Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

P12497

- POL_HV1N5

UniProt

P12497 - POL_HV1N5

(max 400 entries)x

Your basket is currently empty.

Select item(s) and click on "Add to basket" to create your own collection here
(400 entries max)

Protein

Gag-Pol polyprotein

Gene

gag-pol

Organism
Human immunodeficiency virus type 1 group M subtype B (isolate NY5) (HIV-1)
Status
Reviewed - Annotation score: 5 out of 5- Experimental evidence at protein leveli

Functioni

Gag-Pol polyprotein and Gag polyprotein may regulate their own translation, by the binding genomic RNA in the 5'-UTR. At low concentration, Gag-Pol and Gag would promote translation, whereas at high concentration, the polyproteins encapsidate genomic RNA and then shutt off translation (By similarity).By similarity
Matrix protein p17 has two main functions: in infected cell, it targets Gag and Gag-pol polyproteins to the plasma membrane via a multipartite membrane-binding signal, that includes its myristoylated N-terminus. The second function is to play a role in nuclear localization of the viral genome at the very start of cell infection. Matrix protein is the part of the pre-integration complex. It binds in the cytoplasm the human BAF protein which prevent autointegration of the viral genome, and might be included in virions at the ration of zero to 3 BAF dimer per virion. The myristoylation signal and the NLS thus exert conflicting influences its subcellular localization. The key regulation of these motifs might be phosphorylation of a portion of MA molecules on the C-terminal tyrosine at the time of virus maturation, by virion-associated cellular tyrosine kinase. Implicated in the release from host cell mediated by Vpu (By similarity).By similarity
Capsid protein p24 forms the conical core that encapsulates the genomic RNA-nucleocapsid complex in the virion. Most core are conical, with only 7% tubular. The core is constituted by capsid protein hexamer subunits. The core is disassembled soon after virion entry. Interaction with human PPIA/CYPA protects the virus from restriction by human TRIM5-alpha and from an unknown antiviral activity in human cells. This capsid restriction by TRIM5 is one of the factors which restricts HIV-1 to the human species (By similarity).By similarity
Nucleocapsid protein p7 encapsulates and protects viral dimeric unspliced (genomic) RNA. Binds these RNAs through its zinc fingers. Facilitates rearangement of nucleic acid secondary structure during retrotranscription of genomic RNA. This capability is referred to as nucleic acid chaperone activity (By similarity).By similarity
The aspartyl protease mediates proteolytic cleavages of Gag and Gag-Pol polyproteins during or shortly after the release of the virion from the plasma membrane. Cleavages take place as an ordered, step-wise cascade to yield mature proteins. This process is called maturation. Displays maximal activity during the budding process just prior to particle release from the cell. Also cleaves Nef and Vif, probably concomitantly with viral structural proteins on maturation of virus particles. Hydrolyzes host EIF4GI and PABP1 in order to shut off the capped cellular mRNA translation. The resulting inhibition of cellular protein synthesis serves to ensure maximal viral gene expression and to evade host immune response (By similarity).PROSITE-ProRule annotation
Reverse transcriptase/ribonuclease H (RT) is a multifunctional enzyme that converts the viral RNA genome into dsDNA in the cytoplasm, shortly after virus entry into the cell. This enzyme displays a DNA polymerase activity that can copy either DNA or RNA templates, and a ribonuclease H (RNase H) activity that cleaves the RNA strand of RNA-DNA heteroduplexes in a partially processive 3' to 5' endonucleasic mode. Conversion of viral genomic RNA into dsDNA requires many steps. A tRNA(3)-Lys binds to the primer-binding site (PBS) situated at the 5'-end of the viral RNA. RT uses the 3' end of the tRNA primer to perform a short round of RNA-dependent minus-strand DNA synthesis. The reading proceeds through the U5 region and ends after the repeated (R) region which is present at both ends of viral RNA. The portion of the RNA-DNA heteroduplex is digested by the RNase H, resulting in a ssDNA product attached to the tRNA primer. This ssDNA/tRNA hybridizes with the identical R region situated at the 3' end of viral RNA. This template exchange, known as minus-strand DNA strong stop transfer, can be either intra- or intermolecular. RT uses the 3' end of this newly synthesized short ssDNA to perform the RNA-dependent minus-strand DNA synthesis of the whole template. RNase H digests the RNA template except for two polypurine tracts (PPTs) situated at the 5'-end and near the center of the genome. It is not clear if both polymerase and RNase H activities are simultaneous. RNase H probably can proceed both in a polymerase-dependent (RNA cut into small fragments by the same RT performing DNA synthesis) and a polymerase-independent mode (cleavage of remaining RNA fragments by free RTs). Secondly, RT performs DNA-directed plus-strand DNA synthesis using the PPTs that have not been removed by RNase H as primers. PPTs and tRNA primers are then removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to form a circular dsDNA intermediate. Strand displacement synthesis by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA copy of the viral genome that includes long terminal repeats (LTRs) at both ends (By similarity).By similarity
Integrase catalyzes viral DNA integration into the host chromosome, by performing a series of DNA cutting and joining reactions. This enzyme activity takes place after virion entry into a cell and reverse transcription of the RNA genome in dsDNA. The first step in the integration process is 3' processing. This step requires a complex comprising the viral genome, matrix protein, Vpr and integrase. This complex is called the pre-integration complex (PIC). The integrase protein removes 2 nucleotides from each 3' end of the viral DNA, leaving recessed CA OH's at the 3' ends. In the second step, the PIC enters cell nucleus. This process is mediated through integrase and Vpr proteins, and allows the virus to infect a non dividing cell. This ability to enter the nucleus is specific of lentiviruses, other retroviruses cannot and rely on cell division to access cell chromosomes. In the third step, termed strand transfer, the integrase protein joins the previously processed 3' ends to the 5' ends of strands of target cellular DNA at the site of integration. The 5'-ends are produced by integrase-catalyzed staggered cuts, 5 bp apart. A Y-shaped, gapped, recombination intermediate results, with the 5'-ends of the viral DNA strands and the 3' ends of target DNA strands remaining unjoined, flanking a gap of 5 bp. The last step is viral DNA integration into host chromosome. This involves host DNA repair synthesis in which the 5 bp gaps between the unjoined strands are filled in and then ligated. Since this process occurs at both cuts flanking the HIV genome, a 5 bp duplication of host DNA is produced at the ends of HIV-1 integration. Alternatively, Integrase may catalyze the excision of viral DNA just after strand transfer, this is termed disintegration (By similarity).By similarity

Catalytic activityi

Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.PROSITE-ProRule annotation
Endohydrolysis of RNA in RNA/DNA hybrids. Three different cleavage modes: 1. sequence-specific internal cleavage of RNA. Human immunodeficiency virus type 1 and Moloney murine leukemia virus enzymes prefer to cleave the RNA strand one nucleotide away from the RNA-DNA junction. 2. RNA 5'-end directed cleavage 13-19 nucleotides from the RNA end. 3. DNA 3'-end directed cleavage 15-20 nucleotides away from the primer terminus.
3'-end directed exonucleolytic cleavage of viral RNA-DNA hybrid.
Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).PROSITE-ProRule annotation

Cofactori

Protein has several cofactor binding sites:
  • Mg2+By similarityNote: Binds 2 magnesium ions for reverse transcriptase polymerase activity.By similarity
  • Mg2+By similarityNote: Binds 2 magnesium ions for ribonuclease H (RNase H) activity. Substrate-binding is a precondition for magnesium binding.By similarity
  • Mg2+By similarityNote: Magnesium ions are required for integrase activity. Binds at least 1, maybe 2 magnesium ions.By similarity

