Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P12904 (AAKG_YEAST) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 129. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (4) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
5'-AMP-activated protein kinase subunit gamma

Short name=AMPK gamma
Short name=AMPK subunit gamma
Alternative name(s):
Regulatory protein CAT3
Sucrose non-fermenting protein 4
Gene names
Name:SNF4
Synonyms:CAT3, SCI1
Ordered Locus Names:YGL115W
OrganismSaccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [Reference proteome]
Taxonomic identifier559292 [NCBI]
Taxonomic lineageEukaryotaFungiDikaryaAscomycotaSaccharomycotinaSaccharomycetesSaccharomycetalesSaccharomycetaceaeSaccharomyces

Protein attributes

Sequence length322 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Adenine nucleotides-binding subunit gamma of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Gamma non-catalytic subunit mediates binding to AMP, ADP and ATP, leading to activate or inhibit AMPK: AMP-binding results in allosteric activation of alpha catalytic subunit (SNF1) both by inducing phosphorylation and preventing dephosphorylation of catalytic subunits. Ref.7 Ref.8 Ref.9 Ref.10 Ref.11 Ref.12 Ref.13 Ref.14 Ref.15 Ref.16 Ref.18 Ref.19 Ref.21 Ref.22 Ref.23 Ref.24 Ref.28 Ref.31

Subunit structure

AMPK is a heterotrimer of an alpha catalytic subunit (SNF1), a beta (SIP1, SIP2 or GAL83) and a gamma non-catalytic subunits (SNF4). Note=Interaction between SNF1 and SNF4 is inhibited by high levels of glucose. Ref.23 Ref.26

Subcellular location

Nucleus. Cytoplasm Ref.1 Ref.2 Ref.27.

Disruption phenotype

Leads to a decrease in the length of G1 with respect to the wild-type strain along with a smaller difference in the cell cycle length of parent and daughter cells. Ref.20

Miscellaneous

Present with 11700 molecules/cell in log phase SD medium.

Sequence similarities

Belongs to the 5'-AMP-activated protein kinase gamma subunit family.

Contains 4 CBS domains.

Ontologies

Keywords
   Biological processCarbohydrate metabolism
Transcription
Transcription regulation
   Cellular componentCytoplasm
Nucleus
   DomainCBS domain
Repeat
   LigandATP-binding
Nucleotide-binding
   Technical term3D-structure
Complete proteome
Direct protein sequencing
Reference proteome
Gene Ontology (GO)
   Biological_processcarbohydrate metabolic process

Inferred from electronic annotation. Source: UniProtKB-KW

peroxisome organization

Inferred from mutant phenotype PubMed 1355328. Source: SGD

positive regulation of gluconeogenesis

Inferred from mutant phenotype Ref.2. Source: SGD

positive regulation of protein serine/threonine kinase activity

Inferred from mutant phenotype Ref.22Ref.11. Source: GOC

protein phosphorylation

Inferred from mutant phenotype Ref.22Ref.11PubMed 7913470. Source: SGD

regulation of transcription from RNA polymerase II promoter

Inferred from genetic interaction Ref.11. Source: SGD

replicative cell aging

Inferred from mutant phenotype PubMed 10921902. Source: SGD

transcription, DNA-templated

Inferred from electronic annotation. Source: UniProtKB-KW

   Cellular_componentAMP-activated protein kinase complex

Inferred from direct assay Ref.23Ref.2. Source: SGD

cytoplasm

Inferred from direct assay Ref.27Ref.2. Source: SGD

nuclear envelope lumen

Inferred from direct assay Ref.27. Source: SGD

nucleus

Inferred from direct assay Ref.27Ref.2. Source: SGD

plasma membrane

Inferred from direct assay PubMed 12562756. Source: SGD

   Molecular_functionATP binding

Inferred from electronic annotation. Source: UniProtKB-KW

catalytic activity

Inferred from electronic annotation. Source: InterPro

protein binding

Inferred from physical interaction PubMed 10074103PubMed 10220464PubMed 10688190PubMed 10978279PubMed 11029705PubMed 11283351PubMed 11410349PubMed 11701881PubMed 11805826PubMed 11909951PubMed 12435362PubMed 16260785PubMed 16429126PubMed 18719252PubMed 20489023PubMed 8230216. Source: IntAct

protein serine/threonine kinase activator activity

Inferred from mutant phenotype Ref.22Ref.11. Source: SGD

Complete GO annotation...

