Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Bifunctional cytochrome P450/NADPH--P450 reductase

Gene

cyp102A1

Organism
Bacillus megaterium (strain ATCC 14581 / DSM 32 / JCM 2506 / NBRC 15308 / NCIMB 9376 / NCTC 10342 / VKM B-512)
Status
Reviewed-Annotation score: Annotation score: 5 out of 5-Experimental evidence at protein leveli

Functioni

Functions as a fatty acid monooxygenase (PubMed:3106359, PubMed:1727637, PubMed:16566047, PubMed:7578081, PubMed:11695892, PubMed:14653735, PubMed:16403573, PubMed:18004886, PubMed:17077084, PubMed:17868686, PubMed:18298086, PubMed:18619466, PubMed:18721129, PubMed:19492389, PubMed:20180779, PubMed:21110374, PubMed:21875028). Catalyzes hydroxylation of fatty acids at omega-1, omega-2 and omega-3 positions (PubMed:1727637, PubMed:21875028). Shows activity toward medium and long-chain fatty acids, with optimum chain lengths of 12, 14 and 16 carbons (lauric, myristic, and palmitic acids). Able to metabolize some of these primary metabolites to secondary and tertiary products (PubMed:1727637). Marginal activity towards short chain lengths of 8-10 carbons (PubMed:1727637, PubMed:18619466). Hydroxylates highly branched fatty acids, which play an essential role in membrane fluidity regulation (PubMed:16566047). Also displays a NADPH-dependent reductase activity in the C-terminal domain, which allows electron transfer from NADPH to the heme iron of the cytochrome P450 N-terminal domain (PubMed:3106359, PubMed:1727637, PubMed:16566047, PubMed:7578081, PubMed:11695892, PubMed:14653735, PubMed:16403573, PubMed:18004886, PubMed:17077084, PubMed:17868686, PubMed:18298086, PubMed:18619466, PubMed:18721129, PubMed:19492389, PubMed:20180779, PubMed:21110374, PubMed:21875028). Involved in inactivation of quorum sensing signals of other competing bacteria by oxidazing efficiently acyl homoserine lactones (AHLs), molecules involved in quorum sensing signaling pathways, and their lactonolysis products acyl homoserines (AHs) (PubMed:18020460).18 Publications

Catalytic activityi

NADPH + n oxidized hemoprotein = NADP+ + n reduced hemoprotein.19 Publications
RH + [reduced NADPH--hemoprotein reductase] + O2 = ROH + [oxidized NADPH--hemoprotein reductase] + H2O.19 Publications

Cofactori

Protein has several cofactor binding sites:

Enzyme regulationi

Inhibited by N-(12-imidazolyl-dodecanoyl)-L-leucine.1 Publication

Kineticsi

kcat is 84.1 s(-1) for lauric acid (PubMed:16403573). kcat is 1480 min(-1) for palmitic acid. kcat is 1880 min(-1) for N-palmitoylglycine. kcat is 1690 min(-1) for N-palmitoyl-L-methionine. kcat is 610 min(-1) for N-palmitoyl-L-glutamine. kcat is 485 min(-1) for N-palmitoyl-L-glutamic acid. kcat is 1160 min(-1) for N-palmitoyl-L-leucine (PubMed:18004886). kcat is 28 s(-1) for lauric acid (PubMed:17868686). kcat is 2770 min(-1) for laurate/dodecanoate (PubMed:18721129). kcat is 77 for lauric acid (PubMed:19492389). kcat is 2770 min(-1) for laurate/dodecanoate (PubMed:20180779). kcat is 16400 min(-1) for arachidonate (PubMed:20180779). kcat is 91.4 for palmitic acid (PubMed:21110374).7 Publications

Manual assertion based on experiment ini

  1. KM=250 µM for lauric acid at pH 7.4 at room temperature1 Publication
  2. KM=34 µM for N-beta-oxolauroyl-DL-homoserine lactone1 Publication
  3. KM=210 µM for N-beta-oxolauroyl-DL-homoserine1 Publication
  4. KM=140 µM for N-lauroyl-DL-homoserine1 Publication
  5. KM=322 µM for lauric acid at pH 7.5 and 15 degrees Celsius1 Publication
  6. KM=265 µM for lauric acid1 Publication
  7. KM=16 mM for indole1 Publication
  8. KM=87.4 µM for laurate/dodecanoate at pH 7.0 and 25 degrees Celsius1 Publication
  9. KM=230 µM for lauric acid at pH 7.41 Publication
  10. KM=87.4 µM for laurate/dodecanoate at 25 degrees Celsius1 Publication
  11. KM=5.1 µM for arachidonate at 25 degrees Celsius1 Publication
  12. KM=42.4 µM for palmitic acid at pH 7.4 and 30 degrees Celsius1 Publication

    Sites

    Feature keyPosition(s)DescriptionActionsGraphical viewLength
    Binding sitei264Fatty acidCombined sourcesCurated1 Publication1
    Sitei269Important for catalytic activity2 Publications1
    Metal bindingi401Iron (heme axial ligand)Combined sources22 Publications1
    Binding sitei438Fatty acidCombined sourcesCurated1 Publication1

    Regions

    Feature keyPosition(s)DescriptionActionsGraphical viewLength
    Nucleotide bindingi489 – 494FMNCombined sources1 Publication6
    Nucleotide bindingi536 – 539FMNCombined sources1 Publication4
    Nucleotide bindingi570 – 572FMNCombined sources1 Publication3
    Nucleotide bindingi578 – 580FMNCombined sources1 Publication3

    GO - Molecular functioni

    Complete GO annotation...

