEVQGGH SGYIASFTGL ITGAVSVYTP EKKIDLASIR
810 820 830 840 850
EDITLLKENF RHDKGENRNG KLLVRNEQAS SVYSTQLLAD IISEASKGKF
860 870 880 890 900
GVRTAIPGHV QQGGVPSSKD RVTASRFAVK CIKFIEQWNK KNEASPNTDA
910 920 930 940 950
KVLRFKFDTH GEKVPTVEHE DDSAAVICVN GSHVSFKPIA NLWENETNVE
960 970 980
LRKGFEVHWA EYNKIGDILS GRLKLRAEVA ALAAENK
Sequence databases
Select the link destinations: EMBL nucleotide sequence database More...EMBLiGenBank nucleotide sequence database More...GenBankiDNA Data Bank of Japan; a nucleotide sequence database More...DDBJiLinks Updated | M26943 Genomic DNA. Translation: AAA34859.1. Z73025 Genomic DNA. Translation: CAA97268.1. X87941 Genomic DNA. Translation: CAA61193.1. BK006941 Genomic DNA. Translation: DAA08331.1. |
Protein sequence database of the Protein Information Resource More...PIRi | JQ0016. |
NCBI Reference Sequences More...RefSeqi | NP_011756.1. NM_001181369.1. |
Genome annotation databases
Ensembl fungal genome annotation project More...EnsemblFungii | YGR240C; YGR240C; YGR240C. |
Database of genes from NCBI RefSeq genomes More...GeneIDi | 853155. |
KEGG: Kyoto Encyclopedia of Genes and Genomes More...KEGGi | sce:YGR240C. |
<p>This section provides links to proteins that are similar to the protein sequence(s) described in this entry at different levels of sequence identity thresholds (100%, 90% and 50%) based on their membership in UniProt Reference Clusters (<a href="http://www.uniprot.org/help/uniref">UniRef</a>).<p><a href='/help/similar_proteins_section' target='_top'>More...</a></p>Similar proteinsi
Protein | Similar proteins | Organisms | Length | Cluster ID | Cluster name | Size | |
---|---|---|---|---|---|---|---|
P16861 | A6ZUP8 E7QFB0 A0A0L8VQI3 N1P2M1 B3LI00 B5VJI0 UPI0001F71297 | Saccharomyces cerevisiae (strain YJM789) (Baker's yeast) Saccharomyces cerevisiae (strain Zymaflore VL3) (Baker's yeast) Saccharomyces sp. 'boulardii' Saccharomyces cerevisiae (strain CEN.PK113-7D) (Baker's yeast) Saccharomyces cerevisiae (strain RM11-1a) (Baker's yeast) Saccharomyces cerevisiae (strain AWRI1631) (Baker's yeast) Saccharomyces cerevisiae (Baker's yeast) | 987 | UniRef100_P16861 | Cluster: ATP-dependent 6-phosphofructokinase subunit alpha | 8 |
<p>This section is used to point to information related to entries and found in data collections other than UniProtKB.<p><a href='/help/cross_references_section' target='_top'>More...</a></p>Cross-referencesi
Sequence databases
Select the link destinations: EMBL nucleotide sequence database More...EMBLiGenBank nucleotide sequence database More...GenBankiDNA Data Bank of Japan; a nucleotide sequence database More...DDBJiLinks Updated | M26943 Genomic DNA. Translation: AAA34859.1. Z73025 Genomic DNA. Translation: CAA97268.1. X87941 Genomic DNA. Translation: CAA61193.1. BK006941 Genomic DNA. Translation: DAA08331.1. |
Protein sequence database of the Protein Information Resource More...PIRi | JQ0016. |
NCBI Reference Sequences More...RefSeqi | NP_011756.1. NM_001181369.1. |
3D structure databases
Select the link destinations: Protein Data Bank Europe More...PDBeiProtein Data Bank RCSB More...RCSB PDBiProtein Data Bank Japan More...PDBjiLinks Updated | PDB entry | Method | Resolution (Å) | Chain | Positions | PDBsum |
3O8O | X-ray | 2.90 | A/C/E/G | 201-987 | [»] | |
Protein Model Portal of the PSI-Nature Structural Biology Knowledgebase More...ProteinModelPortali | P16861. | |||||
SWISS-MODEL Repository - a database of annotated 3D protein structure models More...SMRi | P16861. | |||||
Database of comparative protein structure models More...ModBasei | Search... | |||||
MobiDB: a database of protein disorder and mobility annotations More...MobiDBi | Search... |
Protein-protein interaction databases
The Biological General Repository for Interaction Datasets (BioGrid) More...BioGridi | 33492. 249 interactors. |
Database of interacting proteins More...DIPi | DIP-1505N. |
Protein interaction database and analysis system More...IntActi | P16861. 84 interactors. |
Molecular INTeraction database More...MINTi | P16861. |
STRING: functional protein association networks More...STRINGi | 4932.YGR240C. |
PTM databases
iPTMnet integrated resource for PTMs in systems biology context More...iPTMneti | P16861. |
Proteomic databases
MaxQB - The MaxQuant DataBase More...MaxQBi | P16861. |
PaxDb, a database of protein abundance averages across all three domains of life More...PaxDbi | P16861. |
PRoteomics IDEntifications database More...PRIDEi | P16861. |
Protocols and materials databases
Structural Biology Knowledgebase | Search... |
Genome annotation databases