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 3223225'-AMP-activated protein kinase subunit gamma
PRO_0000204389

Regions

Domain37 – 9761CBS 1
Domain118 – 18164CBS 2
Domain194 – 25360CBS 3
Domain262 – 32261CBS 4

Experimental info

Mutagenesis631V → Q: Reduces glucose inhibition of SNF1 and leads to resistance to 2-deoxyglucose. Ref.28
Mutagenesis1361C → Y: Reduces glucose inhibition of SNF1 and leads to resistance to 2-deoxyglucose. Ref.28
Mutagenesis1451G → E: Reduces glucose inhibition of SNF1 and leads to resistance to 2-deoxyglucose. Ref.28
Mutagenesis1461R → A or Q: Reduces glucose inhibition of SNF1 and leads to resistance to 2-deoxyglucose. Ref.28
Mutagenesis1661T → N: Reduces glucose inhibition of SNF1 and leads to resistance to 2-deoxyglucose. Ref.28
Mutagenesis1771N → A or Y: Reduces glucose inhibition of SNF1 and leads to resistance to 2-deoxyglucose. Ref.28
Mutagenesis2421L → E: Decreases SNF1-activation efficiency; when associated with A-291 and E-293. Ref.29
Mutagenesis2511N → I: Leads to resistance to 2-deoxyglucose. Ref.28
Mutagenesis2911R → A: Decreases SNF1-activation efficiency; when associated with E-242 and E-293. Ref.29
Mutagenesis2931H → A: Reduces glucose inhibition of SNF1 and leads to resistance to 2-deoxyglucose. Ref.28 Ref.29
Mutagenesis2931H → E: Decreases SNF1-activation efficiency; when associated with E-242 and A-291. Ref.28 Ref.29

Secondary structure

..................................................... 322
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
P12904 [UniParc].

Last modified October 1, 1989. Version 1.
Checksum: 51B387E346EE9561

FASTA32236,401
        10         20         30         40         50         60 
MKPTQDSQEK VSIEQQLAVE SIRKFLNSKT SYDVLPVSYR LIVLDTSLLV KKSLNVLLQN 

        70         80         90        100        110        120 
SIVSAPLWDS KTSRFAGLLT TTDFINVIQY YFSNPDKFEL VDKLQLDGLK DIERALGVDQ 

       130        140        150        160        170        180 
LDTASIHPSR PLFEACLKML ESRSGRIPLI DQDEETHREI VVSVLTQYRI LKFVALNCRE 

       190        200        210        220        230        240 
THFLKIPIGD LNIITQDNMK SCQMTTPVID VIQMLTQGRV SSVPIIDENG YLINVYEAYD 

       250        260        270        280        290        300 
VLGLIKGGIY NDLSLSVGEA LMRRSDDFEG VYTCTKNDKL STIMDNIRKA RVHRFFVVDD 