    Keywords - Molecular functioni

    Monooxygenase, Oxidoreductase

    Keywords - Biological processi

    Electron transport, Transport

    Keywords - Ligandi

    FAD, Flavoprotein, FMN, Heme, Iron, Metal-binding, NADP

    Enzyme and pathway databases

    BioCyciMetaCyc:MONOMER-17698.
    BRENDAi1.14.14.1. 656.
    1.6.2.4. 656.

    Names & Taxonomyi

    Protein namesi
    Recommended name:
    Bifunctional cytochrome P450/NADPH--P450 reductaseCurated
    Alternative name(s):
    Cytochrome P450(BM-3)1 Publication
    Cytochrome P450BM-31 PublicationImported
    Fatty acid monooxygenase1 Publication
    Flavocytochrome P450 BM32 Publications
    Including the following 2 domains:
    Cytochrome P450 102A1 (EC:1.14.14.17 Publications)
    NADPH--cytochrome P450 reductase (EC:1.6.2.47 Publications)
    Gene namesi
    Name:cyp102A1Imported
    Synonyms:cyp102
    ORF Names:BG04_163Imported
    OrganismiBacillus megaterium (strain ATCC 14581 / DSM 32 / JCM 2506 / NBRC 15308 / NCIMB 9376 / NCTC 10342 / VKM B-512)
    Taxonomic identifieri1348623 [NCBI]
    Taxonomic lineageiBacteriaFirmicutesBacilliBacillalesBacillaceaeBacillus
    Proteomesi
    • UP000031829 Componenti: Chromosome

    Subcellular locationi

    GO - Cellular componenti

    Complete GO annotation...

    Keywords - Cellular componenti

    Cytoplasm

    Pathology & Biotechi

    Biotechnological usei

    This protein is a target of protein engineering. Its selectivity-directing and activity-enhancing mutations have been extensively studied and the designed mutations allow this enzyme to act on non-native substrates and/or in order to enhance production of synthetically desirable end-products.Curated3 Publications