Ensembl fungal genome annotation project More...EnsemblFungii | YGR240C; YGR240C; YGR240C. |
Database of genes from NCBI RefSeq genomes More...GeneIDi | 853155. |
KEGG: Kyoto Encyclopedia of Genes and Genomes More...KEGGi | sce:YGR240C. |
Organism-specific databases
Eukaryotic Pathogen Database Resources More...EuPathDBi | FungiDB:YGR240C. |
Saccharomyces Genome Database More...SGDi | S000003472. PFK1. |
Phylogenomic databases
Ensembl GeneTree More...GeneTreei | ENSGT00390000013209. |
The HOGENOM Database of Homologous Genes from Fully Sequenced Organisms More...HOGENOMi | HOG000200154. |
InParanoid: Eukaryotic Ortholog Groups More...InParanoidi | P16861. |
KEGG Orthology (KO) More...KOi | K00850. |
Identification of Orthologs from Complete Genome Data More...OMAi | KQYDELC. |
Database of Orthologous Groups More...OrthoDBi | EOG092C0LOE. |
Enzyme and pathway databases
UniPathway: a resource for the exploration and annotation of metabolic pathways More...UniPathwayi | UPA00109; UER00182. |
BioCyc Collection of Pathway/Genome Databases More...BioCyci | YEAST:YGR240C-MONOMER. |
Reactome - a knowledgebase of biological pathways and processes More...Reactomei | R-SCE-6798695. Neutrophil degranulation. R-SCE-70171. Glycolysis. |
SABIO-RK: Biochemical Reaction Kinetics Database More...SABIO-RKi | P16861. |
Miscellaneous databases
Protein Ontology More...PROi | PR:P16861. |
Family and domain databases
HAMAP database of protein families More...HAMAPi | MF_03184. Phosphofructokinase_I_E. 1 hit. |
Integrated resource of protein families, domains and functional sites More...InterProi | View protein in InterPro IPR009161. 6-Pfructokinase_euk. IPR022953. ATP_PFK. IPR015912. Phosphofructokinase_CS. IPR000023. Phosphofructokinase_dom. IPR035966. PKF_sf. |
Pfam protein domain database More...Pfami | View protein in Pfam PF00365. PFK. 2 hits. |
PIRSF; a whole-protein classification database More...PIRSFi | PIRSF000533. ATP_PFK_euk. 1 hit. |
Protein Motif fingerprint database; a protein domain database More...PRINTSi | PR00476. PHFRCTKINASE. |
Superfamily database of structural and functional annotation More...SUPFAMi | SSF53784. SSF53784. 3 hits. |
TIGRFAMs; a protein family database More...TIGRFAMsi | TIGR02478. 6PF1K_euk. 1 hit. |
PROSITE; a protein domain and family database More...PROSITEi | View protein in PROSITE PS00433. PHOSPHOFRUCTOKINASE. 2 hits. |
ProtoNet; Automatic hierarchical classification of proteins More...ProtoNeti | Search... |
<p>This section provides general information on the entry.<p><a href='/help/entry_information_section' target='_top'>More...</a></p>Entry informationi
<p>This subsection of the ‘Entry information’ section provides a mnemonic identifier for a UniProtKB entry, but it is not a stable identifier. Each reviewed entry is assigned a unique entry name upon integration into UniProtKB/Swiss-Prot.<p><a href='/help/entry_name' target='_top'>More...</a></p>Entry namei | PFKA1_YEAST | |
<p>This subsection of the ‘Entry information’ section provides one or more accession number(s). These are stable identifiers and should be used to cite UniProtKB entries. Upon integration into UniProtKB, each entry is assigned a unique accession number, which is called ‘Primary (citable) accession number’.<p><a href='/help/accession_numbers' target='_top'>More...</a></p>Accessioni | P16861Primary (citable) accession number: P16861 Secondary accession number(s): D6VV20 | |
<p>This subsection of the ‘Entry information’ section shows the date of integration of the entry into UniProtKB, the date of the last sequence update and the date of the last annotation modification (‘Last modified’). The version number for both the entry and the <a href="http://www.uniprot.org/help/canonical_and_isoforms">canonical sequence</a> are also displayed.<p><a href='/help/entry_history' target='_top'>More...</a></p>Entry historyi | Integrated into UniProtKB/Swiss-Prot: | August 1, 1990 |
Last sequence update: | August 1, 1990 | |
Last modified: | March 28, 2018 | |
This is version 170 of the entry and version 1 of the sequence. See complete history. | ||
<p>This subsection of the ‘Entry information’ section indicates whether the entry has been manually annotated and reviewed by UniProtKB curators or not, in other words, if the entry belongs to the Swiss-Prot section of UniProtKB (<strong>reviewed</strong>) or to the computer-annotated TrEMBL section (<strong>unreviewed</strong>).<p><a href='/help/entry_status' target='_top'>More...</a></p>Entry statusi | Reviewed (UniProtKB/Swiss-Prot) | |
Annotation program | Fungal Protein Annotation Program |