       310        320 
VGRLVGVLTL SDILKYILLG SN 

« Hide

References

« Hide 'large scale' references
[1]"Molecular characterization of yeast regulatory gene CAT3 necessary for glucose derepression and nuclear localization of its product."
Schueller H.-J., Entian K.-D.
Gene 67:247-257(1988) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], SUBCELLULAR LOCATION.
[2]"Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase."
Celenza J.L., Eng F.J., Carlson M.
Mol. Cell. Biol. 9:5045-5054(1989) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], SUBCELLULAR LOCATION, INTERACTION WITH SNF1.
[3]"The nucleotide sequence of Saccharomyces cerevisiae chromosome VII."
Tettelin H., Agostoni-Carbone M.L., Albermann K., Albers M., Arroyo J., Backes U., Barreiros T., Bertani I., Bjourson A.J., Brueckner M., Bruschi C.V., Carignani G., Castagnoli L., Cerdan E., Clemente M.L., Coblenz A., Coglievina M., Coissac E. expand/collapse author list , Defoor E., Del Bino S., Delius H., Delneri D., de Wergifosse P., Dujon B., Durand P., Entian K.-D., Eraso P., Escribano V., Fabiani L., Fartmann B., Feroli F., Feuermann M., Frontali L., Garcia-Gonzalez M., Garcia-Saez M.I., Goffeau A., Guerreiro P., Hani J., Hansen M., Hebling U., Hernandez K., Heumann K., Hilger F., Hofmann B., Indge K.J., James C.M., Klima R., Koetter P., Kramer B., Kramer W., Lauquin G., Leuther H., Louis E.J., Maillier E., Marconi A., Martegani E., Mazon M.J., Mazzoni C., McReynolds A.D.K., Melchioretto P., Mewes H.-W., Minenkova O., Mueller-Auer S., Nawrocki A., Netter P., Neu R., Nombela C., Oliver S.G., Panzeri L., Paoluzi S., Plevani P., Portetelle D., Portillo F., Potier S., Purnelle B., Rieger M., Riles L., Rinaldi T., Robben J., Rodrigues-Pousada C., Rodriguez-Belmonte E., Rodriguez-Torres A.M., Rose M., Ruzzi M., Saliola M., Sanchez-Perez M., Schaefer B., Schaefer M., Scharfe M., Schmidheini T., Schreer A., Skala J., Souciet J.-L., Steensma H.Y., Talla E., Thierry A., Vandenbol M., van der Aart Q.J.M., Van Dyck L., Vanoni M., Verhasselt P., Voet M., Volckaert G., Wambutt R., Watson M.D., Weber N., Wedler E., Wedler H., Wipfli P., Wolf K., Wright L.F., Zaccaria P., Zimmermann M., Zollner A., Kleine K.
Nature 387:81-84(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: ATCC 204508 / S288c.
[4]"The reference genome sequence of Saccharomyces cerevisiae: Then and now."
Engel S.R., Dietrich F.S., Fisk D.G., Binkley G., Balakrishnan R., Costanzo M.C., Dwight S.S., Hitz B.C., Karra K., Nash R.S., Weng S., Wong E.D., Lloyd P., Skrzypek M.S., Miyasato S.R., Simison M., Cherry J.M.
G3 (Bethesda) 4:389-398(2014) [PubMed] [Europe PMC] [Abstract]
Cited for: GENOME REANNOTATION.
Strain: ATCC 204508 / S288c.
[5]"Correct end of the ORF for the CDC20 gene of Saccharomyces cerevisiae."
Doi A., Doi K.
Submitted (JUN-1993) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-21.
[6]"Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase."
Mitchelhill K.I., Stapleton D., Gao G., House C., Michell B., Katsis F., Witters L.A., Kemp B.E.
J. Biol. Chem. 269:2361-2364(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 30-34 AND 316-322.
[7]"New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae."
Entian K.D., Zimmermann F.K.
J. Bacteriol. 151:1123-1128(1982) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[8]"Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae."
Neigeborn L., Carlson M.
Genetics 108:845-858(1984) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[9]"Upstream region of the SUC2 gene confers regulated expression to a heterologous gene in Saccharomyces cerevisiae."
Sarokin L., Carlson M.
Mol. Cell. Biol. 5:2521-2526(1985) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[10]"High-affinity glucose transport in Saccharomyces cerevisiae is under general glucose repression control."
Bisson L.F.
J. Bacteriol. 170:4838-4845(1988) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[11]"Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein."
Celenza J.L., Carlson M.
Mol. Cell. Biol. 9:5034-5044(1989) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[12]"Absence of glucose-induced cAMP signaling in the Saccharomyces cerevisiae mutants cat1 and cat3 which are deficient in derepression of glucose-repressible proteins."
Arguelles J.C., Mbonyi K., Van Aelst L., Vanhalewyn M., Jans A.W., Thevelein J.M.
Arch. Microbiol. 154:199-205(1990) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[13]"N-terminal mutations modulate yeast SNF1 protein kinase function."
Estruch F., Treitel M.A., Yang X., Carlson M.
Genetics 132:639-650(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH SNF1.
[14]"Transcriptional regulation of the isocitrate lyase encoding gene in Saccharomyces cerevisiae."