Enzyme regulationi

The viral protease is inhibited by many synthetic protease inhibitors (PIs), such as amprenavir, atazanavir, indinavir, loprinavir, nelfinavir, ritonavir and saquinavir. RT can be inhibited either by nucleoside RT inhibitors (NRTIs) or by non nucleoside RT inhibitors (NNRTIs). NRTIs act as chain terminators, whereas NNRTIs inhibit DNA polymerization by binding a small hydrophobic pocket near the RT active site and inducing an allosteric change in this region. Classical NRTIs are abacavir, adefovir (PMEA), didanosine (ddI), lamivudine (3TC), stavudine (d4T), tenofovir (PMPA), zalcitabine (ddC), and zidovudine (AZT). Classical NNRTIs are atevirdine (BHAP U-87201E), delavirdine, efavirenz (DMP-266), emivirine (I-EBU), and nevirapine (BI-RG-587). The tritherapies used as a basic effective treatment of AIDS associate two NRTIs and one NNRTI. Use of protease inhibitors in tritherapy regimens permit more ambitious therapeutic strategies (By similarity).By similarity

Sites

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sitei132 – 1332Cleavage; by viral proteaseBy similarity
Sitei221 – 2222Cis/trans isomerization of proline peptide bond; by human PPIA/CYPABy similarity
Sitei363 – 3642Cleavage; by viral proteaseBy similarity
Sitei377 – 3782Cleavage; by viral proteaseBy similarity
Sitei432 – 4332Cleavage; by viral proteaseSequence Analysis
Sitei440 – 4412Cleavage; by viral proteaseBy similarity
Sitei488 – 4892Cleavage; by viral proteaseBy similarity
Active sitei513 – 5131For protease activity; shared with dimeric partnerPROSITE-ProRule annotation
Sitei587 – 5882Cleavage; by viral proteaseBy similarity
Metal bindingi697 – 6971Magnesium; catalytic; for reverse transcriptase activityBy similarity
Metal bindingi772 – 7721Magnesium; catalytic; for reverse transcriptase activityBy similarity
Metal bindingi773 – 7731Magnesium; catalytic; for reverse transcriptase activityBy similarity
Sitei988 – 9881Essential for RT p66/p51 heterodimerizationBy similarity
Sitei1001 – 10011Essential for RT p66/p51 heterodimerizationBy similarity
Sitei1027 – 10282Cleavage; by viral protease; partialBy similarity
Metal bindingi1030 – 10301Magnesium; catalytic; for RNase H activityBy similarity
Metal bindingi1065 – 10651Magnesium; catalytic; for RNase H activityBy similarity
Metal bindingi1085 – 10851Magnesium; catalytic; for RNase H activityBy similarity
Metal bindingi1136 – 11361Magnesium; catalytic; for RNase H activityBy similarity
Sitei1147 – 11482Cleavage; by viral proteaseBy similarity
Metal bindingi1211 – 12111Magnesium; catalytic; for integrase activity
Metal bindingi1263 – 12631Magnesium; catalytic; for integrase activity

Regions

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Zinc fingeri390 – 40718CCHC-type 1PROSITE-ProRule annotationAdd
BLAST
Zinc fingeri411 – 42818CCHC-type 2PROSITE-ProRule annotationAdd
BLAST
Zinc fingeri1150 – 119142Integrase-typePROSITE-ProRule annotationAdd
BLAST
DNA bindingi1370 – 141748Integrase-typePROSITE-ProRule annotationAdd
BLAST

GO - Molecular functioni

  1. aspartic-type endopeptidase activity Source: UniProtKB-KW
  2. DNA binding Source: UniProtKB-KW
  3. DNA-directed DNA polymerase activity Source: UniProtKB-KW
  4. exoribonuclease H activity Source: UniProtKB-EC
  5. identical protein binding Source: IntAct
  6. RNA binding Source: UniProtKB-KW
  7. RNA-directed DNA polymerase activity Source: UniProtKB-KW
  8. RNA-DNA hybrid ribonuclease activity Source: InterPro
  9. structural molecule activity Source: InterPro
  10. zinc ion binding Source: InterPro

GO - Biological processi

  1. DNA integration Source: UniProtKB-KW
  2. DNA recombination Source: UniProtKB-KW
  3. establishment of integrated proviral latency Source: UniProtKB-KW
  4. induction by virus of host cysteine-type endopeptidase activity involved in apoptotic process Source: UniProtKB-KW
  5. suppression by virus of host gene expression Source: UniProtKB-KW
  6. viral entry into host cell Source: UniProtKB-KW
  7. viral penetration into host nucleus Source: UniProtKB-KW
  8. viral release from host cell Source: UniProtKB-KW
Complete GO annotation...

Keywords - Molecular functioni

Aspartyl protease, DNA-directed DNA polymerase, Endonuclease, Hydrolase, Nuclease, Nucleotidyltransferase, Protease, RNA-directed DNA polymerase, Transferase

Keywords - Biological processi

Activation of host caspases by virus, DNA integration, DNA recombination, Eukaryotic host gene expression shutoff by virus, Eukaryotic host translation shutoff by virus, Host gene expression shutoff by virus, Host-virus interaction, Modulation of host cell apoptosis by virus, Viral genome integration, Viral penetration into host nucleus, Virion maturation, Virus entry into host cell, Virus exit from host cell

Keywords - Ligandi

DNA-binding, Magnesium, Metal-binding, RNA-binding, Viral nucleoprotein, Zinc

Names & Taxonomyi

Protein namesi
Recommended name:
Gag-Pol polyprotein
Alternative name(s):
Pr160Gag-Pol
Cleaved into the following 11 chains:
Matrix protein p17
Short name:
MA
Capsid protein p24
Short name:
CA
Transframe peptide
Short name:
TF
p6-pol
Short name:
p6*
Alternative name(s):
PR
Retropepsin
Alternative name(s):
Exoribonuclease H (EC:3.1.13.2)
p66 RT
Integrase
Short name:
IN
Gene namesi
Name:gag-pol
OrganismiHuman immunodeficiency virus type 1 group M subtype B (isolate NY5) (HIV-1)
Taxonomic identifieri11698 [NCBI]
Taxonomic lineageiVirusesRetro-transcribing virusesRetroviridaeOrthoretrovirinaeLentivirusPrimate lentivirus group
Virus hostiHomo sapiens (Human) [TaxID: 9606]

Subcellular locationi

Chain Matrix protein p17 : Virion Curated. Host nucleus By similarity. Host cytoplasm By similarity. Host cell membrane Curated; Lipid-anchor Curated
Note: Following virus entry, the nuclear localization signal (NLS) of the matrix protein participates with Vpr to the nuclear localization of the viral genome. During virus production, the nuclear export activity of the matrix protein counteracts the NLS to maintain the Gag and Gag-Pol polyproteins in the cytoplasm, thereby directing unspliced RNA to the plasma membrane (By similarity).By similarity
Chain Integrase : Virion Curated. Host nucleus Curated. Host cytoplasm Curated
Note: Nuclear at initial phase, cytoplasmic at assembly.Curated

GO - Cellular componenti

  1. host cell cytoplasm Source: UniProtKB-KW
  2. host cell nucleus Source: UniProtKB-KW
  3. host cell plasma membrane Source: UniProtKB-KW
  4. intracellular Source: GOC
  5. membrane Source: UniProtKB-KW
  6. viral nucleocapsid Source: UniProtKB-KW
Complete GO annotation...