    Mutagenesis

    Feature keyPosition(s)DescriptionActionsGraphical viewLength
    Mutagenesisi48R → Q or S: 2-3-fold decrease in binding affinity for N-myristoyl-L-methionine as substrate. 1 Publication1
    Mutagenesisi75A → G: Higher activity in the hydroxylation of highly branched fatty acids; when associated with V-88 and Q-189. 1 Publication1
    Mutagenesisi83A → F: 800-fold binding affinity for laurate as substrate. High coupling of NADPH consumption to laurate formation. Very much more effective in indole hydroxylation. Favors omega-2 hydroxylation. Significantly higher rates of NADPH consumption in the absence of substrate. No temperature-dependent shifts to low-spin in complex with palmitate. 1 Publication1
    Mutagenesisi83A → I: No effect in binding affinity for laurate as substrate. High coupling of NADPH consumption to laurate formation. No indole hydroxylation. Favors omega-2 hydroxylation. Similarly to wild-type, shows significant shifts to low-spin in complex with palmitate as the temperature decreases. 1 Publication1
    Mutagenesisi83A → W: 800-fold binding affinity for laurate as substrate. Low coupling of NADPH consumption to laurate formation. Very much more effective in indole hydroxylation. Favors omega-1 hydroxylation. Significantly higher rates of NADPH consumption in the absence of substrate. No temperature-dependent shifts to low-spin in complex with palmitate. 1 Publication1
    Mutagenesisi87L → E: Ineffective covalent modification of the heme macrocycle. Extensive formation of Fe(II)CO complex in the substrate-free form. Has more positive potential in both substrate-free and arachidonate-bound forms and some high-spin content in the ferric substrate-free form of the enzyme. 1 Publication1
    Mutagenesisi88F → V: Higher activity in the hydroxylation of highly branched fatty acids; when associated with G-75 and Q-189. 1 Publication1
    Mutagenesisi189L → Q: Higher activity in the hydroxylation of highly branched fatty acids; when associated with G-75 and V-88. 1 Publication1
    Mutagenesisi262F → E: Ineffective covalent modification of the heme macrocycle. Substantially slower FMN to heme electron transfer for the arachidonate-bound enzyme. Product distribution biased towards omega-3. 1 Publication1
    Mutagenesisi265A → C: No effective fatty acid oxidation. No affect on electron transport from NADPH to FMN. Substantially lower high-spin conversion with arachidonate and palmitoleate, and negligible change is observed with palmitate, myristate and laurate/dodecanoate. 20% of omega-1, omega-2 and omega-3 laurate/dodecanoate hydroxylation products. 1 Publication1
    Mutagenesisi265A → H or K: No significant stimulation of NADPH oxidation induced by addition of fatty acids and no hydroxylated products, but cytochrome c reductase activity levels are identical to wild-type enzyme. More negative reduction potential with dithionite. Unable to form Fe(2+)CO complexes on reduction with dithionite and bubbling with carbon monoxide. 1 Publication1
    Mutagenesisi265A → M: No effective fatty acid oxidation. No affect on electron transport from NADPH to FMN. Slightly lower high-spin conversion with arachidonate, palmitoleate, palmitate, myristate and laurate/dodecanoate. 5% of omega-1, omega-2 and omega-3 laurate/dodecanoate hydroxylation products. 1 Publication1
    Mutagenesisi265A → Q: No effective fatty acid oxidation. No affect on electron transport from NADPH to FMN. Nearly wild-type level of high-spin conversion with laurate/dodecanoate, palmitoleate and arachidonate. 5% of omega-1, omega-2 and omega-3 laurate/dodecanoate hydroxylation products. 1 Publication1
    Mutagenesisi269T → A: Contrary to wild-type, significant decrease in the formation of the high-spin complex via substrate binding, and decreased substrate-induced reduction potential shift with saturating concentrations of arachidonate; when associated with H-394. Considerably lower proportion of high-spin protein and decreased substrate-induced heme reduction-potential shift on addition of saturating concentrations of arachidonate. Leads to destabilisation of the oxy-ferrous complex. Exhibits slower rates of O(2) and NADPH consumption using sodium laurate as the substrate. Greater production of water and peroxide compared to wild-type indicating uncoupled electron transfer from sodium laurate hydroxylation. Only 16% yield of product after 5 min of reaction relative to the amount of NADPH used compared to 100% of wild-type. 2 Publications1
    Mutagenesisi269T → N: High substrate-free turnover rate constant. Negligible substrate-induced spin-state and substrate-induced heme reduction-potential shifts on addition of saturating concentrations of arachidonate. Induces a positive shift in the substrate-free heme reduction potential. 10-fold greater rate constants for the first electron transfer in the absence of substrate; when associated with H-394. Turnover rate constants diminished. Significantly smaller degrees of coupling to product. Negligible amounts of high-spin protein on addition of saturating concentration of arachidonate. Negligible substrate-induced spin-state and substrate-induced heme reduction-potential shifts on addition of saturating concentrations of arachidonate. Induces a 60 mV positive shift in the substrate-free heme reduction potential. The apparent rate constant for heme reduction is smaller than the overall turnover rate constant. Leads to destabilisation of the oxy-ferrous complex. 1 Publication1
    Mutagenesisi329A → V: Substrate binding affinity increases 5-10 fold and the turnover number increases 2-8-fold for palmitate as substrate compared to the wild-type. Has a very different product distribution favoring greatly oxidation at the omega-1 position and shows almost no oxidation at the omega-3 position. 1 Publication1
    Mutagenesisi331A → P: Enhanced activity with small non-natural substrates with altered product profiles compared to wild-type. 1 Publication1
    Mutagenesisi394F → H: High substrate-free turnover rate constant. Negligible substrate-induced spin-state and substrate-induced heme reduction-potential shifts on addition of saturating concentrations of arachidonate. Induces a positive shift in the substrate-free heme reduction potential. 10-fold greater rate constants for the first electron transfer in the absence of substrate; when associated with N-269. Significant decrease in the formation of the high-spin complex via substrate binding, and decreased substrate-induced reduction potential shift with saturating concentrations of arachidonate; when associated with A-269. No change in product profile using myristate as substrate, but slightly higher amount of unreacted myristate indicating lower overall catalytic activity relative to wild-type. 2 Publications1
    Mutagenesisi394F → W: Large decrease in the heme reduction potential in the presence and absence of substrate arachidonate. 10% reduction in efficiency to couple NADPH consumption to substrate monooxygenation. Half of the turn over rate and four times faster decay of the oxy-ferrous complex to the ferric form than that of wild-type. 1 Publication1
    Mutagenesisi402I → E: Ineffective covalent modification of the heme macrocycle. 2-fold apparent limiting rate of flavin to heme electron transfer for arachidonate-bound enzyme. Substrate-free enzyme is converted rapidly and completely into its Fe(II)CO complex and has much more positive potential. 8-fold decrease in overall catalytic rate with arachidonic acid. More efficient NADPH oxidase in absence of fatty acids. Product distribution biased towards omega-1. 1 Publication1
    Mutagenesisi402I → P: 10-fold increase in binding affinity for lauric acid. Catalytic activity rates acclerate across a range of hydrophobic non-natural substrates, including (+)-alpha-pinene, fluorene, 3-methylpentane and propylbenzene, while product distributions of them are broadly similar to the wild-type enzyme exept for (+)-alpha-pinene which is not metabolized by wild-type. 1 Publication1

    PTM / Processingi

    Molecule processing

    Feature keyPosition(s)DescriptionActionsGraphical viewLength
    ChainiPRO_00000522051 – 1049Bifunctional cytochrome P450/NADPH--P450 reductaseAdd BLAST1049

    Expressioni

    Inductioni

    By pentobarbital (PubMed:1544926, PubMed:3106359). Expression is negatively regulated by repressor bm3R1 at the transcriptional level (PubMed:1544926).2 Publications

    Interactioni

    Binary interactionsi

    WithEntry#Exp.IntActNotes
    itself2EBI-7701704,EBI-7701704

    Protein-protein interaction databases

    MINTiMINT-8313368.
    STRINGi545693.BMQ_3237.

