ID RECB_ECOLI Reviewed; 1180 AA. AC P08394; Q2MA17; DT 01-AUG-1988, integrated into UniProtKB/Swiss-Prot. DT 01-AUG-1988, sequence version 1. DT 27-MAR-2024, entry version 195. DE RecName: Full=RecBCD enzyme subunit RecB {ECO:0000255|HAMAP-Rule:MF_01485}; DE EC=3.1.11.5 {ECO:0000255|HAMAP-Rule:MF_01485, ECO:0000269|PubMed:4552016, ECO:0000269|PubMed:9448271}; DE EC=5.6.2.4 {ECO:0000255|HAMAP-Rule:MF_01485, ECO:0000269|PubMed:12815437, ECO:0000269|PubMed:12815438, ECO:0000269|PubMed:9448271}; DE AltName: Full=DNA 3'-5' helicase subunit RecB {ECO:0000255|HAMAP-Rule:MF_01485}; DE AltName: Full=Exodeoxyribonuclease V 135 kDa polypeptide; DE AltName: Full=Exodeoxyribonuclease V beta chain {ECO:0000303|PubMed:3526335}; DE AltName: Full=Exonuclease V subunit RecB {ECO:0000255|HAMAP-Rule:MF_01485}; DE Short=ExoV subunit RecB {ECO:0000255|HAMAP-Rule:MF_01485}; DE AltName: Full=Helicase/nuclease RecBCD subunit RecB {ECO:0000255|HAMAP-Rule:MF_01485}; GN Name=recB {ECO:0000255|HAMAP-Rule:MF_01485, GN ECO:0000303|PubMed:3537960}; Synonyms=ior, rorA; GN OrderedLocusNames=b2820, JW2788; OS Escherichia coli (strain K12). OC Bacteria; Pseudomonadota; Gammaproteobacteria; Enterobacterales; OC Enterobacteriaceae; Escherichia. OX NCBI_TaxID=83333; RN [1] RP NUCLEOTIDE SEQUENCE [GENOMIC DNA]. RX PubMed=3537960; DOI=10.1093/nar/14.21.8573; RA Finch P.W., Storey A., Chapman K.E., Brown K., Hickson I.D., Emmerson P.T.; RT "Complete nucleotide sequence of the Escherichia coli recB gene."; RL Nucleic Acids Res. 14:8573-8582(1986). RN [2] RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], FUNCTION IN RECA LOADING, AND RP MUTAGENESIS OF THR-807. RC STRAIN=V1000; RX PubMed=10766864; DOI=10.1074/jbc.275.16.12261; RA Arnold D.A., Kowalczykowski S.C.; RT "Facilitated loading of RecA protein is essential to recombination by RT RecBCD enzyme."; RL J. Biol. Chem. 275:12261-12265(2000). RN [3] RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA]. RC STRAIN=K12 / MG1655 / ATCC 47076; RX PubMed=9278503; DOI=10.1126/science.277.5331.1453; RA Blattner F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V., RA Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., RA Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B., RA Shao Y.; RT "The complete genome sequence of Escherichia coli K-12."; RL Science 277:1453-1462(1997). RN [4] RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA]. RC STRAIN=K12 / W3110 / ATCC 27325 / DSM 5911; RX PubMed=16738553; DOI=10.1038/msb4100049; RA Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S., RA Ohtsubo E., Baba T., Wanner B.L., Mori H., Horiuchi T.; RT "Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 RT and W3110."; RL Mol. Syst. Biol. 2:E1-E5(2006). RN [5] RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-11. RX PubMed=3534791; DOI=10.1093/nar/14.19.7695; RA Finch P.W., Wilson R.E., Brown K., Hickson I.D., Emmerson P.T.; RT "Complete nucleotide sequence of the Escherichia coli ptr gene encoding RT protease III."; RL Nucleic Acids Res. 14:7695-7703(1986). RN [6] RP PROTEIN SEQUENCE OF 2-11, FUNCTION OF RECBCD AS AN EXONUCLEASE; HELICASE RP AND ATPASE, AND SUBUNIT. RX PubMed=1618858; DOI=10.1016/s0021-9258(18)42249-1; RA