Keywords - Cellular componenti

Capsid protein, Host cell membrane, Host cytoplasm, Host membrane, Host nucleus, Membrane, Virion

Pathology & Biotechi

Keywords - Diseasei

AIDS

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Initiator methioninei1 – 11Removed; by hostBy similarity
Chaini2 – 14351434Gag-Pol polyproteinPRO_0000261276Add
BLAST
Chaini2 – 132131Matrix protein p17By similarityPRO_0000042394Add
BLAST
Chaini133 – 363231Capsid protein p24By similarityPRO_0000042395Add
BLAST
Peptidei364 – 37714Spacer peptide p2By similarityPRO_0000042396Add
BLAST
Chaini378 – 43255Nucleocapsid protein p7By similarityPRO_0000042397Add
BLAST
Peptidei433 – 4408Transframe peptideSequence AnalysisPRO_0000246725
Chaini441 – 48848p6-polSequence AnalysisPRO_0000042398Add
BLAST
Chaini489 – 58799ProteaseBy similarityPRO_0000038660Add
BLAST
Chaini588 – 1147560Reverse transcriptase/ribonuclease HBy similarityPRO_0000042399Add
BLAST
Chaini588 – 1027440p51 RTBy similarityPRO_0000042400Add
BLAST
Chaini1028 – 1147120p15By similarityPRO_0000042401Add
BLAST
Chaini1148 – 1435288IntegraseBy similarityPRO_0000042402Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Lipidationi2 – 21N-myristoyl glycine; by hostBy similarity
Modified residuei132 – 1321Phosphotyrosine; by hostBy similarity

Post-translational modificationi

Specific enzymatic cleavages by the viral protease yield mature proteins. The protease is released by autocatalytic cleavage. The polyprotein is cleaved during and after budding, this process is termed maturation. Proteolytic cleavage of p66 RT removes the RNase H domain to yield the p51 RT subunit. Nucleocapsid protein p7 might be further cleaved after virus entry (By similarity).PROSITE-ProRule annotation
Capsid protein p24 is phosphorylated.By similarity
Matrix protein p17 is tyrosine phosphorylated presumably in the virion by a host kinase. This modification targets the matrix protein to the nucleus (By similarity).By similarity

Keywords - PTMi

Lipoprotein, Myristate, Phosphoprotein

Interactioni

Subunit structurei

Pre-integration complex interacts with human HMGA1. Matrix protein p17 is a trimer. Interacts with gp120 and human BAF. Capsid is a homodimer. Interacts with human PPIA/CYPA. The protease is a homodimer, whose active site consists of two apposed aspartic acid residues. The reverse transcriptase is a heterodimer of p66 RT and p51 RT (RT p66/p51). Heterodimerization of RT is essential for DNA polymerase activity. Despite the sequence identities, p66 RT and p51 RT have distinct folding. Integrase is a homodimer and possibly can form homotetramer. Integrase interacts with human SMARCB1/INI1 and human PSIP1/LEDGF isoform 1. Integrase interacts with human KPNA3; this interaction might play a role in nuclear import of the pre-integration complex (By similarity). Integrase interacts with human NUP153; this interaction might play a role in nuclear import of the pre-integration complex.By similarity2 Publications

Protein-protein interaction databases

IntActiP12497. 4 interactions.

Structurei

Secondary structure

1
1435
Legend: HelixTurnBeta strand
Show more details
Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Beta strandi6 – 83Combined sources
Helixi10 – 189Combined sources
Beta strandi20 – 223Combined sources
Beta strandi23 – 253Combined sources
Helixi31 – 4313Combined sources
Helixi48 – 525Combined sources
Helixi54 – 6411Combined sources
Helixi65 – 673Combined sources
Turni68 – 703Combined sources
Helixi73 – 9018Combined sources
Helixi97 – 10812Combined sources
Helixi109 – 1124Combined sources
Helixi113 – 1153Combined sources
Turni117 – 1193Combined sources
Beta strandi134 – 1363Combined sources
Beta strandi138 – 1403Combined sources
Beta strandi142 – 1443Combined sources
Helixi149 – 16214Combined sources
Helixi168 – 1758Combined sources
Turni176 – 1783Combined sources
Helixi181 – 1899Combined sources
Turni191 – 1933Combined sources
Helixi195 – 21521Combined sources
Beta strandi217 – 2193Combined sources
Helixi233 – 2364Combined sources
Beta strandi239 – 2413Combined sources
Helixi243 – 2519Combined sources
Beta strandi252 – 2543Combined sources
Helixi258 – 27720Combined sources
Helixi282 – 2843Combined sources
Beta strandi289 – 2913Combined sources
Helixi293 – 30614Combined sources
Helixi311 – 32414Combined sources
Helixi328 – 33710Combined sources
Helixi343 – 3508Combined sources
Turni351 – 3544Combined sources
Helixi356 – 3616Combined sources
Beta strandi380 – 3834Combined sources
Beta strandi385 – 3895Combined sources
Beta strandi393 – 3953Combined sources
Turni402 – 4043Combined sources
Beta strandi414 – 4163Combined sources
Beta strandi419 – 4213Combined sources
Turni423 – 4253Combined sources
Beta strandi490 – 4956Combined sources
Beta strandi498 – 5036Combined sources
Beta strandi506 – 5127Combined sources
Beta strandi517 – 5237Combined sources
Beta strandi531 – 5377Combined sources
Beta strandi540 – 55415Combined sources
Beta strandi557 – 56711Combined sources
Helixi575 – 5784Combined sources
Helixi579 – 5813Combined sources
Beta strandi584 – 5863Combined sources
Helixi1151 – 116212Combined sources
Helixi1166 – 11738Combined sources
Helixi1177 – 118610Combined sources
Helixi1188 – 11914Combined sources
Helixi1204 – 12063Combined sources
Beta strandi1207 – 12159Combined sources
Beta strandi1218 – 12258Combined sources
Turni1226 – 12283Combined sources
Beta strandi1231 – 12388Combined sources
Helixi1241 – 125414Combined sources
Beta strandi1259 – 12613Combined sources
Helixi1266 – 12683Combined sources
Helixi1271 – 128010Combined sources
Beta strandi1283 – 12853Combined sources
Helixi1292 – 12954Combined sources
Helixi1300 – 131213Combined sources
Helixi1313 – 13153Combined sources
Beta strandi1316 – 13183Combined sources
Helixi1319 – 133214Combined sources
Helixi1335 – 13373Combined sources
Beta strandi1338 – 13403Combined sources
Helixi1343 – 135513Combined sources