Fernandez E., Fernandez M., Moreno F., Rodicio R.
FEBS Lett. 333:238-242(1993) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION OF THE AMPK COMPLEX.
[15]"Mode of action of the qcr9 and cat3 mutations in restoring the ability of Saccharomyces cerevisiae tps1 mutants to grow on glucose."
Blazquez M.A., Gancedo C.
Mol. Gen. Genet. 249:655-664(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[16]"Glucose regulates protein interactions within the yeast SNF1 protein kinase complex."
Jiang R., Carlson M.
Genes Dev. 10:3105-3115(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH SNF1.
[17]"The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex."
Jiang R., Carlson M.
Mol. Cell. Biol. 17:2099-2106(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SNF1; SIP1; SIP2 AND GAL83.
[18]"Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures."
Aon M.A., Cortassa S.
Biotechnol. Bioeng. 59:203-213(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[19]"Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae."
Ludin K., Jiang R., Carlson M.
Proc. Natl. Acad. Sci. U.S.A. 95:6245-6250(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH SNF1.
[20]"Quantitation of the effects of disruption of catabolite (de)repression genes on the cell cycle behavior of Saccharomyces cerevisiae."
Aon M.A., Cortassa S.
Curr. Microbiol. 38:57-60(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE.
[21]"Evidence for the involvement of the Glc7-Reg1 phosphatase and the Snf1-Snf4 kinase in the regulation of INO1 transcription in Saccharomyces cerevisiae."
Shirra M.K., Arndt K.M.
Genetics 152:73-87(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SNIF1, FUNCTION OF THE AMPK COMPLEX.
[22]"Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit."
McCartney R.R., Schmidt M.C.
J. Biol. Chem. 276:36460-36466(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[23]"Purification and characterization of Snf1 kinase complexes containing a defined beta subunit composition."
Nath N., McCartney R.R., Schmidt M.C.
J. Biol. Chem. 277:50403-50408(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN THE AMPK COMPLEX, FUNCTION OF THE AMPK COMPLEX.
[24]"The Snf1 protein kinase controls the induction of genes of the iron uptake pathway at the diauxic shift in Saccharomyces cerevisiae."
Haurie V., Boucherie H., Sagliocco F.
J. Biol. Chem. 278:45391-45396(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION OF THE AMPK COMPLEX.
[25]"Global analysis of protein expression in yeast."
Ghaemmaghami S., Huh W.-K., Bower K., Howson R.W., Belle A., Dephoure N., O'Shea E.K., Weissman J.S.
Nature 425:737-741(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: LEVEL OF PROTEIN EXPRESSION [LARGE SCALE ANALYSIS].
[26]"Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity."
Elbing K., Rubenstein E.M., McCartney R.R., Schmidt M.C.
J. Biol. Chem. 281:26170-26180(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN THE AMPK COMPLEX.
[27]"Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism."
Sarma N.J., Haley T.M., Barbara K.E., Buford T.D., Willis K.A., Santangelo G.M.
Genetics 175:1127-1135(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION.
[28]"Roles of the glycogen-binding domain and Snf4 in glucose inhibition of SNF1 protein kinase."
Momcilovic M., Iram S.H., Liu Y., Carlson M.
J. Biol. Chem. 283:19521-19529(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, MUTAGENESIS OF VAL-63; CYS-136; GLY-145; ARG-146; THR-166; ASN-177; ASN-251 AND HIS-293.
[29]"Structure of the Bateman2 domain of yeast Snf4: dimeric association and relevance for AMP binding."
Rudolph M.J., Amodeo G.A., Iram S.H., Hong S.P., Pirino G., Carlson M., Tong L.
Structure 15:65-74(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (1.9 ANGSTROMS) OF 179-322, MUTAGENESIS OF LEU-242; ARG-291 AND HIS-293.
[30]"Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1."
Amodeo G.A., Rudolph M.J., Tong L.
Nature 449:492-495(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.6 ANGSTROMS) OF 7-321 IN COMPLEX WITH SNF1 AND SIP2.
[31]"ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase."
Mayer F.V., Heath R., Underwood E., Sanders M.J., Carmena D., McCartney R.R., Leiper F.C., Xiao B., Jing C., Walker P.A., Haire L.F., Ogrodowicz R., Martin S.R., Schmidt M.C., Gamblin S.J., Carling D.
Cell Metab. 14:707-714(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 2-322, ADP-BINDING, FUNCTION.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
M21760 Genomic DNA. Translation: AAA34472.1.
M30470 Genomic DNA. Translation: AAA35061.1.
Z72637 Genomic DNA. Translation: CAA96823.1.
D16506 Genomic DNA. Translation: BAA03958.1.
BK006941 Genomic DNA. Translation: DAA07993.1.
PIRRGBYC3. A38906.
RefSeqNP_011400.1. NM_001180980.1.

