SubmitCancel

Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

P14350

- POL_FOAMV

UniProt

P14350 - POL_FOAMV

(max 400 entries)x

Your basket is currently empty.

Select item(s) and click on "Add to basket" to create your own collection here
(400 entries max)

Protein
Pro-Pol polyprotein
Gene
pol
Organism
Human spumaretrovirus (SFVcpz(hu)) (Human foamy virus)
Status
Reviewed - Annotation score: 5 out of 5 - Experimental evidence at protein leveli

Functioni

The aspartyl protease activity mediates proteolytic cleavages of Gag and Pol polyproteins. The reverse transcriptase (RT) activity converts the viral RNA genome into dsDNA in the cytoplasm, shortly after virus entry into the cell (early reverse transcription) or after proviral DNA transcription (late reverse transcription). RT consists of a DNA polymerase activity that can copy either DNA or RNA templates, and a ribonuclease H (RNase H) activity that cleaves the RNA strand of RNA-DNA heteroduplexes in a partially processive 3' to 5' endonucleasic mode. Conversion of viral genomic RNA into dsDNA requires many steps. A tRNA-Lys1,2 binds to the primer-binding site (PBS) situated at the 5'-end of the viral RNA. RT uses the 3' end of the tRNA primer to perform a short round of RNA-dependent minus-strand DNA synthesis. The reading proceeds through the U5 region and ends after the repeated (R) region which is present at both ends of viral RNA. The portion of the RNA-DNA heteroduplex is digested by the RNase H, resulting in a ssDNA product attached to the tRNA primer. This ssDNA/tRNA hybridizes with the identical R region situated at the 3' end of viral RNA. This template exchange, known as minus-strand DNA strong stop transfer, can be either intra- or intermolecular. RT uses the 3' end of this newly synthesized short ssDNA to perform the RNA-dependent minus-strand DNA synthesis of the whole template. RNase H digests the RNA template except for a polypurine tract (PPT) situated at the 5'-end and near the center of the genome. It is not clear if both polymerase and RNase H activities are simultaneous. RNase H probably can proceed both in a polymerase-dependent (RNA cut into small fragments by the same RT performing DNA synthesis) and a polymerase-independent mode (cleavage of remaining RNA fragments by free RTs). Secondly, RT performs DNA-directed plus-strand DNA synthesis using the PPT that has not been removed by RNase H as primer. PPT and tRNA primers are then removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to form a circular dsDNA intermediate. Strand displacement synthesis by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA copy of the viral genome that includes long terminal repeats (LTRs) at both ends By similarity.
Integrase catalyzes viral DNA integration into the host chromosome, by performing a series of DNA cutting and joining reactions. This enzyme activity takes place after virion entry into a cell and reverse transcription of the RNA genome in dsDNA. The first step in the integration process is 3' processing. This step requires a complex comprising at least the viral genome, matrix protein, and integrase. This complex is called the pre-integration complex (PIC). The integrase protein removes 2 nucleotides from the 3' end of the viral DNA right (U5) end, leaving the left (U3) intact. In the second step, the PIC enters cell nucleus. This process is mediated through the integrase and allows the virus to infect both dividing (nuclear membrane disassembled) and G1/S-arrested cells (active translocation), but with no viral gene expression in the latter. In the third step, termed strand transfer, the integrase protein joins the previously processed 3' ends to the 5' ends of strands of target cellular DNA at the site of integration. It is however not clear how integration then proceeds to resolve the asymmetrical cleavage of viral DNA By similarity.

Catalytic activityi

Endonucleolytic cleavage to 5'-phosphomonoester.
Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).

Cofactori

Binds 2 magnesium ions for reverse transcriptase polymerase activity By similarity.
Binds 2 magnesium ions for ribonuclease H (RNase H) activity. Substrate-binding is a precondition for magnesium binding By similarity.
Magnesium ions for integrase activity. Binds at least 1, maybe 2 magnesium ions By similarity.