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
EntryMethodResolution (Å)ChainPositionsPDBsum
1A43X-ray2.60A278-363[»]
1A8OX-ray1.70A284-352[»]
1AFVX-ray3.70A/B133-283[»]
1AK4X-ray2.36C/D133-277[»]
1AUMX-ray3.00A283-352[»]
1B92X-ray2.02A1197-1359[»]
1B9DX-ray1.70A1197-1359[»]
1B9FX-ray1.70A1197-1359[»]
1BAJX-ray2.60A278-377[»]
1BHLX-ray2.20A1204-1354[»]
1BI4X-ray2.50A/B/C1197-1356[»]
1BISX-ray1.95A/B1194-1356[»]
1BIUX-ray2.50A/B/C1194-1359[»]
1BIZX-ray1.95A/B1197-1359[»]
1BL3X-ray2.00A/B/C1197-1356[»]
1GWPNMR-A133-283[»]
1HIWX-ray2.30A/B/C/Q/R/S1-132[»]
1HYVX-ray1.70A1194-1359[»]
1HYZX-ray2.30A1194-1359[»]
1ITGX-ray2.30A1194-1359[»]
1K6YX-ray2.40A/B/C/D1148-1359[»]
1M9DX-ray1.90C/D133-278[»]
1QS4X-ray2.10A/B/C1203-1356[»]
1UPHNMR-A2-132[»]
1WJBNMR-A/B1148-1202[»]
1WJDNMR-A/B1148-1202[»]
1WKNmodel-A/B1148-1417[»]
1ZA9model-A/D/H/K1148-1194[»]
B/E/I/L1197-1356[»]
C/F/J/M1367-1417[»]
2B4JX-ray2.02A/B1197-1359[»]
2GOLX-ray2.20A2-131[»]
B/D133-277[»]
2GONX-ray1.90A/B/C/D133-278[»]
2H3FNMR-A2-132[»]
2H3INMR-A2-132[»]
2H3QNMR-A2-132[»]
2H3VNMR-A2-132[»]
2H3ZNMR-A2-132[»]
2HMXNMR-A1-132[»]
2HVPX-ray3.00A489-587[»]
2ITGX-ray2.60A1197-1359[»]
2JPRNMR-A133-277[»]
2JYGNMR-A280-363[»]
2JYLNMR-A280-363[»]
2LF4NMR-A133-363[»]
2LYANMR-A2-132[»]
2LYBNMR-A2-132[»]
2M3ZNMR-A378-432[»]
2M8LNMR-A/B133-353[»]
2M8NNMR-A133-353[»]
2M8PNMR-A133-353[»]
2ONTX-ray2.40A278-352[»]
2PWMX-ray1.90A/B/C/D/E/F/G/H133-278[»]
2PWOX-ray1.45A/B/C/D133-278[»]
2PXRX-ray1.50C133-278[»]
2X2DX-ray1.95D/E133-278[»]
2XDEX-ray1.40A/B133-278[»]
2XV6X-ray1.89A/C278-352[»]
2XXMX-ray1.65A278-352[»]
3AV9X-ray1.70A/B1197-1359[»]
3AVAX-ray1.70A/B1197-1359[»]
3AVBX-ray1.85A/B1197-1359[»]
3AVCX-ray1.77A/B1197-1359[»]
3AVFX-ray1.70A/B1197-1356[»]
3AVGX-ray1.70A/B1197-1359[»]
3AVHX-ray1.88A/B1197-1359[»]
3AVJX-ray1.70A/B1197-1359[»]
3AVKX-ray1.75A/B1197-1359[»]
3AVLX-ray1.88A/B1197-1359[»]
3AVMX-ray1.88A/B1197-1359[»]
3AVNX-ray2.10A/B1197-1359[»]
3DIKelectron microscopy9.00A133-351[»]
3DPHX-ray2.01A/B278-363[»]
3DS0X-ray1.60A278-363[»]
3DS1X-ray1.60A278-363[»]
3DS2X-ray1.20A/B278-363[»]
3DS3X-ray2.70A/B278-363[»]
3DS4X-ray1.12A/B278-363[»]
3DS5X-ray2.40A/B/C/D278-363[»]
3DTJX-ray4.00A/B/C/D278-363[»]
3GV2X-ray7.00A/B/C/D/E/F133-355[»]
3H47X-ray1.90A133-363[»]
3H4EX-ray2.70A/B/C/D/E/F/G/H/I/J/K/L133-363[»]
3L3UX-ray1.40A/B1197-1359[»]
3L3VX-ray2.00A/B1197-1359[»]
3LPTX-ray2.00A1197-1359[»]
3LPUX-ray1.95A1197-1359[»]
3LRYX-ray1.98A/B278-363[»]
3MGEX-ray1.90A133-363[»]
3NF6X-ray1.90A/B1197-1359[»]
3NF7X-ray1.80A/B1197-1359[»]
3NF8X-ray1.90A/B1197-1359[»]
3NF9X-ray1.95A/B1197-1359[»]
3NFAX-ray1.95A/B1197-1359[»]
3P05X-ray2.50A/B/C/D/E133-363[»]
3P0AX-ray5.95A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T133-363[»]
3S85X-ray2.80A/B/C/D/E/F/G/H/I/J/K/L489-587[»]
3WNEX-ray1.70A/B1203-1359[»]
3WNFX-ray1.45A/B1203-1359[»]
3WNGX-ray1.75A/B1203-1359[»]
3WNHX-ray1.50A/B1203-1359[»]
4AH9X-ray1.70A/B1197-1359[»]
4AHRX-ray1.90A/B1197-1359[»]
4AHSX-ray1.75A/B1197-1359[»]
4AHTX-ray1.80A/B1197-1359[»]
4AHUX-ray1.90A/B1197-1359[»]
4AHVX-ray1.80A/B1197-1359[»]
4COCX-ray1.59A/B/C278-363[»]
4COPX-ray1.85A/B278-363[»]
4DGAX-ray1.90C/D133-277[»]
4DGEX-ray2.20C/D133-277[»]
4DMNX-ray2.45A1197-1359[»]
4E1MX-ray1.90A1197-1359[»]
4E1NX-ray2.00A1197-1359[»]
4E91X-ray1.70A/B133-278[»]
4E92X-ray1.80A/B133-278[»]
4GVMX-ray2.16A1197-1359[»]
4GW6X-ray2.65A1197-1359[»]
4ID1X-ray1.87A1197-1359[»]
4IPYX-ray1.64A/B/C/D278-363[»]
4JLHX-ray2.09A1197-1359[»]
4JMUX-ray2.00A1-111[»]
4LQWX-ray1.95C/D133-278[»]
4NX4X-ray1.50C133-278[»]
4O0JX-ray2.05A1197-1359[»]
4O55X-ray2.24A1197-1359[»]
4O5BX-ray2.37A1197-1359[»]
4PHVX-ray2.10A/B489-587[»]
5HVPX-ray2.00A/B489-587[»]
9HVPX-ray2.80A/B489-587[»]
DisProtiDP00410.
ModBaseiSearch...
MobiDBiSearch...

Miscellaneous databases

EvolutionaryTraceiP12497.

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Domaini508 – 57770Peptidase A2PROSITE-ProRule annotationAdd
BLAST
Domaini631 – 821191Reverse transcriptasePROSITE-ProRule annotationAdd
BLAST
Domaini1021 – 1144124RNase HPROSITE-ProRule annotationAdd
BLAST
Domaini1201 – 1351151Integrase catalyticPROSITE-ProRule annotationAdd
BLAST

Region

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Regioni814 – 8229RT 'primer grip'By similarity

Motif

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Motifi16 – 227Nuclear export signalBy similarity
Motifi26 – 327Nuclear localization signalBy similarity
Motifi985 – 100117Tryptophan repeat motifBy similarityAdd
BLAST

Domaini

The reverse transcriptase/ribonuclease H (RT) is structured in five subdomains: finger, palm, thumb, connection and RNase H. Within the palm subdomain, the 'primer grip' region is thought to be involved in the positioning of the primer terminus for accommodating the incoming nucleotide. The RNase H domain stabilizes the association of RT with primer-template (By similarity).By similarity
The tryptophan repeat motif is involved in RT p66/p51 dimerization.By similarity
Integrase core domain contains the D-x(n)-D-x(35)-E motif, named for the phylogenetically conserved glutamic acid and aspartic acid residues and the invariant 35 amino acid spacing between the second and third acidic residues. Each acidic residue of the D,D(35)E motif is independently essential for the 3'-processing and strand transfer activities of purified integrase protein (By similarity).By similarity

