Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Enterobactin synthase component E

Gene

entE

Organism
Escherichia coli (strain K12)
Status
Reviewed-Annotation score: Annotation score: 5 out of 5-Experimental evidence at protein leveli

Functioni

Involved in the biosynthesis of the siderophore enterobactin (enterochelin), which is a macrocyclic trimeric lactone of N-(2,3-dihydroxybenzoyl)-serine. The serine trilactone serves as a scaffolding for the three catechol functionalities that provide hexadentate coordination for the tightly ligated iron2+ atoms. EntE proccesses via a two-step adenylation-ligation reaction (bi-uni-uni-bi ping-pong mechanism). First, it catalyzes the activation of the carboxylate group of 2,3-dihydroxy-benzoate (DHB), via a reversible ATP-dependent pyrophosphate exchange reactions to yield the acyladenylate intermediate 2,3-dihydroxybenzoyl-AMP. It can also transfer AMP to salicylate, 2,4-dihydroxybenzoate, gentisate and 2,3,4-trihydroxybenzoate. In the second step, DHB is transferred from 2,3-dihydroxybenzoyl-AMP onto the phosphopantetheinylated EntB (holo-EntB) to form DHB-holo-EntB. Then this product will serve in the formation of the amide bond between 2,3-dihydroxybenzoate (DHB) and L-serine. It can also transfer adenylated salicylate to holo-EntB.10 Publications

Catalytic activityi

6 ATP + 3 2,3-dihydroxybenzoate + 3 L-serine = enterobactin + 6 AMP + 6 diphosphate.7 Publications
ATP + 2,3-dihydroxybenzoate = diphosphate + (2,3-dihydroxybenzoyl)adenylate.6 Publications
(2,3-dihydroxybenzoyl)adenylate + holo-entB = adenosine 5'-monophosphate + aryl-holo-entB.7 Publications

Enzyme regulationi

Inhibited by the adenylate analogs, 5'-O-[N-(salicyl)sulfamoyl]adenosine (Sal-AMS) and 5'-O-[N-(2,3-dihydroxybenzoyl)sulfamoyl]adenosine (DHB-AMS). Adenylation of 2,3-dihydroxybenzoate (DHB) is enhanced by a protein-protein interaction between the EntA and EntE.2 Publications

Kineticsi

Kcat is 0.3 sec(-1) for 2,3-dihydroxybenzoate-AMP ligase activity with 3-hydroxybenzoate as substrate (at pH 7.8 and 25 degrees Celsius). Kcat is 0.8 sec(-1) for 2,3-dihydroxybenzoate-AMP ligase activity with salicylate as substrate (at pH 7.8 and 25 degrees Celsius). Kcat is 0.9 sec(-1) for S-dihydroxybenzoyltransferase activity with D-pantetheine as substrate (at pH 7.8 and 25 degrees Celsius). Kcat is 2.8 sec(-1) for 2,3-dihydroxybenzoate-AMP ligase activity with ATP and DHB as substrates (at pH 7.8 and 25 degrees Celsius). Kcat is 2.8 sec(-1) for S-dihydroxybenzoyltransferase activity with holo-EntB as substrate (at pH 7.8 and 25 degrees Celsius). Kcat is 4.4 sec(-1) for 2,3-dihydroxybenzoate-AMP ligase activity with 4-aminosalicylate as substrate (at pH 7.8 and 25 degrees Celsius). Kcat is 5.94 sec(-1) for S-dihydroxybenzoyltransferase activity with holo-EntB as substrate (at pH 7.8 and 25 degrees Celsius). Kcat is 100 min(-1) for S-dihydroxybenzoyltransferase activity with holo-EntB as substrate (at pH 8.8 and 37 degrees Celsius). Kcat is 140 min(-1) for S-dihydroxybenzoyltransferase activity with holo-EntB as substrate.4 Publications