Sites

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Active sitei24 – 241For protease activity Inferred
Metal bindingi252 – 2521Magnesium; catalytic; for reverse transcriptase activity By similarity
Metal bindingi314 – 3141Magnesium; catalytic; for reverse transcriptase activity By similarity
Metal bindingi315 – 3151Magnesium; catalytic; for reverse transcriptase activity By similarity
Sitei596 – 5972Cleavage; by viral protease; partial
Metal bindingi599 – 5991Magnesium; catalytic; for RNase H activity Inferred
Metal bindingi646 – 6461Magnesium; catalytic; for RNase H activity By similarity
Metal bindingi669 – 6691Magnesium; catalytic; for RNase H activity By similarity
Metal bindingi740 – 7401Magnesium; catalytic; for RNase H activity By similarity
Sitei751 – 7522Cleavage; by viral protease
Metal bindingi874 – 8741Magnesium; catalytic; for integrase activity By similarity
Metal bindingi936 – 9361Magnesium; catalytic; for integrase activity By similarity

GO - Molecular functioni

  1. DNA-directed DNA polymerase activity Source: UniProtKB-KW
  2. RNA binding Source: UniProtKB-KW
  3. RNA-DNA hybrid ribonuclease activity Source: UniProtKB-EC
  4. RNA-directed DNA polymerase activity Source: UniProtKB-KW
  5. aspartic-type endopeptidase activity Source: UniProtKB-KW
  6. metal ion binding Source: UniProtKB-KW

GO - Biological processi

  1. DNA integration Source: UniProtKB-KW
  2. DNA recombination Source: UniProtKB-KW
  3. establishment of integrated proviral latency Source: UniProtKB-KW
  4. viral entry into host cell Source: UniProtKB-KW
  5. viral penetration into host nucleus Source: UniProtKB-KW
Complete GO annotation...

Keywords - Molecular functioni

Aspartyl protease, DNA-directed DNA polymerase, Endonuclease, Hydrolase, Nuclease, Nucleotidyltransferase, Protease, RNA-directed DNA polymerase, Transferase

Keywords - Biological processi

DNA integration, DNA recombination, Viral genome integration, Viral penetration into host nucleus, Virus entry into host cell

Keywords - Ligandi

Magnesium, Metal-binding, RNA-binding

Protein family/group databases

MEROPSiA09.001.

Names & Taxonomyi

Protein namesi
Recommended name:
Pro-Pol polyprotein
Alternative name(s):
Pr125Pol
Cleaved into the following 4 chains:
Alternative name(s):
p87Pro-RT-RNaseH
Alternative name(s):
p65Pro-RT
Ribonuclease H (EC:3.1.26.4)
Short name:
RNase H
Integrase
Short name:
IN
Alternative name(s):
p42In
Gene namesi
Name:pol
OrganismiHuman spumaretrovirus (SFVcpz(hu)) (Human foamy virus)
Taxonomic identifieri11963 [NCBI]
Taxonomic lineageiVirusesRetro-transcribing virusesRetroviridaeSpumaretrovirinaeSpumavirus
Virus hostiHomo sapiens (Human) [TaxID: 9606]
ProteomesiUP000008228: Genome

Subcellular locationi

Chain Integrase : Virion Reviewed prediction. Host nucleus. Host cytoplasm Reviewed prediction
Note: Nuclear at initial phase, cytoplasmic at assembly Reviewed prediction.1 Publication
Chain Protease/Reverse transcriptase/ribonuclease H : Host nucleus By similarity. Host cytoplasm Reviewed prediction
Note: Nuclear at initial phase, cytoplasmic at assembly Reviewed prediction.1 Publication

GO - Cellular componenti

  1. host cell cytoplasm Source: UniProtKB-SubCell
  2. host cell nucleus Source: UniProtKB-SubCell
  3. intracellular Source: GOC
  4. virion Source: UniProtKB-SubCell
Complete GO annotation...

Keywords - Cellular componenti

Host cytoplasm, Host nucleus, Virion

Pathology & Biotechi

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi24 – 241D → A: Complete loss of Gag processing and of Pol processing. Particles are non-infectious. 1 Publication
Mutagenesisi25 – 251S → T: No effect on polyprotein processing and viral replication. 1 Publication
Mutagenesisi152 – 1521P → G: No effect on RT or RNase H activities. 1 Publication
Mutagenesisi169 – 1691P → G: 30% loss of RT activity. 1 Publication
Mutagenesisi193 – 1931P → G: 40% loss of RT activity. 1 Publication
Mutagenesisi599 – 5991D → A: 95% loss of RNase H activity. 1 Publication
Mutagenesisi672 – 6721Y → F: 50% loss of RNase H activity. 1 Publication