Sequence similaritiesi

Contains 2 CCHC-type zinc fingers.PROSITE-ProRule annotation
Contains 1 integrase catalytic domain.PROSITE-ProRule annotation
Contains 1 integrase-type DNA-binding domain.PROSITE-ProRule annotation
Contains 1 integrase-type zinc finger.PROSITE-ProRule annotation
Contains 1 peptidase A2 domain.PROSITE-ProRule annotation
Contains 1 reverse transcriptase domain.PROSITE-ProRule annotation
Contains 1 RNase H domain.PROSITE-ProRule annotation

Zinc finger

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Zinc fingeri390 – 40718CCHC-type 1PROSITE-ProRule annotationAdd
BLAST
Zinc fingeri411 – 42818CCHC-type 2PROSITE-ProRule annotationAdd
BLAST
Zinc fingeri1150 – 119142Integrase-typePROSITE-ProRule annotationAdd
BLAST

Keywords - Domaini

Repeat, Zinc-finger

Family and domain databases

Gene3Di1.10.10.200. 1 hit.
1.10.1200.30. 1 hit.
1.10.150.90. 1 hit.
1.10.375.10. 1 hit.
2.30.30.10. 1 hit.
2.40.70.10. 1 hit.
3.30.420.10. 2 hits.
4.10.60.10. 1 hit.
InterProiIPR001969. Aspartic_peptidase_AS.
IPR000721. Gag_p24.
IPR001037. Integrase_C_retrovir.
IPR001584. Integrase_cat-core.
IPR017856. Integrase_Zn-bd_dom-like_N.
IPR003308. Integrase_Zn-bd_dom_N.
IPR000071. Lentvrl_matrix_N.
IPR012344. Matrix_N_HIV/RSV.
IPR018061. Pept_A2A_retrovirus_sg.
IPR001995. Peptidase_A2_cat.
IPR021109. Peptidase_aspartic_dom.
IPR008916. Retrov_capsid_C.
IPR008919. Retrov_capsid_N.
IPR010999. Retrovr_matrix_N.
IPR012337. RNaseH-like_dom.
IPR002156. RNaseH_domain.
IPR000477. RT_dom.
IPR010659. RVT_connect.
IPR010661. RVT_thumb.
IPR001878. Znf_CCHC.
[Graphical view]
PfamiPF00540. Gag_p17. 1 hit.
PF00607. Gag_p24. 1 hit.
PF00552. IN_DBD_C. 1 hit.
PF02022. Integrase_Zn. 1 hit.
PF00075. RNase_H. 1 hit.
PF00665. rve. 1 hit.
PF00077. RVP. 1 hit.
PF00078. RVT_1. 1 hit.
PF06815. RVT_connect. 1 hit.
PF06817. RVT_thumb. 1 hit.
PF00098. zf-CCHC. 2 hits.
[Graphical view]
PRINTSiPR00234. HIV1MATRIX.
SMARTiSM00343. ZnF_C2HC. 2 hits.
[Graphical view]
SUPFAMiSSF46919. SSF46919. 1 hit.
SSF47353. SSF47353. 1 hit.
SSF47836. SSF47836. 1 hit.
SSF47943. SSF47943. 1 hit.
SSF50122. SSF50122. 1 hit.
SSF50630. SSF50630. 1 hit.
SSF53098. SSF53098. 2 hits.
SSF57756. SSF57756. 1 hit.
PROSITEiPS50175. ASP_PROT_RETROV. 1 hit.
PS00141. ASP_PROTEASE. 1 hit.
PS50994. INTEGRASE. 1 hit.
PS51027. INTEGRASE_DBD. 1 hit.
PS50879. RNASE_H. 1 hit.
PS50878. RT_POL. 1 hit.
PS50158. ZF_CCHC. 2 hits.
PS50876. ZF_INTEGRASE. 1 hit.
[Graphical view]

Sequences (2)i

Sequence statusi: Complete.

Sequence processingi: The displayed sequence is further processed into a mature form.

This entry describes 2 isoformsi produced by ribosomal frameshifting. Align

Note: Translation results in the formation of the Gag polyprotein most of the time. Ribosomal frameshifting at the gag-pol genes boundary occurs at low frequency and produces the Gag-Pol polyprotein. This strategy of translation probably allows the virus to modulate the quantity of each viral protein. Maintenance of a correct Gag to Gag-Pol ratio is essential for RNA dimerization and viral infectivity.

Isoform Gag-Pol polyprotein (identifier: P12497-1) [UniParc]FASTAAdd to Basket

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

« Hide

        10         20         30         40         50
MGARASVLSG GELDKWEKIR LRPGGKKQYK LKHIVWASRE LERFAVNPGL
60 70 80 90 100
LETSEGCRQI LGQLQPSLQT GSEELRSLYN TIAVLYCVHQ RIDVKDTKEA
110 120 130 140 150
LDKIEEEQNK SKKKAQQAAA DTGNNSQVSQ NYPIVQNLQG QMVHQAISPR
160 170 180 190 200
TLNAWVKVVE EKAFSPEVIP MFSALSEGAT PQDLNTMLNT VGGHQAAMQM
210 220 230 240 250
LKETINEEAA EWDRLHPVHA GPIAPGQMRE PRGSDIAGTT STLQEQIGWM
260 270 280 290 300
THNPPIPVGE IYKRWIILGL NKIVRMYSPT SILDIRQGPK EPFRDYVDRF
310 320 330 340 350
YKTLRAEQAS QEVKNWMTET LLVQNANPDC KTILKALGPG ATLEEMMTAC
360 370 380 390 400
QGVGGPGHKA RVLAEAMSQV TNPATIMIQK GNFRNQRKTV KCFNCGKEGH
410 420 430 440 450
IAKNCRAPRK KGCWKCGKEG HQMKDCTERQ ANFLREDLAF PQGKAREFSS
460 470 480 490 500
EQTRANSPTR RELQVWGRDN NSLSEAGADR QGTVSFSFPQ ITLWQRPLVT
510 520 530 540 550
IKIGGQLKEA LLDTGADDTV LEEMNLPGRW KPKMIGGIGG FIKVRQYDQI
560 570 580 590 600
LIEICGHKAI GTVLVGPTPV NIIGRNLLTQ IGCTLNFPIS PIETVPVKLK
610 620 630 640 650
PGMDGPKVKQ WPLTEEKIKA LVEICTEMEK EGKISKIGPE NPYNTPVFAI
660 670 680 690 700
KKKDSTKWRK LVDFRELNKR TQDFWEVQLG IPHPAGLKQK KSVTVLDVGD
710 720 730 740 750
AYFSVPLDKD FRKYTAFTIP SINNETPGIR YQYNVLPQGW KGSPAIFQCS
760 770 780 790 800
MTKILEPFRK QNPDIVIYQY MDDLYVGSDL EIGQHRTKIE ELRQHLLRWG
810 820 830 840 850
FTTPDKKHQK EPPFLWMGYE LHPDKWTVQP IVLPEKDSWT VNDIQKLVGK
860 870 880 890 900
LNWASQIYAG IKVRQLCKLL RGTKALTEVV PLTEEAELEL AENREILKEP
910 920 930 940 950
VHGVYYDPSK DLIAEIQKQG QGQWTYQIYQ EPFKNLKTGK YARMKGAHTN
960 970 980 990 1000
DVKQLTEAVQ KIATESIVIW GKTPKFKLPI QKETWEAWWT EYWQATWIPE
1010 1020 1030 1040 1050
WEFVNTPPLV KLWYQLEKEP IIGAETFYVD GAANRETKLG KAGYVTDRGR
1060 1070 1080 1090 1100
QKVVPLTDTT NQKTELQAIH LALQDSGLEV NIVTDSQYAL GIIQAQPDKS
1110 1120 1130 1140 1150
ESELVSQIIE QLIKKEKVYL AWVPAHKGIG GNEQVDGLVS AGIRKVLFLD
1160 1170 1180 1190 1200
GIDKAQEEHE KYHSNWRAMA SDFNLPPVVA KEIVASCDKC QLKGEAMHGQ
1210 1220 1230 1240 1250
VDCSPGIWQL DCTHLEGKVI LVAVHVASGY IEAEVIPAET GQETAYFLLK
1260 1270 1280 1290 1300
LAGRWPVKTV HTDNGSNFTS TTVKAACWWA GIKQEFGIPY NPQSQGVIES
1310 1320 1330 1340 1350
MNKELKKIIG QVRDQAEHLK TAVQMAVFIH NFKRKGGIGG YSAGERIVDI
1360 1370 1380 1390 1400
IATDIQTKEL QKQITKIQNF RVYYRDSRDP VWKGPAKLLW KGEGAVVIQD
1410 1420 1430
NSDIKVVPRR KAKIIRDYGK QMAGDDCVAS RQDED

