Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P15927 (RFA2_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 158. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (6) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Alt products·Sequence annotation·Sequences·References·Web links·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Replication protein A 32 kDa subunit

Short name=RP-A p32
Alternative name(s):
Replication factor A protein 2
Short name=RF-A protein 2
Replication protein A 34 kDa subunit
Short name=RP-A p34
Gene names
Name:RPA2
Synonyms:REPA2, RPA32, RPA34
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length270 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates, that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism. Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage. In the cellular response to DNA damage the RPA complex controls DNA repair and DNA damage checkpoint activation. It is required for the recruitment of the DNA double-strand break repair factors RAD52 and RAD51 to chromatin in response to DNA damage. Also recruits to sites of DNA damage proteins like XPA and XPG that are involved in nucleotide excision repair and is required for this mechanism of DNA repair. Plays also a role in base excision repair (BER) probably through interaction with UNG. Through RFWD3 may activate CHEK1 and play a role in replication checkpoint control. Also recruits SMARCAL1/HARP which is involved in replication fork restart to sites of DNA damage. May also play a role in telomere maintenance. Ref.1 Ref.9 Ref.10 Ref.11 Ref.14 Ref.15 Ref.18 Ref.20 Ref.22 Ref.28 Ref.30 Ref.33

Subunit structure

Component of the replication protein A complex (RPA/RP-A), a heterotrimeric complex composed of RPA1, RPA2 and RPA3. Interacts with SERTAD3. Interacts with TIPIN. Interacts with TIMELESS. Interacts with PPP4R2; the interaction is direct, DNA damage-dependent and mediates the recruitment of the PP4 catalytic subunit PPP4C. Interacts (hyperphosphorylated) with RAD51. Interacts with SMARCAL1; the interaction is direct and mediates the recruitment to the RPA complex of SMARCAL1. Interacts with RAD52 and XPA; those interactions are direct and associate RAD52 and XPA to the RPA complex. Ref.1 Ref.10 Ref.11 Ref.16 Ref.19 Ref.20 Ref.21 Ref.25 Ref.26 Ref.27 Ref.30 Ref.33 Ref.34 Ref.38

Subcellular location

Nucleus. NucleusPML body. Note: Redistributes to discrete nuclear foci upon DNA damage in an ATR-dependent manner. Ref.16 Ref.17 Ref.22 Ref.30 Ref.33 Ref.34

Induction

Translationally up-regulated in response to DNA damage (at protein level). Ref.36

Post-translational modification

Differentially phosphorylated throughout the cell cycle, becoming phosphorylated at the G1-S transition and dephosphorylated in late mitosis. Mainly phosphorylated at Ser-23 and Ser-29, by cyclin A-CDK2 and cyclin B-CDK1, respectively during DNA replication and mitosis. Dephosphorylation may require the serine/threonine-protein phosphatase 4. Phosphorylation at Ser-23 and Ser-29 is a prerequisite for further phosphorylation. Becomes hyperphosphorylated on additional residues including Ser-4, Ser-8, Thr-21 and Ser-33 in response to DNA damage. Hyperphosphorylation is mediated by ATM, ATR and PRKDC. Primarily recruited to DNA repair nuclear foci as a hypophosphorylated form it undergoes subsequent hyperphosphorylation, catalyzed by ATR. Hyperphosphorylation is required for RAD51 recruitment to chromatin and efficient DNA repair. Phosphorylation at Thr-21 depends upon RFWD3 presence. Ref.6 Ref.7 Ref.8 Ref.12 Ref.13 Ref.17 Ref.30 Ref.34 Ref.35

Sequence similarities

Belongs to the replication factor A protein 2 family.

Contains 1 OB DNA-binding domain.

Ontologies

Keywords
   Biological processDNA damage
DNA recombination
DNA repair
DNA replication
   Cellular componentNucleus
   Coding sequence diversityAlternative splicing
Polymorphism
   LigandDNA-binding
   PTMAcetylation
Phosphoprotein
   Technical term3D-structure
Complete proteome
Direct protein sequencing
Reference proteome
Gene Ontology (GO)
   Biological_processDNA recombinase assembly