    Structurei

    Secondary structure

    11049
    Legend: HelixTurnBeta strandPDB Structure known for this area
    Show more details
    Feature keyPosition(s)DescriptionActionsGraphical viewLength
    Helixi13 – 15Combined sources3
    Helixi18 – 21Combined sources4
    Helixi26 – 37Combined sources12
    Beta strandi39 – 45Combined sources7
    Beta strandi48 – 53Combined sources6
    Helixi56 – 62Combined sources7
    Turni65 – 67Combined sources3
    Beta strandi68 – 70Combined sources3
    Helixi74 – 83Combined sources10
    Helixi87 – 89Combined sources3
    Beta strandi92 – 94Combined sources3
    Helixi95 – 104Combined sources10
    Helixi105 – 108Combined sources4
    Turni110 – 112Combined sources3
    Helixi113 – 132Combined sources20
    Helixi142 – 159Combined sources18
    Helixi165 – 167Combined sources3
    Helixi173 – 187Combined sources15
    Helixi188 – 190Combined sources3
    Beta strandi192 – 194Combined sources3
    Helixi197 – 199Combined sources3
    Helixi200 – 227Combined sources28
    Helixi234 – 240Combined sources7
    Turni244 – 246Combined sources3
    Helixi252 – 283Combined sources32
    Helixi285 – 298Combined sources14
    Beta strandi301 – 303Combined sources3
    Helixi306 – 310Combined sources5
    Helixi313 – 325Combined sources13
    Beta strandi331 – 338Combined sources8
    Beta strandi340 – 342Combined sources3
    Turni343 – 345Combined sources3
    Beta strandi346 – 348Combined sources3
    Beta strandi353 – 357Combined sources5
    Helixi358 – 361Combined sources4
    Helixi365 – 368Combined sources4
    Turni370 – 373Combined sources4
    Helixi377 – 380Combined sources4
    Helixi383 – 385Combined sources3
    Beta strandi388 – 390Combined sources3
    Helixi397 – 399Combined sources3
    Helixi404 – 421Combined sources18
    Beta strandi422 – 425Combined sources4
    Beta strandi434 – 442Combined sources9
    Beta strandi446 – 451Combined sources6
    Helixi462 – 464Combined sources3
    Beta strandi483 – 488Combined sources6
    Beta strandi490 – 492Combined sources3
    Helixi493 – 506Combined sources14
    Turni507 – 509Combined sources3
    Beta strandi513 – 516Combined sources4
    Helixi517 – 519Combined sources3
    Beta strandi526 – 534Combined sources9
    Turni543 – 545Combined sources3
    Helixi546 – 553Combined sources8
    Beta strandi565 – 571Combined sources7
    Helixi576 – 578Combined sources3
    Helixi581 – 591Combined sources11
    Turni592 – 594Combined sources3
    Beta strandi599 – 605Combined sources7
    Helixi610 – 628Combined sources19
    Beta strandi663 – 672Combined sources10
    Beta strandi682 – 688Combined sources7
    Beta strandi700 – 703Combined sources4
    Helixi709 – 719Combined sources11
    Beta strandi726 – 729Combined sources4
    Beta strandi741 – 746Combined sources6
    Helixi747 – 750Combined sources4
    Helixi751 – 753Combined sources3
    Beta strandi756 – 759Combined sources4
    Helixi762 – 770Combined sources9
    Helixi775 – 783Combined sources9
    Helixi787 – 793Combined sources7
    Turni794 – 798Combined sources5
    Helixi801 – 807Combined sources7
    Helixi815 – 820Combined sources6
    Beta strandi828 – 831Combined sources4
    Turni836 – 838Combined sources3
    Beta strandi842 – 848Combined sources7
    Beta strandi851 – 853Combined sources3
    Beta strandi857 – 862Combined sources6
    Helixi864 – 871Combined sources8
    Beta strandi877 – 883Combined sources7
    Beta strandi899 – 902Combined sources4
    Helixi905 – 908Combined sources4
    Helixi909 – 923Combined sources15
    Beta strandi931 – 938Combined sources8
    Turni940 – 942Combined sources3
    Helixi947 – 955Combined sources9
    Beta strandi960 – 967Combined sources8
    Helixi976 – 982Combined sources7
    Helixi984 – 992Combined sources9
    Beta strandi996 – 1002Combined sources7
    Turni1003 – 1005Combined sources3
    Helixi1006 – 1022Combined sources17
    Helixi1026 – 1038Combined sources13
    Beta strandi1042 – 1047Combined sources6