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Chaini1 – 11431143Pro-Pol polyprotein
PRO_0000125483Add
BLAST
Chaini1 – 751751Protease/Reverse transcriptase/ribonuclease H
PRO_0000245443Add
BLAST
Chaini1 – 596596Protease/Reverse transcriptase
PRO_0000245444Add
BLAST
Chaini597 – 751155Ribonuclease H
PRO_0000245445Add
BLAST
Chaini752 – 1143392Integrase
PRO_0000245446Add
BLAST

Post-translational modificationi

Specific enzymatic cleavages in vivo by viral protease yield mature proteins. The protease is not cleaved off from Pol. Since cleavage efficiency is not optimal for all sites, long and active p65Pro-RT, p87Pro-RT-RNaseH and even some Pr125Pol are detected in infected cells.1 Publication

Miscellaneous databases

PMAP-CutDBO12817.

Interactioni

Subunit structurei

The protease is a homodimer, whose active site consists of two apposed aspartic acid residues By similarity.

Protein-protein interaction databases

DIPiDIP-58582N.

Structurei

Secondary structure

Legend: HelixTurnBeta strand
Show more details
Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Beta strandi593 – 60311
Beta strandi613 – 6219
Beta strandi624 – 6263
Beta strandi629 – 63911
Helixi642 – 65918
Beta strandi660 – 6623
Beta strandi664 – 6696
Helixi671 – 6788
Helixi680 – 6867
Beta strandi693 – 6953
Helixi700 – 71213
Beta strandi717 – 7204
Beta strandi723 – 7253
Beta strandi727 – 7293
Helixi731 – 74919
Helixi760 – 7678
Beta strandi773 – 7753
Beta strandi777 – 7793
Beta strandi781 – 7844
Beta strandi787 – 7926
Beta strandi795 – 7984
Helixi802 – 8043
Helixi805 – 81410
Turni815 – 8173
Helixi820 – 8289
Helixi836 – 8449
Helixi848 – 8536
Beta strandi858 – 8603
Beta strandi874 – 8818
Beta strandi892 – 8987
Turni899 – 9013
Beta strandi904 – 9129
Helixi914 – 92411
Turni925 – 9273
Beta strandi931 – 9355
Helixi939 – 9424
Helixi944 – 95310
Beta strandi956 – 9594
Helixi965 – 9684
Helixi970 – 98718
Turni990 – 9967
Helixi997 – 10059
Turni1010 – 10123
Helixi1016 – 10216
Beta strandi1023 – 10253
Beta strandi1028 – 10303
Turni1033 – 10364
Helixi1040 – 105415
Beta strandi1073 – 10775
Beta strandi1092 – 10998
Beta strandi1102 – 11065
Beta strandi1108 – 11103
Beta strandi1112 – 11165
Helixi1117 – 11193
Beta strandi1120 – 11223

3D structure databases

Select the link destinations:
PDBe
RCSB PDB
PDBj
Links Updated
EntryMethodResolution (Å)ChainPositionsPDBsum
2LSNNMR-A591-751[»]
2X6NX-ray2.06A/B/C/D/E/F861-1060[»]
2X6SX-ray2.29A/B/C/D/E/F861-1060[»]
2X74X-ray2.34A/B/C/D/E/F861-1060[»]
2X78X-ray2.00A/B/C861-1060[»]
3DLRX-ray2.20A859-1058[»]
3L2QX-ray3.25A/B752-1143[»]
3L2RX-ray2.88A/B752-1143[»]
3L2UX-ray3.15A/B752-1143[»]
3L2VX-ray3.20A/B752-1143[»]
3L2WX-ray3.20A/B752-1143[»]
3OS0X-ray2.81A/B752-1143[»]
3OS1X-ray2.97A/B752-1143[»]
3OS2X-ray3.32A/B752-1143[»]
3OY9X-ray2.95A/B752-1143[»]
3OYAX-ray2.85A/B752-1143[»]
3OYBX-ray2.54A/B752-1143[»]
3OYCX-ray2.66A/B752-1143[»]
3OYDX-ray2.54A/B752-1143[»]
3OYEX-ray2.74A/B752-1143[»]
3OYFX-ray2.51A/B752-1143[»]
3OYGX-ray2.56A/B752-1143[»]
3OYHX-ray2.74A/B752-1143[»]
3OYIX-ray2.72A/B752-1143[»]
3OYJX-ray2.68A/B752-1143[»]
3OYKX-ray2.72A/B752-1143[»]
3OYLX-ray2.54A/B752-1143[»]
3OYMX-ray2.02A/B752-1143[»]
3OYNX-ray2.68A/B752-1143[»]
3S3MX-ray2.49A/B752-1143[»]
3S3NX-ray2.49A/B752-1143[»]
3S3OX-ray2.55A/B752-1143[»]
4BACX-ray3.26A/B752-1143[»]
4BDYX-ray2.52A/B752-1143[»]
4BDZX-ray2.85A/B752-1143[»]
4BE0X-ray2.68A/B752-1143[»]
4BE1X-ray2.71A/B752-1143[»]
4BE2X-ray2.38A/B752-1143[»]
4E7HX-ray2.57A/B752-1143[»]
4E7IX-ray2.53A/B752-1143[»]
4E7JX-ray3.15A/B752-1143[»]
4E7KX-ray3.02A/B752-1143[»]
4E7LX-ray3.00A/B752-1143[»]
4IKFX-ray3.40A/B752-1143[»]
ProteinModelPortaliP14350.
SMRiP14350. Positions 8-98.