Manual assertion based on experiment ini

  1. KM=0.4 µM for holo-EntB (at pH 8.8 and 37 degrees Celsius)1 Publication
  2. KM=0.5 µM for holo-EntB1 Publication
  3. KM=2.5 µM for DHB (at pH 7.8 and 25 degrees Celsius)1 Publication
  4. KM=2.7 µM for DHB1 Publication
  5. KM=2.9 µM for DHB1 Publication
  6. KM=2.9 µM for holo-EntB (at pH 7.8 and 25 degrees Celsius)1 Publication
  7. KM=23.3 µM for holo-EntB (at pH 7.5 and 37 degrees Celsius)1 Publication
  8. KM=70 µM for 3-hydroxybenzoate (at pH 7.8 and 25 degrees Celsius)1 Publication
  9. KM=70 µM for salicylate (at pH 7.8 and 25 degrees Celsius)1 Publication
  10. KM=400 µM for 5,5-diadenosine tetraphosphate1 Publication
  11. KM=430 µM for ATP (at pH 7.8 and 25 degrees Celsius)1 Publication
  12. KM=1200 µM for ATP1 Publication
  13. KM=3100 µM for 4-aminosalicylate (at pH 7.8 and 25 degrees Celsius)1 Publication
  14. KM=34.2 mM for D-pantetheine (at pH 7.8 and 25 degrees Celsius)1 Publication
  1. Vmax=3168.2 pmol/min/mg enzyme1 Publication

Pathwayi: enterobactin biosynthesis

This protein is involved in the pathway enterobactin biosynthesis, which is part of Siderophore biosynthesis.1 Publication
View all proteins of this organism that are known to be involved in the pathway enterobactin biosynthesis and in Siderophore biosynthesis.

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Binding sitei235Substrate1 Publication1
Binding sitei240Substrate1 Publication1
Binding sitei309Substrate; via amide nitrogen2 Publications1
Binding sitei331Substrate; via carbonyl oxygen2 Publications1
Binding sitei335Substrate; via amide nitrogen1 Publication1
Binding sitei415Substrate2 Publications1
Binding sitei432Substrate1 Publication1
Binding sitei441Substrate1 Publication1

GO - Molecular functioni

  • (2,3-dihydroxybenzoyl)adenylate synthase activity Source: EcoCyc
  • 2,3-dihydroxybenzoate-serine ligase activity Source: UniProtKB
  • ATP binding Source: UniProtKB-KW
  • transferase activity, transferring acyl groups Source: UniProtKB-KW

GO - Biological processi

  • enterobactin biosynthetic process Source: EcoCyc
Complete GO annotation...

Keywords - Molecular functioni

Acyltransferase, Ligase, Transferase

Keywords - Biological processi

Enterobactin biosynthesis

Keywords - Ligandi

ATP-binding, Nucleotide-binding

Enzyme and pathway databases

BioCyciEcoCyc:ENTE-MONOMER.
ECOL316407:JW0586-MONOMER.
MetaCyc:ENTE-MONOMER.
BRENDAi6.3.2.14. 2026.
UniPathwayiUPA00017.

Names & Taxonomyi

Protein namesi
Recommended name:
Enterobactin synthase component E1 Publication (EC:6.3.2.147 Publications)
Alternative name(s):
2,3-dihydroxybenzoate-AMP ligase1 Publication
Short name:
DHB-AMP ligase1 Publication
2,3-dihydroxybenzoate-AMP synthaseCurated (EC:2.7.7.586 Publications)
Dihydroxybenzoic acid-activating enzyme1 Publication
Enterochelin synthase E1 Publication
S-dihydroxybenzoyltransferase1 Publication (EC:2.5.1.-6 Publications)
Gene namesi
Name:entE1 Publication
Ordered Locus Names:b0594, JW0586
OrganismiEscherichia coli (strain K12)
Taxonomic identifieri83333 [NCBI]
Taxonomic lineageiBacteriaProteobacteriaGammaproteobacteriaEnterobacteralesEnterobacteriaceaeEscherichia
Proteomesi
  • UP000000318 Componenti: Chromosome
  • UP000000625 Componenti: Chromosome

Organism-specific databases

EcoGeneiEG10263. entE.