Note: Produced by -1 ribosomal frameshifting.

Length:1,435
Mass (Da):161,789
Last modified:July 27, 2011 - v4
Checksum:i798E74FD27C21244
GO
Isoform Gag polyprotein (identifier: P12493-1) [UniParc]FASTAAdd to Basket

The sequence of this isoform can be found in the external entry P12493.
Isoforms of the same protein are often annotated in two different entries if their sequences differ significantly.

Note: Produced by conventional translation.

Length:500
Mass (Da):55,819
GO

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
M19921 Genomic RNA. Translation: AAA44988.2. Sequence problems.

Keywords - Coding sequence diversityi

Ribosomal frameshifting

Cross-referencesi

Web resourcesi

HIV drug resistance mutations
hivdb

HIV drug resistance database

BioAfrica: HIV bioinformatics in Africa

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
M19921 Genomic RNA. Translation: AAA44988.2 . Sequence problems.

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
Entry Method Resolution (Å) Chain Positions PDBsum
1A43 X-ray 2.60 A 278-363 [» ]
1A8O X-ray 1.70 A 284-352 [» ]
1AFV X-ray 3.70 A/B 133-283 [» ]
1AK4 X-ray 2.36 C/D 133-277 [» ]
1AUM X-ray 3.00 A 283-352 [» ]
1B92 X-ray 2.02 A 1197-1359 [» ]
1B9D X-ray 1.70 A 1197-1359 [» ]
1B9F X-ray 1.70 A 1197-1359 [» ]
1BAJ X-ray 2.60 A 278-377 [» ]
1BHL X-ray 2.20 A 1204-1354 [» ]
1BI4 X-ray 2.50 A/B/C 1197-1356 [» ]
1BIS X-ray 1.95 A/B 1194-1356 [» ]
1BIU X-ray 2.50 A/B/C 1194-1359 [» ]
1BIZ X-ray 1.95 A/B 1197-1359 [» ]
1BL3 X-ray 2.00 A/B/C 1197-1356 [» ]
1GWP NMR - A 133-283 [» ]
1HIW X-ray 2.30 A/B/C/Q/R/S 1-132 [» ]
1HYV X-ray 1.70 A 1194-1359 [» ]
1HYZ X-ray 2.30 A 1194-1359 [» ]
1ITG X-ray 2.30 A 1194-1359 [» ]
1K6Y X-ray 2.40 A/B/C/D 1148-1359 [» ]
1M9D X-ray 1.90 C/D 133-278 [» ]
1QS4 X-ray 2.10 A/B/C 1203-1356 [» ]
1UPH NMR - A 2-132 [» ]
1WJB NMR - A/B 1148-1202 [» ]
1WJD NMR - A/B 1148-1202 [» ]
1WKN model - A/B 1148-1417 [» ]
1ZA9 model - A/D/H/K 1148-1194 [» ]
B/E/I/L 1197-1356 [» ]
C/F/J/M 1367-1417 [» ]
2B4J X-ray 2.02 A/B 1197-1359 [» ]
2GOL X-ray 2.20 A 2-131 [» ]
B/D 133-277 [» ]
2GON X-ray 1.90 A/B/C/D 133-278 [» ]
2H3F NMR - A 2-132 [» ]
2H3I NMR - A 2-132 [» ]
2H3Q NMR - A 2-132 [» ]
2H3V NMR - A 2-132 [» ]
2H3Z NMR - A 2-132 [» ]
2HMX NMR - A 1-132 [» ]
2HVP X-ray 3.00 A 489-587 [» ]
2ITG X-ray 2.60 A 1197-1359 [» ]
2JPR NMR - A 133-277 [» ]
2JYG NMR - A 280-363 [» ]
2JYL NMR - A 280-363 [» ]
2LF4 NMR - A 133-363 [» ]
2LYA NMR - A 2-132 [» ]
2LYB NMR - A 2-132 [» ]
2M3Z NMR - A 378-432 [» ]
2M8L NMR - A/B 133-353 [» ]
2M8N NMR - A 133-353 [» ]
2M8P NMR - A 133-353 [» ]
2ONT X-ray 2.40 A 278-352 [» ]
2PWM X-ray 1.90 A/B/C/D/E/F/G/H 133-278 [» ]
2PWO X-ray 1.45 A/B/C/D 133-278 [» ]
2PXR X-ray 1.50 C 133-278 [» ]
2X2D X-ray 1.95 D/E 133-278 [» ]
2XDE X-ray 1.40 A/B 133-278 [» ]
2XV6 X-ray 1.89 A/C 278-352 [» ]
2XXM X-ray 1.65 A 278-352 [» ]
3AV9 X-ray 1.70 A/B 1197-1359 [» ]
3AVA X-ray 1.70 A/B 1197-1359 [» ]
3AVB X-ray 1.85 A/B 1197-1359 [» ]
3AVC X-ray 1.77 A/B 1197-1359 [» ]
3AVF X-ray 1.70 A/B 1197-1356 [» ]
3AVG X-ray 1.70 A/B 1197-1359 [» ]
3AVH X-ray 1.88 A/B 1197-1359 [» ]
3AVJ X-ray 1.70 A/B 1197-1359 [» ]
3AVK X-ray 1.75 A/B 1197-1359 [» ]
3AVL X-ray 1.88 A/B 1197-1359 [» ]
3AVM X-ray 1.88 A/B 1197-1359 [» ]
3AVN X-ray 2.10 A/B 1197-1359 [» ]
3DIK electron microscopy 9.00 A 133-351 [» ]
3DPH X-ray 2.01 A/B 278-363 [» ]
3DS0 X-ray 1.60 A 278-363 [» ]
3DS1 X-ray 1.60 A 278-363 [» ]
3DS2 X-ray 1.20 A/B 278-363 [» ]
3DS3 X-ray 2.70 A/B 278-363 [» ]
3DS4 X-ray 1.12 A/B 278-363 [» ]
3DS5 X-ray 2.40 A/B/C/D 278-363 [» ]
3DTJ X-ray 4.00 A/B/C/D 278-363 [» ]
3GV2 X-ray 7.00 A/B/C/D/E/F 133-355 [» ]
3H47 X-ray 1.90 A 133-363 [» ]
3H4E X-ray 2.70 A/B/C/D/E/F/G/H/I/J/K/L 133-363 [» ]
3L3U X-ray 1.40 A/B 1197-1359 [» ]
3L3V X-ray 2.00 A/B 1197-1359 [» ]
3LPT X-ray 2.00 A 1197-1359 [» ]
3LPU X-ray 1.95 A 1197-1359 [» ]
3LRY X-ray 1.98 A/B 278-363 [» ]
3MGE X-ray 1.90 A 133-363 [» ]
3NF6 X-ray 1.90 A/B 1197-1359 [» ]
3NF7 X-ray 1.80 A/B 1197-1359 [» ]
3NF8 X-ray 1.90 A/B 1197-1359 [» ]
3NF9 X-ray 1.95 A/B 1197-1359 [» ]
3NFA X-ray 1.95 A/B 1197-1359 [» ]
3P05 X-ray 2.50 A/B/C/D/E 133-363 [» ]
3P0A X-ray 5.95 A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T 133-363 [» ]
3S85 X-ray 2.80 A/B/C/D/E/F/G/H/I/J/K/L 489-587 [» ]
3WNE X-ray 1.70 A/B 1203-1359 [» ]
3WNF X-ray 1.45 A/B 1203-1359 [» ]
3WNG X-ray 1.75 A/B 1203-1359 [» ]
3WNH X-ray 1.50 A/B 1203-1359 [» ]
4AH9 X-ray 1.70 A/B 1197-1359 [» ]
4AHR X-ray 1.90 A/B 1197-1359 [» ]
4AHS X-ray 1.75 A/B 1197-1359 [» ]
4AHT X-ray 1.80 A/B 1197-1359 [» ]
4AHU X-ray 1.90 A/B 1197-1359 [» ]
4AHV X-ray 1.80 A/B 1197-1359 [» ]
4COC X-ray 1.59 A/B/C 278-363 [» ]
4COP X-ray 1.85 A/B 278-363 [» ]
4DGA X-ray 1.90 C/D 133-277 [» ]
4DGE X-ray 2.20 C/D 133-277 [» ]
4DMN X-ray 2.45 A 1197-1359 [» ]
4E1M X-ray 1.90 A 1197-1359 [» ]
4E1N X-ray 2.00 A 1197-1359 [» ]
4E91 X-ray 1.70 A/B 133-278 [» ]
4E92 X-ray 1.80 A/B 133-278 [» ]
4GVM X-ray 2.16 A 1197-1359 [» ]
4GW6 X-ray 2.65 A 1197-1359 [» ]
4ID1 X-ray 1.87 A 1197-1359 [» ]
4IPY X-ray 1.64 A/B/C/D 278-363 [» ]
4JLH X-ray 2.09 A 1197-1359 [» ]
4JMU X-ray 2.00 A 1-111 [» ]
4LQW X-ray 1.95 C/D 133-278 [» ]
4NX4 X-ray 1.50 C 133-278 [» ]
4O0J X-ray 2.05 A 1197-1359 [» ]
4O55 X-ray 2.24 A 1197-1359 [» ]
4O5B X-ray 2.37 A 1197-1359 [» ]
4PHV X-ray 2.10 A/B 489-587 [» ]
5HVP X-ray 2.00 A/B 489-587 [» ]
9HVP X-ray 2.80 A/B 489-587 [» ]
DisProti DP00410.
ModBasei Search...
MobiDBi Search...