Miscellaneous databases

EvolutionaryTraceiP14350.

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Domaini1 – 143143Peptidase A9
Add
BLAST
Domaini198 – 363166Reverse transcriptase
Add
BLAST
Domaini590 – 748159RNase H
Add
BLAST
Domaini868 – 1024157Integrase catalytic
Add
BLAST

Domaini

The reverse transcriptase/ribonuclease H (RT) is structured in five subdomains: finger, palm, thumb, connection and RNase H. Within the palm subdomain, the "primer grip" region is thought to be involved in the positioning of the primer terminus for accommodating the incoming nucleotide. The RNase H domain stabilizes the association of RT with primer-template By similarity.
Integrase core domain contains the D-x(n)-D-x(35)-E motif, named for the phylogenetically conserved glutamic acid and aspartic acid residues and the invariant 35 amino acid spacing between the second and third acidic residues. Each acidic residue of the D,D(35)E motif is independently essential for the 3'-processing and strand transfer activities of purified integrase protein By similarity.

Sequence similaritiesi

Contains 1 RNase H domain.

Family and domain databases

Gene3Di3.30.420.10. 2 hits.
InterProiIPR001584. Integrase_cat-core.
IPR012337. RNaseH-like_dom.
IPR002156. RNaseH_domain.
IPR000477. RT_dom.
IPR001641. Spumavirus_A9.
[Graphical view]
PfamiPF00075. RNase_H. 1 hit.
PF00665. rve. 1 hit.
PF00078. RVT_1. 1 hit.
PF03539. Spuma_A9PTase. 1 hit.
[Graphical view]
PRINTSiPR00920. SPUMVIRPTASE.
ProDomiPD013079. Peptidase_A9_cat. 1 hit.
[Graphical view] [Entries sharing at least one domain]
SUPFAMiSSF53098. SSF53098. 2 hits.
PROSITEiPS51531. FV_PR. 1 hit.
PS50994. INTEGRASE. 1 hit.
PS50879. RNASE_H. 1 hit.
PS50878. RT_POL. 1 hit.
[Graphical view]

Sequencei

Sequence statusi: Complete.

Sequence processingi: The displayed sequence is further processed into a mature form.