3D structure databases

PDBe
RCSB-PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
2NYCX-ray1.90A179-322[»]
2NYEX-ray2.50A/B179-322[»]
2QLVX-ray2.60C/F7-321[»]
3T4NX-ray2.30C2-322[»]
3TDHX-ray2.30C2-322[»]
3TE5X-ray2.50C2-322[»]
ProteinModelPortalP12904.
SMRP12904. Positions 6-321.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid33136. 312 interactions.
DIPDIP-592N.
IntActP12904. 32 interactions.
MINTMINT-364345.
STRING4932.YGL115W.

Proteomic databases

MaxQBP12904.
PaxDbP12904.
PeptideAtlasP12904.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblFungiYGL115W; YGL115W; YGL115W.
GeneID852763.
KEGGsce:YGL115W.

Organism-specific databases

CYGDYGL115w.
SGDS000003083. SNF4.

Phylogenomic databases

eggNOGCOG0517.
GeneTreeENSGT00390000009849.
HOGENOMHOG000176880.
OMALNCRETH.
OrthoDBEOG73JM5R.

Enzyme and pathway databases

BioCycYEAST:G3O-30613-MONOMER.

Gene expression databases

GenevestigatorP12904.

Family and domain databases

Gene3D3.20.20.70. 1 hit.
InterProIPR013785. Aldolase_TIM.
IPR000644. CBS_dom.
[Graphical view]
PfamPF00571. CBS. 3 hits.
[Graphical view]
SMARTSM00116. CBS. 4 hits.
[Graphical view]
PROSITEPS51371. CBS. 4 hits.
[Graphical view]
ProtoNetSearch...

Other

EvolutionaryTraceP12904.
NextBio972215.
PROP12904.

Entry information

Entry nameAAKG_YEAST
AccessionPrimary (citable) accession number: P12904
Secondary accession number(s): D6VU32
Entry history
Integrated into UniProtKB/Swiss-Prot: October 1, 1989
Last sequence update: October 1, 1989
Last modified: July 9, 2014
This is version 129 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

Relevant documents

Yeast chromosome VII

Yeast (Saccharomyces cerevisiae) chromosome VII: entries and gene names

Yeast

Yeast (Saccharomyces cerevisiae): entries, gene names and cross-references to SGD

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references