Subcellular locationi

GO - Cellular componenti

  • cytosol Source: EcoCyc
  • membrane Source: UniProtKB-SubCell
Complete GO annotation...

Keywords - Cellular componenti

Membrane

Pathology & Biotechi

Mutagenesis

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Mutagenesisi437R → D: Catalyzes the adenylation reaction with 10% reduction of activity compared to the wild-type. 3% reduction of activity compared to the wild-type; when associated with D-473. 1 Publication1
Mutagenesisi473K → D: Catalyzes the adenylation reaction with same activity as the wild-type. 3% reduction of activity compared to the wild-type; when associated with D-437. 1 Publication1
Mutagenesisi494R → D: Catalyzes the adenylation reaction with same activity as the wild-type. 1 Publication1

Chemistry databases

ChEMBLiCHEMBL4856.

PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
ChainiPRO_00001930751 – 536Enterobactin synthase component EAdd BLAST536

Proteomic databases

EPDiP10378.
PaxDbiP10378.
PRIDEiP10378.

Expressioni

Inductioni

Under conditions of iron deficiency and by the fur protein.2 Publications

Interactioni

Subunit structurei

Proteins EntB, EntD, EntE, and EntF form a multienzyme complex called enterobactin synthase. Monomer. EntA and EntE interact together.5 Publications

Protein-protein interaction databases

BioGridi4259905. 320 interactors.
DIPiDIP-9515N.
IntActiP10378. 13 interactors.
MINTiMINT-1228110.
STRINGi511145.b0594.

Chemistry databases

BindingDBiP10378.

Structurei

Secondary structure

1536
Legend: HelixTurnBeta strandPDB Structure known for this area
Show more details
Feature keyPosition(s)DescriptionActionsGraphical viewLength
Helixi10 – 18Combined sources9
Helixi29 – 32Combined sources4
Turni33 – 36Combined sources4
Beta strandi39 – 44Combined sources6
Beta strandi47 – 50Combined sources4
Helixi51 – 67Combined sources17
Beta strandi75 – 79Combined sources5
Helixi85 – 96Combined sources12
Beta strandi99 – 103Combined sources5
Helixi109 – 119Combined sources11
Beta strandi122 – 127Combined sources6
Helixi131 – 133Combined sources3
Beta strandi134 – 136Combined sources3
Helixi137 – 145Combined sources9
Beta strandi151 – 155Combined sources5
Helixi163 – 168Combined sources6
Beta strandi183 – 189Combined sources7
Beta strandi193 – 196Combined sources4
Beta strandi199 – 203Combined sources5
Helixi204 – 218Combined sources15
Beta strandi225 – 228Combined sources4
Helixi235 – 239Combined sources5
Helixi242 – 249Combined sources8
Beta strandi252 – 255Combined sources4
Helixi261 – 271Combined sources11
Beta strandi275 – 278Combined sources4
Helixi280 – 291Combined sources12
Helixi296 – 299Combined sources4
Beta strandi304 – 310Combined sources7
Helixi314 – 323Combined sources10
Beta strandi326 – 334Combined sources9
Beta strandi337 – 341Combined sources5
Helixi348 – 353Combined sources6
Beta strandi357 – 360Combined sources4
Beta strandi364 – 368Combined sources5
Beta strandi380 – 386Combined sources7
Beta strandi388 – 390Combined sources3
Helixi398 – 404Combined sources7
Beta strandi411 – 419Combined sources9
Beta strandi425 – 430Combined sources6
Beta strandi432 – 437Combined sources6
Beta strandi440 – 443Combined sources4
Helixi444 – 451Combined sources8
Beta strandi457 – 467Combined sources11
Turni468 – 470Combined sources3
Beta strandi471 – 482Combined sources12
Helixi486 – 494Combined sources9
Turni495 – 497Combined sources3
Helixi500 – 502Combined sources3
Beta strandi505 – 509Combined sources5
Beta strandi519 – 521Combined sources3
Helixi523 – 531Combined sources9

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
3RG2X-ray3.10A/B/C/D/E/F/G/H/I/J1-536[»]
4IZ6X-ray2.40A/B1-536[»]
ProteinModelPortaliP10378.
SMRiP10378.
ModBaseiSearch...
MobiDBiSearch...