P14350-1 [UniParc]FASTAAdd to Basket

« Hide

MNPLQLLQPL PAEIKGTKLL AHWDSGATIT CIPESFLEDE QPIKKTLIKT     50
IHGEKQQNVY YVTFKVKGRK VEAEVIASPY EYILLSPTDV PWLTQQPLQL 100
TILVPLQEYQ EKILSKTALP EDQKQQLKTL FVKYDNLWQH WENQVGHRKI 150
RPHNIATGDY PPRPQKQYPI NPKAKPSIQI VIDDLLKQGV LTPQNSTMNT 200
PVYPVPKPDG RWRMVLDYRE VNKTIPLTAA QNQHSAGILA TIVRQKYKTT 250
LDLANGFWAH PITPESYWLT AFTWQGKQYC WTRLPQGFLN SPALFTADVV 300
DLLKEIPNVQ VYVDDIYLSH DDPKEHVQQL EKVFQILLQA GYVVSLKKSE 350
IGQKTVEFLG FNITKEGRGL TDTFKTKLLN ITPPKDLKQL QSILGLLNFA 400
RNFIPNFAEL VQPLYNLIAS AKGKYIEWSE ENTKQLNMVI EALNTASNLE 450
ERLPEQRLVI KVNTSPSAGY VRYYNETGKK PIMYLNYVFS KAELKFSMLE 500
KLLTTMHKAL IKAMDLAMGQ EILVYSPIVS MTKIQKTPLP ERKALPIRWI 550
TWMTYLEDPR IQFHYDKTLP ELKHIPDVYT SSQSPVKHPS QYEGVFYTDG 600
SAIKSPDPTK SNNAGMGIVH ATYKPEYQVL NQWSIPLGNH TAQMAEIAAV 650
EFACKKALKI PGPVLVITDS FYVAESANKE LPYWKSNGFV NNKKKPLKHI 700
SKWKSIAECL SMKPDITIQH EKGISLQIPV FILKGNALAD KLATQGSYVV 750
NCNTKKPNLD AELDQLLQGH YIKGYPKQYT YFLEDGKVKV SRPEGVKIIP 800
PQSDRQKIVL QAHNLAHTGR EATLLKIANL YWWPNMRKDV VKQLGRCQQC 850
LITNASNKAS GPILRPDRPQ KPFDKFFIDY IGPLPPSQGY LYVLVVVDGM 900
TGFTWLYPTK APSTSATVKS LNVLTSIAIP KVIHSDQGAA FTSSTFAEWA 950
KERGIHLEFS TPYHPQSGSK VERKNSDIKR LLTKLLVGRP TKWYDLLPVV 1000
QLALNNTYSP VLKYTPHQLL FGIDSNTPFA NQDTLDLTRE EELSLLQEIR 1050
TSLYHPSTPP ASSRSWSPVV GQLVQERVAR PASLRPRWHK PSTVLKVLNP 1100
RTVVILDHLG NNRTVSIDNL KPTSHQNGTT NDTATMDHLE KNE 1143
Length:1,143
Mass (Da):129,742
Last modified:July 11, 2006 - v2
Checksum:i786E3203B06FFB3C
GO

Sequence cautioni

The sequence AAA46122.1 differs from that shown. Reason: Frameshift at position 1075.
The sequence AAA66556.1 differs from that shown. Reason: Erroneous initiation.

Sequence databases

Select the link destinations:
EMBL
GenBank
DDBJ
Links Updated
U21247 Genomic RNA. Translation: AAB48112.1.
Y07723 Genomic DNA. Translation: CAA68997.1.
Y07724 Genomic DNA. Translation: CAA68999.1.
Y07725 Genomic DNA. Translation: CAA69003.1.
M19427 Genomic RNA. Translation: AAA66556.1. Different initiation.
M54978 Genomic RNA. Translation: AAA46122.1. Frameshift.

Cross-referencesi

Sequence databases

Select the link destinations:
EMBL
GenBank
DDBJ
Links Updated
U21247 Genomic RNA. Translation: AAB48112.1 .
Y07723 Genomic DNA. Translation: CAA68997.1 .
Y07724 Genomic DNA. Translation: CAA68999.1 .
Y07725 Genomic DNA. Translation: CAA69003.1 .
M19427 Genomic RNA. Translation: AAA66556.1 . Different initiation.
M54978 Genomic RNA. Translation: AAA46122.1 . Frameshift.