Masterson C., Boehmer P.E., McDonald F., Chaudhuri S., Hickson I.D., RA Emmerson P.T.; RT "Reconstitution of the activities of the RecBCD holoenzyme of Escherichia RT coli from the purified subunits."; RL J. Biol. Chem. 267:13564-13572(1992). RN [7] RP NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1093-1180. RX PubMed=3537961; DOI=10.1093/nar/14.21.8583; RA Finch P.W., Storey A., Brown K., Hickson I.D., Emmerson P.T.; RT "Complete nucleotide sequence of recD, the structural gene for the alpha RT subunit of Exonuclease V of Escherichia coli."; RL Nucleic Acids Res. 14:8583-8594(1986). RN [8] RP FUNCTION IN DEGRADATION OF LAMBDA VIRUS DNA, AND DISRUPTION PHENOTYPE. RC STRAIN=K12; RX PubMed=4562392; DOI=10.1128/jb.112.1.161-169.1972; RA Simmon V.F., Lederberg S.; RT "Degradation of bacteriophage lambda deoxyribonucleic acid after RT restriction by Escherichia coli K-12."; RL J. Bacteriol. 112:161-169(1972). RN [9] RP FUNCTION AS AN ENDO- AND EXODEOXYRIBONUCLEASE, CATALYTIC ACTIVITY, RP ATP-DEPENDENCE, AND SUBUNIT. RC STRAIN=K12; RX PubMed=4552016; DOI=10.1016/s0021-9258(19)45550-6; RA Goldmark P.J., Linn S.; RT "Purification and properties of the recBC DNase of Escherichia coli K-12."; RL J. Biol. Chem. 247:1849-1860(1972). RN [10] RP FUNCTION, SUBSTRATES, AND PROCESSIVITY. RX PubMed=4268693; DOI=10.1016/s0021-9258(19)43644-2; RA Karu A.E., MacKay V., Goldmark P.J., Linn S.; RT "The recBC deoxyribonuclease of Escherichia coli K-12. Substrate RT specificity and reaction intermediates."; RL J. Biol. Chem. 248:4874-4884(1973). RN [11] RP ACTIVITY REGULATION BY LAMBDA GAM PROTEIN (MICROBIAL INFECTION). RX PubMed=4275917; DOI=10.1073/pnas.70.8.2215; RA Sakaki Y., Karu A.E., Linn S., Echols H.; RT "Purification and properties of the gamma-protein specified by RT bacteriophage lambda: an inhibitor of the host RecBC recombination RT enzyme."; RL Proc. Natl. Acad. Sci. U.S.A. 70:2215-2219(1973). RN [12] RP FUNCTION IN DEGRADATION OF VIRUS DNA, AND DISRUPTION PHENOTYPE. RX PubMed=123277; DOI=10.1128/jvi.15.4.861-871.1975; RA Benzinger R., Enquist L.W., Skalka A.; RT "Transfection of Escherichia coli spheroplasts. V. Activity of recBC RT nuclease in rec+ and rec minus spheroplasts measured with different forms RT of bacteriophage DNA."; RL J. Virol. 15:861-871(1975). RN [13] RP DISRUPTION PHENOTYPE. RX PubMed=6389498; DOI=10.1128/jb.160.2.788-791.1984; RA Chaudhury A.M., Smith G.R.; RT "Escherichia coli recBC deletion mutants."; RL J. Bacteriol. 160:788-791(1984). RN [14] RP OPERON, AND SUBUNIT. RX PubMed=3526335; DOI=10.1073/pnas.83.15.5558; RA Amundsen S.K., Taylor A.F., Chaudhury A.M., Smith G.R.; RT "recD: the gene for an essential third subunit of exonuclease V."; RL Proc. Natl. Acad. Sci. U.S.A. 83:5558-5562(1986). RN [15] RP ACTIVITY REGULATION BY LAMBDA GAM PROTEIN (MICROBIAL INFECTION), AND RP INTERACTION WITH LAMBDA GAMS (MICROBIAL INFECTION). RX PubMed=1653221; DOI=10.1128/jb.173.18.5808-5821.1991; RA Murphy K.C.; RT "Lambda Gam protein inhibits the helicase and chi-stimulated recombination RT activities of Escherichia coli RecBCD enzyme."; RL J. Bacteriol. 