    3D structure databases

    Select the link destinations:
    PDBei
    RCSB PDBi
    PDBji
    Links Updated
    PDB entryMethodResolution (Å)ChainPositionsPDBsum
    1BU7X-ray1.65A/B2-456[»]
    1BVYX-ray2.03A/B2-459[»]
    F460-650[»]
    1FAGX-ray2.70A/B/C/D2-472[»]
    1FAHX-ray2.30A/B2-472[»]
    1JMEX-ray2.00A/B2-456[»]
    1JPZX-ray1.65A/B2-471[»]
    1P0VX-ray2.05A/B2-456[»]
    1P0WX-ray2.00A/B2-456[»]
    1P0XX-ray2.00A/B2-456[»]
    1SMIX-ray2.00A/B2-472[»]
    1SMJX-ray2.75A/B/C/D2-472[»]
    1YQOX-ray1.90A/B2-456[»]
    1YQPX-ray1.80A/B2-456[»]
    1ZO4X-ray1.46A/B2-471[»]
    1ZO9X-ray1.70A/B2-471[»]
    1ZOAX-ray1.74A/B2-471[»]
    2BMHX-ray2.00A/B2-456[»]
    2HPDX-ray2.00A/B2-472[»]
    2IJ2X-ray1.20A/B2-471[»]
    2IJ3X-ray1.90A/B2-471[»]
    2IJ4X-ray2.40A/B2-471[»]
    2J1MX-ray1.70A/B2-456[»]
    2J4SX-ray2.10A/B2-456[»]
    2NNBX-ray1.90A/B2-472[»]
    2UWHX-ray2.80A/B/C/D/E/F2-459[»]
    2X7YX-ray2.10A/B2-456[»]
    2X80X-ray2.30A/B2-456[»]
    3BENX-ray1.65A/B1-470[»]
    3CBDX-ray2.65A/B2-456[»]
    3DGIX-ray1.95A/B2-456[»]
    3EKBX-ray2.30A/B2-471[»]
    3EKDX-ray2.50A/B2-471[»]
    3EKFX-ray2.10A/B2-471[»]
    3HF2X-ray2.20A/B1-482[»]
    3KX3X-ray1.80A/B2-471[»]
    3KX4X-ray1.95A/B2-471[»]
    3KX5X-ray1.69A/B2-471[»]
    3M4VX-ray1.90A/B1-482[»]
    3NPLX-ray2.40A/B1-464[»]
    3PSXX-ray1.90A/B1-482[»]
    3WSPX-ray1.80A/B1-456[»]
    4DQKX-ray2.40A/B659-1049[»]
    4DQLX-ray2.15A/B657-1049[»]
    4DTWX-ray1.80A/B2-464[»]
    4DTYX-ray1.45A/B2-464[»]
    4DTZX-ray1.55A/B2-464[»]
    4DU2X-ray1.90A/B1-464[»]
    4DUAX-ray2.00A/B2-464[»]
    4DUBX-ray1.70A/B1-464[»]
    4DUCX-ray1.92A/B1-464[»]
    4DUDX-ray1.85A/B2-464[»]
    4DUEX-ray1.70A/B2-464[»]
    4DUFX-ray1.80A/B/C/D2-464[»]
    4H23X-ray3.30A/B1-464[»]
    4H24X-ray2.50A/B/C/D1-464[»]
    4HGFX-ray1.70A/B2-456[»]
    4HGGX-ray1.70A/B2-456[»]
    4HGHX-ray1.40A/B2-456[»]
    4HGIX-ray1.50A/B2-456[»]
    4HGJX-ray1.90A/B2-456[»]
    4KEWX-ray1.89A/B2-456[»]
    4KEYX-ray2.05A/B2-456[»]
    4KF0X-ray1.45A/B2-458[»]
    4KF2X-ray1.82A/B2-458[»]
    4KPAX-ray2.00A1-471[»]
    4KPBX-ray2.10A/B1-471[»]
    4O4PX-ray1.83A/B2-456[»]
    4RSNX-ray2.70A/B1-456[»]
    4WG2X-ray2.66A/B/C2-464[»]
    4ZF6X-ray2.77A1-461[»]
    4ZF8X-ray2.77A1-461[»]
    4ZFAX-ray2.77A1-461[»]
    4ZFBX-ray2.84A1-461[»]
    5DYPX-ray2.40A/C2-471[»]
    5DYZX-ray1.97A/C2-471[»]
    5E78X-ray2.00A/B2-456[»]
    5E9ZX-ray2.23A/B/C/D1-468[»]
    5JQ2X-ray2.00A/B2-464[»]
    5JQUX-ray2.16A/B/C/D/E/F/G/H2-464[»]
    5JQVX-ray2.34A/B/C/D/E/F/G/H2-464[»]
    5JTDX-ray1.50A/B2-464[»]
    ProteinModelPortaliP14779.
    SMRiP14779.
    ModBaseiSearch...
    MobiDBiSearch...

    Miscellaneous databases

    EvolutionaryTraceiP14779.