Protein-protein interaction databases

IntActi P12497. 4 interactions.

Chemistry

BindingDBi P12497.

Protocols and materials databases

Structural Biology Knowledgebase Search...

Miscellaneous databases

EvolutionaryTracei P12497.

Family and domain databases

Gene3Di 1.10.10.200. 1 hit.
1.10.1200.30. 1 hit.
1.10.150.90. 1 hit.
1.10.375.10. 1 hit.
2.30.30.10. 1 hit.
2.40.70.10. 1 hit.
3.30.420.10. 2 hits.
4.10.60.10. 1 hit.
InterProi IPR001969. Aspartic_peptidase_AS.
IPR000721. Gag_p24.
IPR001037. Integrase_C_retrovir.
IPR001584. Integrase_cat-core.
IPR017856. Integrase_Zn-bd_dom-like_N.
IPR003308. Integrase_Zn-bd_dom_N.
IPR000071. Lentvrl_matrix_N.
IPR012344. Matrix_N_HIV/RSV.
IPR018061. Pept_A2A_retrovirus_sg.
IPR001995. Peptidase_A2_cat.
IPR021109. Peptidase_aspartic_dom.
IPR008916. Retrov_capsid_C.
IPR008919. Retrov_capsid_N.
IPR010999. Retrovr_matrix_N.
IPR012337. RNaseH-like_dom.
IPR002156. RNaseH_domain.
IPR000477. RT_dom.
IPR010659. RVT_connect.
IPR010661. RVT_thumb.
IPR001878. Znf_CCHC.
[Graphical view ]
Pfami PF00540. Gag_p17. 1 hit.
PF00607. Gag_p24. 1 hit.
PF00552. IN_DBD_C. 1 hit.
PF02022. Integrase_Zn. 1 hit.
PF00075. RNase_H. 1 hit.
PF00665. rve. 1 hit.
PF00077. RVP. 1 hit.
PF00078. RVT_1. 1 hit.
PF06815. RVT_connect. 1 hit.
PF06817. RVT_thumb. 1 hit.
PF00098. zf-CCHC. 2 hits.
[Graphical view ]
PRINTSi PR00234. HIV1MATRIX.
SMARTi SM00343. ZnF_C2HC. 2 hits.
[Graphical view ]
SUPFAMi SSF46919. SSF46919. 1 hit.
SSF47353. SSF47353. 1 hit.
SSF47836. SSF47836. 1 hit.
SSF47943. SSF47943. 1 hit.
SSF50122. SSF50122. 1 hit.
SSF50630. SSF50630. 1 hit.
SSF53098. SSF53098. 2 hits.
SSF57756. SSF57756. 1 hit.
PROSITEi PS50175. ASP_PROT_RETROV. 1 hit.
PS00141. ASP_PROTEASE. 1 hit.
PS50994. INTEGRASE. 1 hit.
PS51027. INTEGRASE_DBD. 1 hit.
PS50879. RNASE_H. 1 hit.
PS50878. RT_POL. 1 hit.
PS50158. ZF_CCHC. 2 hits.
PS50876. ZF_INTEGRASE. 1 hit.
[Graphical view ]
ProtoNeti Search...