173:5808-5821(1991). RN [16] RP FUNCTION, AND ACTIVITY REGULATION. RX PubMed=1535156; DOI=10.1073/pnas.89.12.5226; RA Taylor A.F., Smith G.R.; RT "RecBCD enzyme is altered upon cutting DNA at a chi recombination RT hotspot."; RL Proc. Natl. Acad. Sci. U.S.A. 89:5226-5230(1992). RN [17] RP FUNCTION IN HOMOLOGOUS RECOMBINATION. RX PubMed=7608206; DOI=10.1074/jbc.270.27.16360; RA Dixon D.A., Kowalczykowski S.C.; RT "Role of the Escherichia coli recombination hotspot, chi, in RecABCD- RT dependent homologous pairing."; RL J. Biol. Chem. 270:16360-16370(1995). RN [18] RP FUNCTION IN RECA-LOADING. RX PubMed=9230304; DOI=10.1016/s0092-8674(00)80315-3; RA Anderson D.G., Kowalczykowski S.C.; RT "The translocating RecBCD enzyme stimulates recombination by directing RecA RT protein onto ssDNA in a chi-regulated manner."; RL Cell 90:77-86(1997). RN [19] RP FUNCTION IN RECOGNITION OF CHI. RX PubMed=9192629; DOI=10.1073/pnas.94.13.6706; RA Bianco P.R., Kowalczykowski S.C.; RT "The recombination hotspot Chi is recognized by the translocating RecBCD RT enzyme as the single strand of DNA containing the sequence 5'-GCTGGTGG- RT 3'."; RL Proc. Natl. Acad. Sci. U.S.A. 94:6706-6711(1997). RN [20] RP FUNCTION, ACTIVE SITE, DOMAIN, AND MUTAGENESIS OF ASP-1080. RX PubMed=9790841; DOI=10.1006/jmbi.1998.2127; RA Yu M., Souaya J., Julin D.A.; RT "Identification of the nuclease active site in the multifunctional RecBCD RT enzyme by creation of a chimeric enzyme."; RL J. Mol. Biol. 283:797-808(1998). RN [21] RP FUNCTION, CATALYTIC ACTIVITY, INTERACTION WITH RECC, DOMAIN, AND RP DNA-BINDING. RX PubMed=9448271; DOI=10.1073/pnas.95.3.981; RA Yu M., Souaya J., Julin D.A.; RT "The 30-kDa C-terminal domain of the RecB protein is critical for the RT nuclease activity, but not the helicase activity, of the RecBCD enzyme from RT Escherichia coli."; RL Proc. Natl. Acad. Sci. U.S.A. 95:981-986(1998). RN [22] RP FUNCTION, ACTIVE SITE, DOMAIN, AND MUTAGENESIS OF ASP-1080. RX PubMed=10518611; DOI=10.1093/nar/27.21.4200; RA Zhang X.J., Julin D.A.; RT "Isolation and characterization of the C-terminal nuclease domain from the RT RecB protein of Escherichia coli."; RL Nucleic Acids Res. 27:4200-4207(1999). RN [23] RP FUNCTION, AND ACTIVITY REGULATION. RX PubMed=10197988; DOI=10.1101/gad.13.7.890; RA Taylor A.F., Smith G.R.; RT "Regulation of homologous recombination: Chi inactivates RecBCD enzyme by RT disassembly of the three subunits."; RL Genes Dev. 13:890-900(1999). RN [24] RP FUNCTION OF RECB AS A SLOW 3'-5' HELICASE, CATALYTIC ACTIVITY, AND RP MUTAGENESIS OF LYS-29. RX PubMed=12815437; DOI=10.1038/nature01674; RA Taylor A.F., Smith G.R.; RT "RecBCD enzyme is a DNA helicase with fast and slow motors of opposite RT polarity."; RL Nature 423:889-893(2003). RN [25] RP FUNCTION OF RECBCD AS A BIPOLAR HELICASE, AND CATALYTIC ACTIVITY. RX PubMed=12815438; DOI=10.1038/nature01673; RA Dillingham M.S., Spies M., Kowalczykowski S.C.; RT "RecBCD enzyme is a bipolar DNA helicase."; RL Nature 423:893-897(2003). RN [26] RP FUNCTION, RATE, DNA-BINDING, AND MUTAGENESIS OF LYS-29. RX PubMed=16041061; DOI=10.1074/jbc.m505520200; RA Dillingham M.S., Webb M.R., Kowalczykowski S.C.; RT "Bipolar DNA translocation contributes