Traceable author statement. Source: Reactome

DNA repair

Traceable author statement. Source: Reactome

DNA replication

Inferred from direct assay Ref.1. Source: UniProtKB

DNA strand elongation involved in DNA replication

Traceable author statement. Source: Reactome

G1/S transition of mitotic cell cycle

Traceable author statement. Source: Reactome

base-excision repair

Inferred from direct assay Ref.15. Source: UniProtKB

double-strand break repair

Traceable author statement. Source: Reactome

double-strand break repair via homologous recombination

Traceable author statement. Source: Reactome

mismatch repair

Inferred from mutant phenotype Ref.14. Source: UniProtKB

mitotic G1 DNA damage checkpoint

Inferred from mutant phenotype Ref.35. Source: UniProtKB

mitotic cell cycle

Traceable author statement. Source: Reactome

nucleotide-excision repair

Inferred from mutant phenotype Ref.14. Source: UniProtKB

nucleotide-excision repair, DNA damage removal

Traceable author statement. Source: Reactome

nucleotide-excision repair, DNA gap filling

Traceable author statement. Source: Reactome

regulation of DNA damage checkpoint

Inferred from mutant phenotype Ref.33. Source: UniProtKB

regulation of double-strand break repair via homologous recombination

Inferred from mutant phenotype Ref.30. Source: UniProtKB

telomere maintenance

Traceable author statement. Source: Reactome

telomere maintenance via recombination

Traceable author statement. Source: Reactome

telomere maintenance via semi-conservative replication

Traceable author statement. Source: Reactome

transcription-coupled nucleotide-excision repair

Traceable author statement. Source: Reactome

   Cellular_componentDNA replication factor A complex

Inferred from direct assay Ref.39Ref.1. Source: UniProtKB

PML body

Inferred from direct assay Ref.17. Source: UniProtKB

nucleoplasm

Traceable author statement. Source: Reactome

nucleus

Inferred from direct assay Ref.16. Source: UniProtKB

   Molecular_functiondamaged DNA binding

Inferred from direct assay Ref.10. Source: UniProtKB

enzyme binding

Inferred from physical interaction Ref.27Ref.25. Source: UniProtKB

protein binding

Inferred from physical interaction PubMed 12509449PubMed 15897895Ref.20Ref.30Ref.10Ref.11. Source: UniProtKB

protein phosphatase binding

Inferred from physical interaction Ref.30. Source: UniProtKB

single-stranded DNA binding

Inferred from electronic annotation. Source: Ensembl

ubiquitin protein ligase binding

Inferred from physical interaction Ref.33. Source: UniProtKB

Complete GO annotation...

Alternative products

This entry describes 3 isoforms produced by alternative splicing. [Align] [Select]
Isoform 1 (identifier: P15927-1)

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Isoform 2 (identifier: P15927-2)

The sequence of this isoform differs from the canonical sequence as follows:
     1-4: MWNS → MGRGDRNKRSIR
Note: No experimental confirmation available.
Isoform 3 (identifier: P15927-3)

The sequence of this isoform differs from the canonical sequence as follows:
     1-4: MWNS → MWNSNDGGAG...QALILLFKTG
Note: No experimental confirmation available.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 270270Replication protein A 32 kDa subunit
PRO_0000097270

Regions

DNA binding74 – 14875OB
Region187 – 27084Interaction with RAD52, TIPIN, UNG and XPA
Compositional bias1 – 2929Gly/Ser-rich
Compositional bias37 – 459Arg/Lys-rich (basic)
Compositional bias95 – 12329Asp/Glu-rich (acidic)
Compositional bias127 – 14519Arg/Lys-rich (basic)
Compositional bias247 – 27024Asp/Glu-rich (acidic)

Amino acid modifications

Modified residue11N-acetylmethionine Ref.12 Ref.24 Ref.31
Modified residue41Phosphoserine; by PRKDC Ref.35
Modified residue81Phosphoserine; by PRKDC Ref.35
Modified residue211Phosphothreonine; by PRKDC Ref.12 Ref.13 Ref.34
Modified residue231Phosphoserine; by CDK2 Ref.7 Ref.8 Ref.13 Ref.31
Modified residue291Phosphoserine; by CDK1 Ref.7 Ref.8 Ref.12 Ref.13 Ref.31
Modified residue331Phosphoserine; by PRKDC Ref.12 Ref.13