Family & Domainsi

Region

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Regioni438 – 439Phosphopantetheine binding2 Publications2

Sequence similaritiesi

Phylogenomic databases

eggNOGiENOG4108IQC. Bacteria.
COG1021. LUCA.
HOGENOMiHOG000230011.
InParanoidiP10378.
KOiK02363.
OMAiRSNEICH.
PhylomeDBiP10378.

Family and domain databases

InterProiIPR025110. AMP-bd_C.
IPR020845. AMP-binding_CS.
IPR000873. AMP-dep_Synth/Lig.
IPR011963. DHB_AMP_lig.
[Graphical view]
PfamiPF00501. AMP-binding. 1 hit.
PF13193. AMP-binding_C. 1 hit.
[Graphical view]
TIGRFAMsiTIGR02275. DHB_AMP_lig. 1 hit.
PROSITEiPS00455. AMP_BINDING. 1 hit.
[Graphical view]

Sequencei

Sequence statusi: Complete.

P10378-1 [UniParc]FASTAAdd to basket

« Hide

        10         20         30         40         50
MSIPFTRWPE EFARRYREKG YWQDLPLTDI LTRHAASDSI AVIDGERQLS
60 70 80 90 100
YRELNQAADN LACSLRRQGI KPGETALVQL GNVAELYITF FALLKLGVAP
110 120 130 140 150
VLALFSHQRS ELNAYASQIE PALLIADRQH ALFSGDDFLN TFVTEHSSIR
160 170 180 190 200
VVQLLNDSGE HNLQDAINHP AEDFTATPSP ADEVAYFQLS GGTTGTPKLI
210 220 230 240 250
PRTHNDYYYS VRRSVEICQF TQQTRYLCAI PAAHNYAMSS PGSLGVFLAG
260 270 280 290 300
GTVVLAADPS ATLCFPLIEK HQVNVTALVP PAVSLWLQAL IEGESRAQLA
310 320 330 340 350
SLKLLQVGGA RLSATLAARI PAEIGCQLQQ VFGMAEGLVN YTRLDDSAEK
360 370 380 390 400
IIHTQGYPMC PDDEVWVADA EGNPLPQGEV GRLMTRGPYT FRGYYKSPQH
410 420 430 440 450
NASAFDANGF YCSGDLISID PEGYITVQGR EKDQINRGGE KIAAEEIENL
460 470 480 490 500
LLRHPAVIYA ALVSMEDELM GEKSCAYLVV KEPLRAVQVR RFLREQGIAE
510 520 530
FKLPDRVECV DSLPLTAVGK VDKKQLRQWL ASRASA
Length:536
Mass (Da):59,112
Last modified:November 1, 1997 - v3
Checksum:iF818942DFDD8DC99
GO

Experimental Info

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Sequence conflicti369 – 378DAEGNPLPQG → ECRRKSTAAR in CAA33158 (PubMed:2525505).Curated10

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
X15058 Genomic DNA. Translation: CAA33158.1.
U82598 Genomic DNA. Translation: AAB40794.1.
U00096 Genomic DNA. Translation: AAC73695.1.
AP009048 Genomic DNA. Translation: BAE76349.1.
M24148 Unassigned DNA. Translation: AAA16101.1.
M36700 Genomic DNA. Translation: AAA18492.1.
PIRiH64792. SYECEB.
RefSeqiNP_415126.1. NC_000913.3.
WP_000026812.1. NZ_LN832404.1.

Genome annotation databases

EnsemblBacteriaiAAC73695; AAC73695; b0594.
BAE76349; BAE76349; BAE76349.
GeneIDi947426.
KEGGiecj:JW0586.
eco:b0594.
PATRICi32116364. VBIEscCol129921_0622.

Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
X15058 Genomic DNA. Translation: CAA33158.1.
U82598 Genomic DNA. Translation: AAB40794.1.
U00096 Genomic DNA. Translation: AAC73695.1.
AP009048 Genomic DNA. Translation: BAE76349.1.
M24148 Unassigned DNA. Translation: AAA16101.1.
M36700 Genomic DNA. Translation: AAA18492.1.
PIRiH64792. SYECEB.
RefSeqiNP_415126.1. NC_000913.3.
WP_000026812.1. NZ_LN832404.1.

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
3RG2X-ray3.10A/B/C/D/E/F/G/H/I/J1-536[»]
4IZ6X-ray2.40A/B1-536[»]
ProteinModelPortaliP10378.
SMRiP10378.
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

BioGridi4259905. 320 interactors.
DIPiDIP-9515N.
IntActiP10378. 13 interactors.
MINTiMINT-1228110.
STRINGi511145.b0594.

Chemistry databases

BindingDBiP10378.
ChEMBLiCHEMBL4856.

Proteomic databases

EPDiP10378.
PaxDbiP10378.
PRIDEiP10378.

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsemblBacteriaiAAC73695; AAC73695; b0594.
BAE76349; BAE76349; BAE76349.
GeneIDi947426.
KEGGiecj:JW0586.
eco:b0594.
PATRICi32116364. VBIEscCol129921_0622.

Organism-specific databases

EchoBASEiEB0259.
EcoGeneiEG10263. entE.

Phylogenomic databases

eggNOGiENOG4108IQC. Bacteria.
COG1021. LUCA.
HOGENOMiHOG000230011.
InParanoidiP10378.
KOiK02363.
OMAiRSNEICH.
PhylomeDBiP10378.

Enzyme and pathway databases

UniPathwayiUPA00017.
BioCyciEcoCyc:ENTE-MONOMER.
ECOL316407:JW0586-MONOMER.
MetaCyc:ENTE-MONOMER.
BRENDAi6.3.2.14. 2026.

Miscellaneous databases

PROiP10378.

Family and domain databases

InterProiIPR025110. AMP-bd_C.
IPR020845. AMP-binding_CS.
IPR000873. AMP-dep_Synth/Lig.
IPR011963. DHB_AMP_lig.
[Graphical view]
PfamiPF00501. AMP-binding. 1 hit.
PF13193. AMP-binding_C. 1 hit.
[Graphical view]
TIGRFAMsiTIGR02275. DHB_AMP_lig. 1 hit.
PROSITEiPS00455. AMP_BINDING. 1 hit.
[Graphical view]
ProtoNetiSearch...

Entry informationi

Entry nameiENTE_ECOLI
AccessioniPrimary (citable) accession number: P10378
Secondary accession number(s): P15049, P77773, Q2MBK7
Entry historyi
Integrated into UniProtKB/Swiss-Prot: July 1, 1989
Last sequence update: November 1, 1997
Last modified: November 2, 2016
This is version 149 of the entry and version 3 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programProkaryotic Protein Annotation Program

Miscellaneousi

Miscellaneous

In the absence of holo-EntB, EntE can transfer the adenylate moiety of the 2,3-dihydroxybenzoyl-AMP intermediate to ATP, generating the stress signaling molecule Ap4A involved in the regulation of cell division during oxidative stress, and releasing 2,3-dihydroxybenzoate. It seems that the expression of EntE during iron starvation produces Ap4A to slow growth until intracellular iron stores can be restored.1 Publication

Keywords - Technical termi

3D-structure, Complete proteome, Reference proteome

Documents

  1. Escherichia coli
    Escherichia coli (strain K12): entries and cross-references to EcoGene
  2. PATHWAY comments
    Index of metabolic and biosynthesis pathways
  3. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  4. SIMILARITY comments
    Index of protein domains and families

Similar proteinsi

Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into one UniRef entry.
90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.