3D structure databases

Select the link destinations:
PDBe
RCSB PDB
PDBj
Links Updated
Entry Method Resolution (Å) Chain Positions PDBsum
2LSN NMR - A 591-751 [» ]
2X6N X-ray 2.06 A/B/C/D/E/F 861-1060 [» ]
2X6S X-ray 2.29 A/B/C/D/E/F 861-1060 [» ]
2X74 X-ray 2.34 A/B/C/D/E/F 861-1060 [» ]
2X78 X-ray 2.00 A/B/C 861-1060 [» ]
3DLR X-ray 2.20 A 859-1058 [» ]
3L2Q X-ray 3.25 A/B 752-1143 [» ]
3L2R X-ray 2.88 A/B 752-1143 [» ]
3L2U X-ray 3.15 A/B 752-1143 [» ]
3L2V X-ray 3.20 A/B 752-1143 [» ]
3L2W X-ray 3.20 A/B 752-1143 [» ]
3OS0 X-ray 2.81 A/B 752-1143 [» ]
3OS1 X-ray 2.97 A/B 752-1143 [» ]
3OS2 X-ray 3.32 A/B 752-1143 [» ]
3OY9 X-ray 2.95 A/B 752-1143 [» ]
3OYA X-ray 2.85 A/B 752-1143 [» ]
3OYB X-ray 2.54 A/B 752-1143 [» ]
3OYC X-ray 2.66 A/B 752-1143 [» ]
3OYD X-ray 2.54 A/B 752-1143 [» ]
3OYE X-ray 2.74 A/B 752-1143 [» ]
3OYF X-ray 2.51 A/B 752-1143 [» ]
3OYG X-ray 2.56 A/B 752-1143 [» ]
3OYH X-ray 2.74 A/B 752-1143 [» ]
3OYI X-ray 2.72 A/B 752-1143 [» ]
3OYJ X-ray 2.68 A/B 752-1143 [» ]
3OYK X-ray 2.72 A/B 752-1143 [» ]
3OYL X-ray 2.54 A/B 752-1143 [» ]
3OYM X-ray 2.02 A/B 752-1143 [» ]
3OYN X-ray 2.68 A/B 752-1143 [» ]
3S3M X-ray 2.49 A/B 752-1143 [» ]
3S3N X-ray 2.49 A/B 752-1143 [» ]
3S3O X-ray 2.55 A/B 752-1143 [» ]
4BAC X-ray 3.26 A/B 752-1143 [» ]
4BDY X-ray 2.52 A/B 752-1143 [» ]
4BDZ X-ray 2.85 A/B 752-1143 [» ]
4BE0 X-ray 2.68 A/B 752-1143 [» ]
4BE1 X-ray 2.71 A/B 752-1143 [» ]
4BE2 X-ray 2.38 A/B 752-1143 [» ]
4E7H X-ray 2.57 A/B 752-1143 [» ]
4E7I X-ray 2.53 A/B 752-1143 [» ]
4E7J X-ray 3.15 A/B 752-1143 [» ]
4E7K X-ray 3.02 A/B 752-1143 [» ]
4E7L X-ray 3.00 A/B 752-1143 [» ]
4IKF X-ray 3.40 A/B 752-1143 [» ]
ProteinModelPortali P14350.
SMRi P14350. Positions 8-98.
ModBasei Search...
MobiDBi Search...

Protein-protein interaction databases

DIPi DIP-58582N.

Protein family/group databases

MEROPSi A09.001.

Protocols and materials databases

Structural Biology Knowledgebase Search...

Miscellaneous databases

EvolutionaryTracei P14350.
PMAP-CutDB O12817.

Family and domain databases

Gene3Di 3.30.420.10. 2 hits.
InterProi IPR001584. Integrase_cat-core.
IPR012337. RNaseH-like_dom.
IPR002156. RNaseH_domain.
IPR000477. RT_dom.
IPR001641. Spumavirus_A9.
[Graphical view ]
Pfami PF00075. RNase_H. 1 hit.
PF00665. rve. 1 hit.
PF00078. RVT_1. 1 hit.
PF03539. Spuma_A9PTase. 1 hit.
[Graphical view ]
PRINTSi PR00920. SPUMVIRPTASE.
ProDomi PD013079. Peptidase_A9_cat. 1 hit.
[Graphical view ] [Entries sharing at least one domain ]
SUPFAMi SSF53098. SSF53098. 2 hits.
PROSITEi PS51531. FV_PR. 1 hit.
PS50994. INTEGRASE. 1 hit.
PS50879. RNASE_H. 1 hit.
PS50878. RT_POL. 1 hit.
[Graphical view ]
ProtoNeti Search...