Natural variations

Alternative sequence1 – 44MWNS → MGRGDRNKRSIR in isoform 2.
VSP_017201
Alternative sequence1 – 44MWNS → MWNSNDGGAGWRRKRIAGGF SKRASLGSERRVVAGEEGRE RSWGVWGSPAGRRRGRLGRL GQCLKGRSLREPAGFSEAWD VAQALILLFKTG in isoform 3.
VSP_017202
Natural variant141Y → S. Ref.3
Corresponds to variant rs28988896 [ dbSNP | Ensembl ].
VAR_023300
Natural variant151G → R. Ref.3
Corresponds to variant rs28988897 [ dbSNP | Ensembl ].
VAR_023301
Natural variant2031N → S. Ref.3
Corresponds to variant rs28904899 [ dbSNP | Ensembl ].
VAR_023302

Experimental info

Mutagenesis41S → A: Increased RAD51 foci formation and homologous recombination efficiency at DNA double-strand breaks; when associated with A-8. Ref.35
Mutagenesis81S → A: Increased RAD51 foci formation and homologous recombination efficiency at DNA double-strand breaks; when associated with A-4. Ref.30 Ref.35
Mutagenesis81S → D: Lower homologous recombination efficiency following DNA double strand break. Impaired DNA synthesis following DNA damage; when associated with D-33. No effect on cell-cycle progression, nor DNA synthesis in undamaged cells; when associated with D-23; D-29 and D-33. Impaired DNA double strand breaks repair; when associated with D-23; D-29 and D-33. Extended DNA damage-induced G2-M checkpoint; when associated with D-23; D-29 and D-33. Preferentially interacts with RAD51; when associated with D-23; D-29 and D-33. Ref.12 Ref.30 Ref.35
Mutagenesis231S → D: No effect on DNA synthesis following DNA damage; when associated with D-29. No effect on cell-cycle progression, nor DNA synthesis in undamaged cells; when associated with D-8; D-29 and D-33. Impaired DNA double strand breaks repair; when associated with D-8; D-29 and D-33. Extended DNA damage-induced G2-M checkpoint; when associated with D-8; D-29 and D-33. Preferentially interacts with RAD51; when associated with D-8; D-29 and D-33. Ref.30
Mutagenesis291S → A: Reduces phosphorylation by CDK1. Ref.12 Ref.30
Mutagenesis291S → D: No effect on DNA synthesis following DNA damage; when associated with D-23. No effect on cell-cycle progression, nor DNA synthesis in undamaged cells; when associated with D-8; D-23 and D-33. Impaired DNA double strand breaks repair; when associated with D-8; D-23 and D-33. Extended DNA damage-induced G2-M checkpoint; when associated with D-8; D-23 and D-33. Preferentially interacts with RAD51; when associated with D-8; D-23 and D-33. Ref.12 Ref.30
Mutagenesis331S → D: Lower homologous recombination efficiency following DNA double strand break. Impaired DNA synthesis following DNA damage; when associated with D-8. No effect on cell-cycle progression, nor DNA synthesis in undamaged cells; when associated with D-8; D-23 and D-29. Impaired DNA double strand breaks repair; when associated with D-8; D-23 and D-29. Extended DNA damage-induced G2-M checkpoint; when associated with D-8; D-23 and D-29. Preferentially interacts with RAD51; when associated with D-8; D-23 and D-29. Ref.30

Secondary structure

..................................... 270
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Isoform 1 [UniParc].

Last modified April 1, 1990. Version 1.
Checksum: 61A563EA7B34A9B1

FASTA27029,247
        10         20         30         40         50         60 
MWNSGFESYG SSSYGGAGGY TQSPGGFGSP APSQAEKKSR ARAQHIVPCT ISQLLSATLV 

        70         80         90        100        110        120 
DEVFRIGNVE ISQVTIVGII RHAEKAPTNI VYKIDDMTAA PMDVRQWVDT DDTSSENTVV 

       130        140        150        160        170        180 
PPETYVKVAG HLRSFQNKKS LVAFKIMPLE DMNEFTTHIL EVINAHMVLS KANSQPSAGR 

       190        200        210        220        230        240 
APISNPGMSE AGNFGGNSFM PANGLTVAQN QVLNLIKACP RPEGLNFQDL KNQLKHMSVS 

       250        260        270 
SIKQAVDFLS NEGHIYSTVD DDHFKSTDAE 

« Hide

Isoform 2 [UniParc].

Checksum: 680A88DB44410EBC
Show »

FASTA27830,156
Isoform 3 [UniParc].