    Family & Domainsi

    Domains and Repeats

    Feature keyPosition(s)DescriptionActionsGraphical viewLength
    Domaini483 – 622Flavodoxin-likePROSITE-ProRule annotationAdd BLAST140
    Domaini660 – 892FAD-binding FR-typePROSITE-ProRule annotationAdd BLAST233

    Region

    Feature keyPosition(s)DescriptionActionsGraphical viewLength
    Regioni2 – 472Cytochrome P450Add BLAST471
    Regioni21 – 30Fatty acid bindingCombined sourcesCurated1 Publication10
    Regioni76 – 88Fatty acid bindingCombined sourcesCurated1 PublicationAdd BLAST13
    Regioni182 – 189Fatty acid bindingCombined sourcesCurated1 Publication8
    Regioni329 – 331Fatty acid bindingCombined sourcesCurated1 Publication3
    Regioni473 – 1049NADPH--P450 reductaseAdd BLAST577

    Sequence similaritiesi

    In the N-terminal section; belongs to the cytochrome P450 family.Curated
    Contains 1 FAD-binding FR-type domain.PROSITE-ProRule annotation
    Contains 1 flavodoxin-like domain.PROSITE-ProRule annotation

    Phylogenomic databases

    eggNOGiENOG4107EER. Bacteria.
    COG0369. LUCA.
    KOiK14338.

    Family and domain databases

    Gene3Di1.10.630.10. 1 hit.
    1.20.990.10. 1 hit.
    3.40.50.360. 1 hit.
    InterProiIPR023206. Bifunctional_P450_P450_red.
    IPR001128. Cyt_P450.
    IPR017972. Cyt_P450_CS.
    IPR003097. FAD-binding_1.
    IPR017927. Fd_Rdtase_FAD-bd.
    IPR001094. Flavdoxin-like.
    IPR008254. Flavodoxin/NO_synth.
    IPR001709. Flavoprot_Pyr_Nucl_cyt_Rdtase.
    IPR029039. Flavoprotein-like_dom.
    IPR023173. NADPH_Cyt_P450_Rdtase_dom3.
    IPR001433. OxRdtase_FAD/NAD-bd.
    IPR017938. Riboflavin_synthase-like_b-brl.
    [Graphical view]
    PfamiPF00667. FAD_binding_1. 1 hit.
    PF00258. Flavodoxin_1. 1 hit.
    PF00175. NAD_binding_1. 1 hit.
    PF00067. p450. 1 hit.
    [Graphical view]
    PIRSFiPIRSF000209. Bifunctional_P450_P450R. 1 hit.
    PRINTSiPR00369. FLAVODOXIN.
    PR00371. FPNCR.
    SUPFAMiSSF48264. SSF48264. 1 hit.
    SSF52218. SSF52218. 1 hit.
    SSF63380. SSF63380. 1 hit.
    PROSITEiPS00086. CYTOCHROME_P450. 1 hit.
    PS51384. FAD_FR. 1 hit.
    PS50902. FLAVODOXIN_LIKE. 1 hit.
    [Graphical view]

    Sequencei

    Sequence statusi: Complete.

    P14779-1 [UniParc]FASTAAdd to basket

    « Hide

            10         20         30         40         50
    MTIKEMPQPK TFGELKNLPL LNTDKPVQAL MKIADELGEI FKFEAPGRVT
    60 70 80 90 100
    RYLSSQRLIK EACDESRFDK NLSQALKFVR DFAGDGLFTS WTHEKNWKKA
    110 120 130 140 150
    HNILLPSFSQ QAMKGYHAMM VDIAVQLVQK WERLNADEHI EVPEDMTRLT
    160 170 180 190 200
    LDTIGLCGFN YRFNSFYRDQ PHPFITSMVR ALDEAMNKLQ RANPDDPAYD
    210 220 230 240 250
    ENKRQFQEDI KVMNDLVDKI IADRKASGEQ SDDLLTHMLN GKDPETGEPL
    260 270 280 290 300
    DDENIRYQII TFLIAGHETT SGLLSFALYF LVKNPHVLQK AAEEAARVLV
    310 320 330 340 350
    DPVPSYKQVK QLKYVGMVLN EALRLWPTAP AFSLYAKEDT VLGGEYPLEK
    360 370 380 390 400
    GDELMVLIPQ LHRDKTIWGD DVEEFRPERF ENPSAIPQHA FKPFGNGQRA
    410 420 430 440 450
    CIGQQFALHE ATLVLGMMLK HFDFEDHTNY ELDIKETLTL KPEGFVVKAK
    460 470 480 490 500
    SKKIPLGGIP SPSTEQSAKK VRKKAENAHN TPLLVLYGSN MGTAEGTARD
    510 520 530 540 550
    LADIAMSKGF APQVATLDSH AGNLPREGAV LIVTASYNGH PPDNAKQFVD
    560 570 580 590 600
    WLDQASADEV KGVRYSVFGC GDKNWATTYQ KVPAFIDETL AAKGAENIAD
    610 620 630 640 650
    RGEADASDDF EGTYEEWREH MWSDVAAYFN LDIENSEDNK STLSLQFVDS
    660 670 680 690 700
    AADMPLAKMH GAFSTNVVAS KELQQPGSAR STRHLEIELP KEASYQEGDH
    710 720 730 740 750
    LGVIPRNYEG IVNRVTARFG LDASQQIRLE AEEEKLAHLP LAKTVSVEEL
    760 770 780 790 800
    LQYVELQDPV TRTQLRAMAA KTVCPPHKVE LEALLEKQAY KEQVLAKRLT
    810 820 830 840 850
    MLELLEKYPA CEMKFSEFIA LLPSIRPRYY SISSSPRVDE KQASITVSVV
    860 870 880 890 900
    SGEAWSGYGE YKGIASNYLA ELQEGDTITC FISTPQSEFT LPKDPETPLI
    910 920 930 940 950
    MVGPGTGVAP FRGFVQARKQ LKEQGQSLGE AHLYFGCRSP HEDYLYQEEL
    960 970 980 990 1000
    ENAQSEGIIT LHTAFSRMPN QPKTYVQHVM EQDGKKLIEL LDQGAHFYIC
    1010 1020 1030 1040
    GDGSQMAPAV EATLMKSYAD VHQVSEADAR LWLQQLEEKG RYAKDVWAG
    Length:1,049
    Mass (Da):117,781
    Last modified:January 23, 2007 - v2
    Checksum:iB0BE61F8A2EE33D5
    GO