Publicationsi

  1. Fluegel R.M.
    Submitted (FEB-1995) to the EMBL/GenBank/DDBJ databases
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC RNA], SEQUENCE REVISION.
  2. "Long terminal repeat U3-length polymorphism of human foamy virus."
    Schmidt M., Herchenrder O., Heeney J.L., Rethwilm A.
    Submitted (AUG-1996) to the EMBL/GenBank/DDBJ databases
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
  3. "Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus."
    Maurer B., Bannert H., Darai G., Fluegel R.M.
    J. Virol. 62:1590-1597(1988) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC RNA] OF 1-742.
  4. "Nucleotide sequence analysis of the env gene and its flanking regions of the human spumaretrovirus reveals two novel genes."
    Fluegel R.M., Rethwilm A., Maurer B., Darai G.
    EMBO J. 6:2077-2084(1987) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC RNA] OF 741-886.
  5. "Active foamy virus proteinase is essential for virus infectivity but not for formation of a Pol polyprotein."
    Konvalinka J., Loechelt M., Zentgraf H., Fluegel R.M., Kraeusslich H.-G.
    J. Virol. 69:7264-7268(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: ACTIVE SITE OF PROTEASE, MUTAGENESIS OF ASP-24 AND SER-25.
  6. "Mutational analysis of the reverse transcriptase and ribonuclease H domains of the human foamy virus."
    Kogel D., Aboud M., Fluegel R.M.
    Nucleic Acids Res. 23:2621-2625(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF PRO-152; PRO-169; PRO-193; ASP-599 AND TYR-672.
  7. "The human foamy virus pol gene is expressed as a Pro-Pol polyprotein and not as a Gag-Pol fusion protein."
    Loechelt M., Fluegel R.M.
    J. Virol. 70:1033-1040(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: CHARACTERIZATION OF POLYPROTEIN.
  8. "Molecular characterization of proteolytic processing of the Pol proteins of human foamy virus reveals novel features of the viral protease."
    Pfrepper K.-I., Rackwitz H.R., Schnoelzer M., Heid H., Loechelt M., Fluegel R.M.
    J. Virol. 72:7648-7652(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: PROTEOLYTIC PROCESSING OF POLYPROTEIN.
  9. "Primate foamy virus Pol proteins are imported into the nucleus."
    Imrich H., Heinkelein M., Herchenroder O., Rethwilm A.
    J. Gen. Virol. 81:2941-2947(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION.
    Strain: Isolate HSRV2.
  10. "Biphasic DNA synthesis in spumaviruses."
    Delelis O., Saib A., Sonigo P.
    J. Virol. 77:8141-8146(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: CHARACTERIZATION OF REVERSE TRANSCRIPTASE.
  11. Cited for: CHARACTERIZATION OF INTEGRASE.
  12. "Proteolytic processing of foamy virus Gag and Pol proteins."
    Fluegel R.M., Pfrepper K.-I.
    Curr. Top. Microbiol. Immunol. 277:63-88(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  13. Cited for: REVIEW.

Entry informationi

Entry nameiPOL_FOAMV
AccessioniPrimary (citable) accession number: P14350
Secondary accession number(s): O12528
, O12817, Q76U32, Q98835
Entry historyi
Integrated into UniProtKB/Swiss-Prot: January 1, 1990
Last sequence update: July 11, 2006
Last modified: July 9, 2014
This is version 120 of the entry and version 2 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programViral Protein Annotation Program

Miscellaneousi

Miscellaneous

The reverse transcriptase is an error-prone enzyme that lacks a proof-reading function. High mutations rate is a direct consequence of this characteristic. RT also displays frequent template switching leading to high recombination rate. Recombination mostly occurs between homologous regions of the two copackaged RNA genomes. If these two RNA molecules derive from different viral strains, reverse transcription will give rise to highly recombinated proviral DNAs.
Foamy viruses are distinct from other retroviruses in many respects. Their protease is active as an uncleaved Pro-Pol protein. Mature particles do not include the usual processed retroviral structural protein (MA, CA and NC), but instead contain two large Gag proteins. Their functional nucleic acid appears to be either RNA or dsDNA (up to 20% of extracellular particles), because they probably proceed either to an early (before integration) or late reverse transcription (after assembly). Foamy viruses have the ability to retrotranspose intracellularly with high efficiency. They bud predominantly into the endoplasmic reticulum (ER) and occasionally at the plasma membrane. Budding requires the presence of Env proteins. Most viral particles probably remain within the infected cell.

Keywords - Technical termi

3D-structure, Complete proteome, Multifunctional enzyme

Documents

  1. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  2. Peptidase families
    Classification of peptidase families and list of entries
  3. SIMILARITY comments
    Index of protein domains and families

External Data

Dasty 3

Similar proteinsi