Checksum: B21291661BDEEAFA
Show »

FASTA35838,810

References

« Hide 'large scale' references
[1]"The primary structure of the 32-kDa subunit of human replication protein A."
Erdile L.F., Wold M.S., Kelly T.J.
J. Biol. Chem. 265:3177-3182(1990) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), PARTIAL PROTEIN SEQUENCE, FUNCTION IN DNA REPLICATION, IDENTIFICATION IN RPA COMPLEX.
[2]"Cloning of human full open reading frames in Gateway(TM) system entry vector (pDONR201)."
Ebert L., Schick M., Neubert P., Schatten R., Henze S., Korn B.
Submitted (MAY-2004) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
[3]NIEHS SNPs program
Submitted (APR-2005) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], VARIANTS SER-14; ARG-15 AND SER-203.
[4]"The DNA sequence and biological annotation of human chromosome 1."
Gregory S.G., Barlow K.F., McLay K.E., Kaul R., Swarbreck D., Dunham A., Scott C.E., Howe K.L., Woodfine K., Spencer C.C.A., Jones M.C., Gillson C., Searle S., Zhou Y., Kokocinski F., McDonald L., Evans R., Phillips K. expand/collapse author list , Atkinson A., Cooper R., Jones C., Hall R.E., Andrews T.D., Lloyd C., Ainscough R., Almeida J.P., Ambrose K.D., Anderson F., Andrew R.W., Ashwell R.I.S., Aubin K., Babbage A.K., Bagguley C.L., Bailey J., Beasley H., Bethel G., Bird C.P., Bray-Allen S., Brown J.Y., Brown A.J., Buckley D., Burton J., Bye J., Carder C., Chapman J.C., Clark S.Y., Clarke G., Clee C., Cobley V., Collier R.E., Corby N., Coville G.J., Davies J., Deadman R., Dunn M., Earthrowl M., Ellington A.G., Errington H., Frankish A., Frankland J., French L., Garner P., Garnett J., Gay L., Ghori M.R.J., Gibson R., Gilby L.M., Gillett W., Glithero R.J., Grafham D.V., Griffiths C., Griffiths-Jones S., Grocock R., Hammond S., Harrison E.S.I., Hart E., Haugen E., Heath P.D., Holmes S., Holt K., Howden P.J., Hunt A.R., Hunt S.E., Hunter G., Isherwood J., James R., Johnson C., Johnson D., Joy A., Kay M., Kershaw J.K., Kibukawa M., Kimberley A.M., King A., Knights A.J., Lad H., Laird G., Lawlor S., Leongamornlert D.A., Lloyd D.M., Loveland J., Lovell J., Lush M.J., Lyne R., Martin S., Mashreghi-Mohammadi M., Matthews L., Matthews N.S.W., McLaren S., Milne S., Mistry S., Moore M.J.F., Nickerson T., O'Dell C.N., Oliver K., Palmeiri A., Palmer S.A., Parker A., Patel D., Pearce A.V., Peck A.I., Pelan S., Phelps K., Phillimore B.J., Plumb R., Rajan J., Raymond C., Rouse G., Saenphimmachak C., Sehra H.K., Sheridan E., Shownkeen R., Sims S., Skuce C.D., Smith M., Steward C., Subramanian S., Sycamore N., Tracey A., Tromans A., Van Helmond Z., Wall M., Wallis J.M., White S., Whitehead S.L., Wilkinson J.E., Willey D.L., Williams H., Wilming L., Wray P.W., Wu Z., Coulson A., Vaudin M., Sulston J.E., Durbin R.M., Hubbard T., Wooster R., Dunham I., Carter N.P., McVean G., Ross M.T., Harrow J., Olson M.V., Beck S., Rogers J., Bentley D.R.
Nature 441:315-321(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[5]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
Tissue: Kidney, Lung and Muscle.
[6]"Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells."
Din S., Brill S.J., Fairman M.P., Stillman B.
Genes Dev. 4:968-977(1990) [PubMed] [Europe PMC] [Abstract]
Cited for: CELL CYCLE-DEPENDENT PHOSPHORYLATION.
[7]"cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication."
Dutta A., Stillman B.
EMBO J. 11:2189-2199(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: DNA DAMAGE-INDUCED PHOSPHORYLATION, PHOSPHORYLATION AT SER-23 AND SER-29.
[8]"The ionizing radiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cells."
Liu V.F., Weaver D.T.
Mol. Cell. Biol. 13:7222-7231(1993) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT SER-23 AND SER-29.
[9]"Mammalian DNA nucleotide excision repair reconstituted with purified protein components."
Aboussekhra A., Biggerstaff M., Shivji M.K., Vilpo J.A., Moncollin V., Podust V.N., Protic M., Huebscher U., Egly J.M., Wood R.D.
Cell 80:859-868(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN NUCLEOTIDE EXCISION REPAIR.
[10]"RPA involvement in the damage-recognition and incision steps of nucleotide excision repair."
He Z., Henricksen L.A., Wold M.S., Ingles C.J.
Nature 374:566-569(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN NUCLEOTIDE EXCISION REPAIR, INTERACTION WITH XPA.
[11]"Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells."