    Sequence databases

    Select the link destinations:
    EMBLi
    GenBanki
    DDBJi
    Links Updated
    J04832 Genomic DNA. Translation: AAA87602.1.
    CP009920 Genomic DNA. Translation: AJI21949.1.
    S87512 Genomic DNA. Translation: AAK19020.1.
    PIRiA34286.
    RefSeqiWP_034650526.1. NZ_JJMH01000056.1.

    Genome annotation databases

    EnsemblBacteriaiAJI21949; AJI21949; BG04_163.
    KEGGibmeg:BG04_163.

    Cross-referencesi

    Sequence databases

    Select the link destinations:
    EMBLi
    GenBanki
    DDBJi
    Links Updated
    J04832 Genomic DNA. Translation: AAA87602.1.
    CP009920 Genomic DNA. Translation: AJI21949.1.
    S87512 Genomic DNA. Translation: AAK19020.1.
    PIRiA34286.
    RefSeqiWP_034650526.1. NZ_JJMH01000056.1.

    3D structure databases

    Select the link destinations:
    PDBei
    RCSB PDBi
    PDBji
    Links Updated
    PDB entryMethodResolution (Å)ChainPositionsPDBsum
    1BU7X-ray1.65A/B2-456[»]
    1BVYX-ray2.03A/B2-459[»]
    F460-650[»]
    1FAGX-ray2.70A/B/C/D2-472[»]
    1FAHX-ray2.30A/B2-472[»]
    1JMEX-ray2.00A/B2-456[»]
    1JPZX-ray1.65A/B2-471[»]
    1P0VX-ray2.05A/B2-456[»]
    1P0WX-ray2.00A/B2-456[»]
    1P0XX-ray2.00A/B2-456[»]
    1SMIX-ray2.00A/B2-472[»]
    1SMJX-ray2.75A/B/C/D2-472[»]
    1YQOX-ray1.90A/B2-456[»]
    1YQPX-ray1.80A/B2-456[»]
    1ZO4X-ray1.46A/B2-471[»]
    1ZO9X-ray1.70A/B2-471[»]
    1ZOAX-ray1.74A/B2-471[»]
    2BMHX-ray2.00A/B2-456[»]
    2HPDX-ray2.00A/B2-472[»]
    2IJ2X-ray1.20A/B2-471[»]
    2IJ3X-ray1.90A/B2-471[»]
    2IJ4X-ray2.40A/B2-471[»]
    2J1MX-ray1.70A/B2-456[»]
    2J4SX-ray2.10A/B2-456[»]
    2NNBX-ray1.90A/B2-472[»]
    2UWHX-ray2.80A/B/C/D/E/F2-459[»]
    2X7YX-ray2.10A/B2-456[»]
    2X80X-ray2.30A/B2-456[»]
    3BENX-ray1.65A/B1-470[»]
    3CBDX-ray2.65A/B2-456[»]
    3DGIX-ray1.95A/B2-456[»]
    3EKBX-ray2.30A/B2-471[»]
    3EKDX-ray2.50A/B2-471[»]
    3EKFX-ray2.10A/B2-471[»]
    3HF2X-ray2.20A/B1-482[»]
    3KX3X-ray1.80A/B2-471[»]
    3KX4X-ray1.95A/B2-471[»]
    3KX5X-ray1.69A/B2-471[»]
    3M4VX-ray1.90A/B1-482[»]
    3NPLX-ray2.40A/B1-464[»]
    3PSXX-ray1.90A/B1-482[»]
    3WSPX-ray1.80A/B1-456[»]
    4DQKX-ray2.40A/B659-1049[»]
    4DQLX-ray2.15A/B657-1049[»]
    4DTWX-ray1.80A/B2-464[»]
    4DTYX-ray1.45A/B2-464[»]
    4DTZX-ray1.55A/B2-464[»]
    4DU2X-ray1.90A/B1-464[»]
    4DUAX-ray2.00A/B2-464[»]
    4DUBX-ray1.70A/B1-464[»]
    4DUCX-ray1.92A/B1-464[»]
    4DUDX-ray1.85A/B2-464[»]
    4DUEX-ray1.70A/B2-464[»]
    4DUFX-ray1.80A/B/C/D2-464[»]
    4H23X-ray3.30A/B1-464[»]
    4H24X-ray2.50A/B/C/D1-464[»]
    4HGFX-ray1.70A/B2-456[»]
    4HGGX-ray1.70A/B2-456[»]
    4HGHX-ray1.40A/B2-456[»]
    4HGIX-ray1.50A/B2-456[»]
    4HGJX-ray1.90A/B2-456[»]
    4KEWX-ray1.89A/B2-456[»]
    4KEYX-ray2.05A/B2-456[»]
    4KF0X-ray1.45A/B2-458[»]
    4KF2X-ray1.82A/B2-458[»]
    4KPAX-ray2.00A1-471[»]
    4KPBX-ray2.10A/B1-471[»]
    4O4PX-ray1.83A/B2-456[»]
    4RSNX-ray2.70A/B1-456[»]
    4WG2X-ray2.66A/B/C2-464[»]
    4ZF6X-ray2.77A1-461[»]
    4ZF8X-ray2.77A1-461[»]
    4ZFAX-ray2.77A1-461[»]
    4ZFBX-ray2.84A1-461[»]
    5DYPX-ray2.40A/C2-471[»]
    5DYZX-ray1.97A/C2-471[»]
    5E78X-ray2.00A/B2-456[»]
    5E9ZX-ray2.23A/B/C/D1-468[»]
    5JQ2X-ray2.00A/B2-464[»]
    5JQUX-ray2.16A/B/C/D/E/F/G/H2-464[»]
    5JQVX-ray2.34A/B/C/D/E/F/G/H2-464[»]
    5JTDX-ray1.50A/B2-464[»]
    ProteinModelPortaliP14779.
    SMRiP14779.
    ModBaseiSearch...
    MobiDBiSearch...