Publicationsi

  1. Buckler C.E., Buckler-White A.J., Willey R.L., McCoy J.
    Submitted (JUN-1988) to the EMBL/GenBank/DDBJ databases
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC RNA].
    Strain: Clone pNL4-3.
  2. Strebel K.J., Martin M.A.
    Submitted (MAY-2010) to the EMBL/GenBank/DDBJ databases
    Cited for: SEQUENCE REVISION TO 545.
  3. "Human immunodeficiency virus type 1 Nef protein is incorporated into virus particles and specifically cleaved by the viral proteinase."
    Welker R., Kottler H., Kalbitzer H.R., Kraeusslich H.-G.
    Virology 219:228-236(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: CLEAVAGE OF NEF BY VIRAL PROTEASE.
    Strain: Clone pNL4-3.
  4. "Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1."
    Woodward C.L., Prakobwanakit S., Mosessian S., Chow S.A.
    J. Virol. 83:6522-6533(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION OF INTEGRASE WITH HUMAN NUP153.
    Strain: Clone pNL4-3.
  5. "Proteolytic processing and particle maturation."
    Vogt V.M.
    Curr. Top. Microbiol. Immunol. 214:95-131(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  6. Cited for: REVIEW.
  7. "Mechanisms of retroviral recombination."
    Negroni M., Buc H.
    Annu. Rev. Genet. 35:275-302(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  8. Cited for: REVIEW.
  9. "Role of HIV-1 Gag domains in viral assembly."
    Scarlata S., Carter C.
    Biochim. Biophys. Acta 1614:62-72(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  10. "Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1."
    Navia M.A., Fitzgerald P.M.D., McKeever B.M., Leu C.-T., Heimbach J.C., Herber W.K., Sigal I.S., Darke P.L., Springer J.P.
    Nature 337:615-620(1989) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 489-587.
  11. "Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease."
    Wlodawer A., Miller M., Jaskolski M., Sathyanarayana B.K., Baldwin E., Weber I.T., Selk L.M., Clawson L., Schneider J., Kent S.B.H.
    Science 245:616-621(1989) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 489-587.
  12. "Crystallographic analysis of a complex between human immunodeficiency virus type 1 protease and acetyl-pepstatin at 2.0-A resolution."
    Fitzgerald P.M.D., McKeever B.M., van Middlesworth J.F., Springer J.P., Heimbach J.C., Leu C.-T., Herber W.K., Dixon R.A.F., Darke P.L.
    J. Biol. Chem. 265:14209-14219(1990) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 489-587.
  13. Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 489-587.
  14. "Expression in Escherichia coli and purification of human immunodeficiency virus type 1 capsid protein (p24)."
    Ehrlich L.S., Krausslich H.G., Wimmer E., Carter C.A.
    AIDS Res. Hum. Retroviruses 6:1169-1175(1990) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.7 ANGSTROMS) OF 133-283.
  15. "Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein."
    Massiah M.A., Starich M.R., Paschall C., Summers M.F., Christensen A.M., Sundquist W.I.
    J. Mol. Biol. 244:198-223(1994) [PubMed] [Europe PMC] [Abstract]
    Cited for: STRUCTURE BY NMR OF 1-132.
  16. "Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases."
    Chen Z., Li Y., Chen E., Hall D.L., Darke P.L., Culberson C., Shafer J.A., Kuo L.C.
    J. Biol. Chem. 269:26344-26348(1994) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (1.9 ANGSTROMS) OF 501-599 IN COMPLEX WITH THE INHIBITOR L-736,524.
  17. "Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases."
    Dyda F., Hickman A.B., Jenkins T.M., Engelman A., Craigie R., Davies D.R.
    Science 266:1981-1986(1994) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 1197-1359.
  18. "Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly."
    Hill C.P., Worthylake D.K., Bancroft D.P., Christensen A.M., Sundquist W.I.
    Proc. Natl. Acad. Sci. U.S.A. 93:3099-3104(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 1-132.
  19. "Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid."
    Gamble T.R., Vajdos F.F., Yoo S., Worthylake D.K., Houseweart M., Sundquist W.I., Hill C.P.
    Cell 87:1285-1294(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.36 ANGSTROMS) OF 133-277.
  20. "The catalytic domain of human immunodeficiency virus integrase: ordered active site in the F185H mutant."
    Bujacz G., Alexandratos J., Qing Z.L., Clement-Mella C., Wlodawer A.
    FEBS Lett. 398:175-178(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.6 ANGSTROMS) OF 1197-1359, ACTIVE SITES OF INTEGRASE.
  21. "Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein."
    Gamble T.R., Yoo S., Vajdos F.F., von Schwedler U.K., Worthylake D.K., Wang H., McCutcheon J.P., Sundquist W.I., Hill C.P.
    Science 278:849-853(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.6 ANGSTROMS) OF 278-377.
  22. "Solution structure of the N-terminal zinc binding domain of HIV-1 integrase."
    Cai M., Zheng R., Caffrey M., Craigie R., Clore G.M., Gronenborn A.M.
    Nat. Struct. Biol. 4:567-577(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: STRUCTURE BY NMR OF 1148-1202.
  23. "Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium."
    Goldgur Y., Dyda F., Hickman A.B., Jenkins T.M., Craigie R., Davies D.R.
    Proc. Natl. Acad. Sci. U.S.A. 95:9150-9154(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (1.95 ANGSTROMS) OF 1197-1356.
  24. "The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity."
    Greenwald J., Le V., Butler S.L., Bushman F.D., Choe S.
    Biochemistry 38:8892-8898(1999) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (1.7 ANGSTROMS) OF 1197-1359.
  25. "Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein."
    Tang C., Ndassa Y., Summers M.F.
    Nat. Struct. Biol. 9:537-543(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: STRUCTURE BY NMR OF 133-283.
  26. "Entropic switch regulates myristate exposure in the HIV-1 matrix protein."
    Tang C., Loeliger E., Luncsford P., Kinde I., Beckett D., Summers M.F.
    Proc. Natl. Acad. Sci. U.S.A. 101:517-522(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: STRUCTURE BY NMR OF 1-132.

Entry informationi

Entry nameiPOL_HV1N5
AccessioniPrimary (citable) accession number: P12497
Entry historyi
Integrated into UniProtKB/Swiss-Prot: October 1, 1989
Last sequence update: July 27, 2011
Last modified: November 26, 2014
This is version 182 of the entry and version 4 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programViral Protein Annotation Program

Miscellaneousi

Miscellaneous

Capsid protein p24 is able to bind macaque TRIM5-alpha or owl monkey TRIMCyp, preventing reverse transcription of the viral genome and succesfull infection of macaque or owl monkey by HIV-1.By similarity
The reverse transcriptase is an error-prone enzyme that lacks a proof-reading function. High mutations rate is a direct consequence of this characteristic. RT also displays frequent template switching leading to high recombination rate. Recombination mostly occurs between homologous regions of the two copackaged RNA genomes. If these two RNA molecules derive from different viral strains, reverse transcription will give rise to highly recombinated proviral DNAs.
HIV-1 lineages are divided in three main groups, M (for Major), O (for Outlier), and N (for New, or Non-M, Non-O). The vast majority of strains found worldwide belong to the group M. Group O seems to be endemic to and largely confined to Cameroon and neighboring countries in West Central Africa, where these viruses represent a small minority of HIV-1 strains. The group N is represented by a limited number of isolates from Cameroonian persons. The group M is further subdivided in 9 clades or subtypes (A to D, F to H, J and K).
Resistance to inhibitors associated with mutations are observed both in viral protease and in reverse transcriptase. Most of the time, single mutations confer only a modest reduction in drug susceptibility. Combination of several mutations is usually required to develop a high-level drug resistance. These mutations are predominantly found in clade B viruses and not in other genotypes. They are listed in the clade B representative isolate HXB2 (AC P04585).

Keywords - Technical termi

3D-structure, Multifunctional enzyme

Documents

  1. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  2. Peptidase families
    Classification of peptidase families and list of entries
  3. SIMILARITY comments
    Index of protein domains and families

External Data

Dasty 3