Park M.S., Ludwig D.L., Stigger E., Lee S.H.
J. Biol. Chem. 271:18996-19000(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN HOMOLOGOUS RECOMBINATION, INTERACTION WITH RAD52.
[12]"Mapping of amino acid residues in the p34 subunit of human single-stranded DNA-binding protein phosphorylated by DNA-dependent protein kinase and Cdc2 kinase in vitro."
Niu H., Erdjument-Bromage H., Pan Z.-Q., Lee S.-H., Tempst P., Hurwitz J.
J. Biol. Chem. 272:12634-12641(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION AT MET-1, PHOSPHORYLATION AT THR-21; SER-29 AND SER-33, IDENTIFICATION BY MASS SPECTROMETRY, MUTAGENESIS OF SER-29.
[13]"Sites of UV-induced phosphorylation of the p34 subunit of replication protein A from HeLa cells."
Zernik-Kobak M., Vasunia K., Connelly M., Anderson C.W., Dixon K.
J. Biol. Chem. 272:23896-23904(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT THR-21; SER-23; SER-29 AND SER-33.
[14]"The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not for nucleotide excision repair."
Lin Y.L., Shivji M.K., Chen C., Kolodner R., Wood R.D., Dutta A.
J. Biol. Chem. 273:1453-1461(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DNA REPLICATION, FUNCTION IN DNA MISMATCH REPAIR, FUNCTION IN NUCLEOTIDE EXCISION REPAIR.
[15]"Replication protein A stimulates long patch DNA base excision repair."
DeMott M.S., Zigman S., Bambara R.A.
J. Biol. Chem. 273:27492-27498(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN BASE EXCISION REPAIR.
[16]"RBT1, a novel transcriptional co-activator, binds the second subunit of replication protein A."
Cho J.M., Song D.J., Bergeron J., Benlimame N., Wold M.S., Alaoui-Jamali M.A.
Nucleic Acids Res. 28:3478-3485(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SERTAD3, SUBCELLULAR LOCATION.
[17]"ATR kinase activity regulates the intranuclear translocation of ATR and RPA following ionizing radiation."
Barr S.M., Leung C.G., Chang E.E., Cimprich K.A.
Curr. Biol. 13:1047-1051(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION BY ATR, SUBCELLULAR LOCATION.
[18]"Coordinated regulation of replication protein A activities by its subunits p14 and p32."
Weisshart K., Pestryakov P., Smith R.W.P., Hartmann H., Kremmer E., Lavrik O., Nasheuer H.-P.
J. Biol. Chem. 279:35368-35376(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DNA REPLICATION.
[19]"Mammalian TIMELESS and Tipin are evolutionarily conserved replication fork-associated factors."
Gotter A.L., Suppa C., Emanuel B.S.
J. Mol. Biol. 366:36-52(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TIMELESS AND TIPIN.
[20]"RPA mediates recombination repair during replication stress and is displaced from DNA by checkpoint signalling in human cells."
Sleeth K.M., Sorensen C.S., Issaeva N., Dziegielewski J., Bartek J., Helleday T.
J. Mol. Biol. 373:38-47(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN HOMOLOGOUS RECOMBINATION REPAIR, INTERACTION WITH RAD52.
[21]"The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement."
Uensal-Kacmaz K., Chastain P.D., Qu P.-P., Minoo P., Cordeiro-Stone M., Sancar A., Kaufmann W.K.
Mol. Cell. Biol. 27:3131-3142(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TIPIN.
[22]"Replication protein A prevents accumulation of single-stranded telomeric DNA in cells that use alternative lengthening of telomeres."
Grudic A., Jul-Larsen A., Haring S.J., Wold M.S., Loenning P.E., Bjerkvig R., Boee S.O.
Nucleic Acids Res. 35:7267-7278(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN TELOMERE MAINTENANCE, SUBCELLULAR LOCATION.
[23]"A quantitative atlas of mitotic phosphorylation."
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E., Elledge S.J., Gygi S.P.
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[24]"Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach."
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J., Mohammed S.
Anal. Chem. 81:4493-4501(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[25]"The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA."
Yusufzai T., Kong X., Yokomori K., Kadonaga J.T.
Genes Dev. 23:2400-2404(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SMARCAL1.
[26]"The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks."
Bansbach C.E., Betous R., Lovejoy C.A., Glick G.G., Cortez D.
Genes Dev. 23:2405-2414(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SMARCAL1.