    Protein-protein interaction databases

    MINTiMINT-8313368.
    STRINGi545693.BMQ_3237.

    Protocols and materials databases

    Structural Biology KnowledgebaseSearch...

    Genome annotation databases

    EnsemblBacteriaiAJI21949; AJI21949; BG04_163.
    KEGGibmeg:BG04_163.

    Phylogenomic databases

    eggNOGiENOG4107EER. Bacteria.
    COG0369. LUCA.
    KOiK14338.

    Enzyme and pathway databases

    BioCyciMetaCyc:MONOMER-17698.
    BRENDAi1.14.14.1. 656.
    1.6.2.4. 656.

    Miscellaneous databases

    EvolutionaryTraceiP14779.

    Family and domain databases

    Gene3Di1.10.630.10. 1 hit.
    1.20.990.10. 1 hit.
    3.40.50.360. 1 hit.
    InterProiIPR023206. Bifunctional_P450_P450_red.
    IPR001128. Cyt_P450.
    IPR017972. Cyt_P450_CS.
    IPR003097. FAD-binding_1.
    IPR017927. Fd_Rdtase_FAD-bd.
    IPR001094. Flavdoxin-like.
    IPR008254. Flavodoxin/NO_synth.
    IPR001709. Flavoprot_Pyr_Nucl_cyt_Rdtase.
    IPR029039. Flavoprotein-like_dom.
    IPR023173. NADPH_Cyt_P450_Rdtase_dom3.
    IPR001433. OxRdtase_FAD/NAD-bd.
    IPR017938. Riboflavin_synthase-like_b-brl.
    [Graphical view]
    PfamiPF00667. FAD_binding_1. 1 hit.
    PF00258. Flavodoxin_1. 1 hit.
    PF00175. NAD_binding_1. 1 hit.
    PF00067. p450. 1 hit.
    [Graphical view]
    PIRSFiPIRSF000209. Bifunctional_P450_P450R. 1 hit.
    PRINTSiPR00369. FLAVODOXIN.
    PR00371. FPNCR.
    SUPFAMiSSF48264. SSF48264. 1 hit.
    SSF52218. SSF52218. 1 hit.
    SSF63380. SSF63380. 1 hit.
    PROSITEiPS00086. CYTOCHROME_P450. 1 hit.
    PS51384. FAD_FR. 1 hit.
    PS50902. FLAVODOXIN_LIKE. 1 hit.
    [Graphical view]
    ProtoNetiSearch...

    Entry informationi

    Entry nameiCPXB_BACMB
    AccessioniPrimary (citable) accession number: P14779
    Secondary accession number(s): A0A0B6AQ66, Q9AE23
    Entry historyi
    Integrated into UniProtKB/Swiss-Prot: April 1, 1990
    Last sequence update: January 23, 2007
    Last modified: November 30, 2016
    This is version 144 of the entry and version 2 of the sequence. [Complete history]
    Entry statusiReviewed (UniProtKB/Swiss-Prot)
    Annotation programProkaryotic Protein Annotation Program

    Miscellaneousi

    Keywords - Technical termi

    3D-structure, Complete proteome, Multifunctional enzyme

    Documents

    1. PDB cross-references
      Index of Protein Data Bank (PDB) cross-references
    2. SIMILARITY comments
      Index of protein domains and families

    Similar proteinsi

    Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
    100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into one UniRef entry.
    90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
    50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.