[27]"The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart."
Ciccia A., Bredemeyer A.L., Sowa M.E., Terret M.E., Jallepalli P.V., Harper J.W., Elledge S.J.
Genes Dev. 23:2415-2425(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SMARCAL1.
[28]"An alternative form of replication protein a prevents viral replication in vitro."
Mason A.C., Haring S.J., Pryor J.M., Staloch C.A., Gan T.F., Wold M.S.
J. Biol. Chem. 284:5324-5331(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS PART OF THE RPA COMPLEX.
[29]"An alternative form of replication protein a expressed in normal human tissues supports DNA repair."
Kemp M.G., Mason A.C., Carreira A., Reardon J.T., Haring S.J., Borgstahl G.E., Kowalczykowski S.C., Sancar A., Wold M.S.
J. Biol. Chem. 285:4788-4797(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: TISSUE SPECIFICITY.
[30]"A PP4 phosphatase complex dephosphorylates RPA2 to facilitate DNA repair via homologous recombination."
Lee D.H., Pan Y., Kanner S., Sung P., Borowiec J.A., Chowdhury D.
Nat. Struct. Mol. Biol. 17:365-372(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DNA REPAIR, PHOSPHORYLATION, DEPHOSPHORYLATION BY PP4, INTERACTION WITH PPP4C; PPP4R2 AND RAD51, SUBCELLULAR LOCATION, MUTAGENESIS OF SER-8; SER-23; SER-29 AND SER-33.
[31]"Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis."
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L., Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.
Sci. Signal. 3:RA3-RA3(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT MET-1, PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-23 AND SER-29, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[32]"Initial characterization of the human central proteome."
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17-17(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[33]"E3 ligase RFWD3 participates in replication checkpoint control."
Gong Z., Chen J.
J. Biol. Chem. 286:22308-22313(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN REPLICATION CHECKPOINT, INTERACTION WITH RFWD3, SUBCELLULAR LOCATION.
[34]"RING finger and WD repeat domain 3 (RFWD3) associates with replication protein A (RPA) and facilitates RPA-mediated DNA damage response."
Liu S., Chu J., Yucer N., Leng M., Wang S.Y., Chen B.P., Hittelman W.N., Wang Y.
J. Biol. Chem. 286:22314-22322(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RFWD3, SUBCELLULAR LOCATION, PHOSPHORYLATION AT THR-21.
[35]"DNA-PK-dependent RPA2 hyperphosphorylation facilitates DNA repair and suppresses sister chromatid exchange."
Liaw H., Lee D., Myung K.
PLoS ONE 6:E21424-E21424(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT SER-4 AND SER-8 BY PRKDC, MUTAGENESIS OF SER-4 AND SER-8.
[36]"Translational regulation of RPA2 via internal ribosomal entry site and by eIF3a."
Yin J.Y., Dong Z.Z., Liu R.Y., Chen J., Liu Z.Q., Zhang J.T.
Carcinogenesis 34:1224-1231(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: INDUCTION BY DNA DAMAGE.
[37]"The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding."
Bochkarev A., Bochkareva E., Frappier L., Edwards A.M.
EMBO J. 18:4498-4504(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.5 ANGSTROMS) OF 43-171 IN COMPLEX WITH RPA1 AND RPA3.
[38]"Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA."
Mer G., Bochkarev A., Gupta R., Bochkareva E., Frappier L., Ingles C.J., Edwards A.M., Chazin W.J.
Cell 103:449-456(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY NMR OF 172-270, INTERACTION WITH RAD52; UNG AND XPA, REGION.
[39]"Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA."
Bochkareva E., Korolev S., Lees-Miller S.P., Bochkarev A.
EMBO J. 21:1855-1863(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 44-171.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
J05249 mRNA. Translation: AAA36560.1.
CR450348 mRNA. Translation: CAG29344.1.
DQ001128 Genomic DNA. Translation: AAX84514.1.
AL109927 Genomic DNA. Translation: CAI21777.1.
AL109927 Genomic DNA. Translation: CAI21778.1.
AL109927 Genomic DNA. Translation: CAI21775.1.
BC001630 mRNA. Translation: AAH01630.1.
BC012157 mRNA. Translation: AAH12157.1.
BC021257 mRNA. Translation: AAH21257.1.
CCDSCCDS314.1. [P15927-1]
PIRA43711.
RefSeqNP_001273005.1. NM_001286076.1.
NP_002937.1. NM_002946.4. [P15927-1]
XP_005246022.1. XM_005245965.1. [P15927-2]
UniGeneHs.79411.

3D structure databases

PDBe
RCSB-PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1DPUNMR-A172-270[»]
1L1OX-ray2.80B/E44-171[»]
1QUQX-ray2.50A/C43-171[»]
1Z1DNMR-A172-270[»]
2PI2X-ray2.00A/B/C/D1-270[»]
2PQAX-ray2.50A/C42-172[»]
2Z6KX-ray3.00A/B1-270[»]
3KDFX-ray1.98B/D41-172[»]
4OU0X-ray1.40A202-270[»]
ProteinModelPortalP15927.
SMRP15927. Positions 44-170, 202-270.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid112038. 428 interactions.
DIPDIP-24187N.
IntActP15927. 51 interactions.
MINTMINT-5002459.
STRING9606.ENSP00000363021.

PTM databases

PhosphoSiteP15927.

Polymorphism databases

DMDM132474.

Proteomic databases

MaxQBP15927.
PaxDbP15927.
PRIDEP15927.

Protocols and materials databases

DNASU6118.
StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000313433; ENSP00000363015; ENSG00000117748. [P15927-3]
ENST00000373909; ENSP00000363017; ENSG00000117748. [P15927-2]
ENST00000373912; ENSP00000363021; ENSG00000117748. [P15927-1]
GeneID6118.
KEGGhsa:6118.
UCSCuc001bpe.1. human. [P15927-1]

Organism-specific databases

CTD6118.
GeneCardsGC01M028218.
HGNCHGNC:10290. RPA2.
HPACAB016538.
HPA026306.
HPA026309.
MIM179836. gene.
neXtProtNX_P15927.
PharmGKBPA34652.
GenAtlasSearch...

Phylogenomic databases

eggNOGCOG5235.
HOGENOMHOG000216562.
HOVERGENHBG000086.
KOK10739.
OMAIAREAIF.
OrthoDBEOG76X615.
PhylomeDBP15927.
TreeFamTF105242.

Enzyme and pathway databases

ReactomeREACT_115566. Cell Cycle.
REACT_120956. Cellular responses to stress.
REACT_21300. Mitotic M-M/G1 phases.
REACT_216. DNA Repair.
REACT_383. DNA Replication.

Gene expression databases

ArrayExpressP15927.
BgeeP15927.
CleanExHS_RPA2.
GenevestigatorP15927.

Family and domain databases

Gene3D1.10.10.10. 1 hit.
2.40.50.140. 1 hit.
InterProIPR012340. NA-bd_OB-fold.
IPR004365. NA-bd_OB_tRNA.
IPR014646. RPA32.
IPR014892. RPA_C.
IPR011991. WHTH_DNA-bd_dom.
[Graphical view]
PfamPF08784. RPA_C. 1 hit.
PF01336. tRNA_anti-codon. 1 hit.
[Graphical view]
PIRSFPIRSF036949. RPA32. 1 hit.
SUPFAMSSF50249. SSF50249. 1 hit.
ProtoNetSearch...

Other

ChiTaRSRPA2. human.
EvolutionaryTraceP15927.
GeneWikiRPA2.
GenomeRNAi6118.
NextBio23759.
PROP15927.
SOURCESearch...

Entry information

Entry nameRFA2_HUMAN
AccessionPrimary (citable) accession number: P15927
Secondary accession number(s): Q52II0, Q5TEI9, Q5TEJ5
Entry history
Integrated into UniProtKB/Swiss-Prot: April 1, 1990
Last sequence update: April 1, 1990
Last modified: July 9, 2014
This is version 158 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 1

Human chromosome 1: entries, gene names and cross-references to MIM