to highly processive DNA unwinding RT by RecBCD enzyme."; RL J. Biol. Chem. 280:37069-37077(2005). RN [27] RP FUNCTION AS A NUCLEASE, COFACTOR, AND MUTAGENESIS OF ASP-1067 AND ASP-1080. RX PubMed=16388588; DOI=10.1021/bi051150v; RA Sun J.Z., Julin D.A., Hu J.S.; RT "The nuclease domain of the Escherichia coli RecBCD enzyme catalyzes RT degradation of linear and circular single-stranded and double-stranded RT DNA."; RL Biochemistry 45:131-140(2006). RN [28] RP INTERACTION WITH RECA, SUBUNIT, AND DOMAIN. RX PubMed=16483938; DOI=10.1016/j.molcel.2006.01.007; RA Spies M., Kowalczykowski S.C.; RT "The RecA binding locus of RecBCD is a general domain for recruitment of RT DNA strand exchange proteins."; RL Mol. Cell 21:573-580(2006). RN [29] RP FUNCTION, AND MUTAGENESIS OF TYR-803 AND VAL-804. RX PubMed=18079176; DOI=10.1101/gad.1605807; RA Amundsen S.K., Taylor A.F., Reddy M., Smith G.R.; RT "Intersubunit signaling in RecBCD enzyme, a complex protein machine RT regulated by Chi hot spots."; RL Genes Dev. 21:3296-3307(2007). RN [30] RP FUNCTION IN DUAL DIRECTION TRANSLOCATION. RX PubMed=20852646; DOI=10.1038/nsmb.1901; RA Wu C.G., Bradford C., Lohman T.M.; RT "Escherichia coli RecBC helicase has two translocase activities controlled RT by a single ATPase motor."; RL Nat. Struct. Mol. Biol. 17:1210-1217(2010). RN [31] RP INTERACTION WITH CAS1. RC STRAIN=K12; RX PubMed=21219465; DOI=10.1111/j.1365-2958.2010.07465.x; RA Babu M., Beloglazova N., Flick R., Graham C., Skarina T., Nocek B., RA Gagarinova A., Pogoutse O., Brown G., Binkowski A., Phanse S., RA Joachimiak A., Koonin E.V., Savchenko A., Emili A., Greenblatt J., RA Edwards A.M., Yakunin A.F.; RT "A dual function of the CRISPR-Cas system in bacterial antivirus immunity RT and DNA repair."; RL Mol. Microbiol. 79:484-502(2011). RN [32] RP FUNCTION, ENZYME RATE, ENZYME STATE SWITCHING, AND MUTAGENESIS OF LYS-29. RX PubMed=23851395; DOI=10.1038/nature12333; RA Liu B., Baskin R.J., Kowalczykowski S.C.; RT "DNA unwinding heterogeneity by RecBCD results from static molecules able RT to equilibrate."; RL Nature 500:482-485(2013). RN [33] RP FUNCTION, AND MODEL OF DOMAIN MOVEMENT. RX PubMed=25073102; DOI=10.1016/j.jmb.2014.07.017; RA Taylor A.F., Amundsen S.K., Guttman M., Lee K.K., Luo J., Ranish J., RA Smith G.R.; RT "Control of RecBCD enzyme activity by DNA binding- and Chi hotspot- RT dependent conformational changes."; RL J. Mol. Biol. 426:3479-3499(2014). RN [34] RP DISRUPTION PHENOTYPE. RC STRAIN=K12 / BW25141; RX PubMed=33157039; DOI=10.1016/j.cell.2020.09.065; RA Millman A., Bernheim A., Stokar-Avihail A., Fedorenko T., Voichek M., RA Leavitt A., Oppenheimer-Shaanan Y., Sorek R.; RT "Bacterial Retrons Function In Anti-Phage Defense."; RL Cell 183:1551-1561(2020). RN [35] {ECO:0007744|PDB:1W36} RP X-RAY CRYSTALLOGRAPHY (3.1 ANGSTROMS) IN COMPLEX WITH DNA, COFACTOR, AND RP SUBUNIT. RX PubMed=15538360; DOI=10.1038/nature02988; RA Singleton M.R., Dillingham M.S., Gaudier M., Kowalczykowski S.C., RA Wigley D.B.; RT "Crystal structure of RecBCD enzyme reveals a machine for processing DNA RT breaks."; RL Nature 432:187-193(2004). RN [36] {ECO:0007744|PDB:3K70} RP X-RAY CRYSTALLOGRAPHY (3.59 ANGSTROMS) IN COMPLEX WITH DNA, COFACTOR, AND RP SUBUNIT. RX PubMed=18668125; DOI=10.1038/emboj.2008.144; RA Saikrishnan K., Griffiths S.P., Cook N., Court R., Wigley D.B.; RT "DNA binding to RecD: role of the 1B domain in SF1B helicase activity."; RL EMBO J. 27:2222-2229(2008). RN [37] {ECO:0007744|PDB:5LD2} RP STRUCTURE BY ELECTRON MICROSCOPY (3.83 ANGSTROMS) OF RECBCD IN COMPLEX WITH RP FORKED DNA SUBSTRATE, MUTAGENESIS OF ASP-1080, AND DNA-BINDING. RX PubMed=27644322; DOI=10.7554/elife.18227; RA Wilkinson M., Chaban Y., Wigley D.B.; RT "Mechanism for nuclease regulation in RecBCD."; RL Elife 5:0-0(2016). RN [38] {ECO:0007744|PDB:5MBV} RP STRUCTURE BY ELECTRON MICROSCOPY (3.80 ANGSTROMS) OF RECBCD IN COMPLEX WITH RP LAMBDA GAMS PROTEIN. RX PubMed=28009252; DOI=10.7554/elife.22963; RA Wilkinson M., Troman L., Wan Nur Ismah W.A., Chaban Y., Avison M.B., RA Dillingham M.S., Wigley D.B.; RT "Structural basis for the inhibition of RecBCD by Gam and its synergistic RT antibacterial effect with quinolones."; RL Elife 5:0-0(2016). RN [39] RP REVIEW. RX PubMed=19052323; DOI=10.1128/mmbr.00020-08; RA Dillingham M.S., Kowalczykowski S.C.; RT "RecBCD enzyme and the repair of double-stranded DNA breaks."; RL Microbiol. Mol. Biol. Rev. 72:642-671(2008). RN [40] RP REVIEW. RX PubMed=22688812; DOI=10.1128/mmbr.05026-11; RA Smith G.R.; RT "How RecBCD enzyme and Chi promote DNA break repair and recombination: a RT molecular biologist's view."; RL Microbiol. Mol. Biol. Rev. 76:217-228(2012). CC -!- FUNCTION: A helicase/nuclease that prepares dsDNA breaks (DSB) for CC recombinational DNA repair. Binds to DSBs and unwinds DNA via a rapid CC (>1 kb/second) and highly processive (>30 kb) ATP-dependent CC bidirectional helicase. Unwinds dsDNA until it encounters a Chi CC (crossover hotspot instigator, 5'-GCTGGTGG-3') sequence from the 3' CC direction. Cuts ssDNA a few nucleotides 3' to Chi site, by nicking one CC strand or switching the strand degraded (depending on the reaction CC conditions). The properties and activities of the enzyme are changed at CC Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang which CC facilitates RecA-binding to the ssDNA for homologous DNA recombination CC and repair. Holoenzyme degrades any linearized DNA that is unable to CC undergo homologous recombination (PubMed:4562392, PubMed:4552016, CC PubMed:123277). In the holoenzyme this subunit contributes ATPase, 3'- CC 5' helicase, exonuclease activity and loads RecA onto ssDNA. The RecBC CC complex requires the RecD subunit for nuclease activity, but can CC translocate along ssDNA in both directions. Probably interacts with a CC component of retron Ec48 which moniters RecBCD stability; when RecB is CC missing or impaired the retron is activated and becomes toxic CC (PubMed:33157039) (Probable). {ECO:0000269|PubMed:10197988, CC ECO:0000269|PubMed:10518611, ECO:0000269|PubMed:10766864, CC ECO:0000269|PubMed:123277, ECO:0000269|PubMed:12815437, CC ECO:0000269|PubMed:12815438, ECO:0000269|PubMed:1535156, CC ECO:0000269|PubMed:16041061, ECO:0000269|PubMed:1618858, CC ECO:0000269|PubMed:16388588, ECO:0000269|PubMed:18079176, CC ECO:0000269|PubMed:20852646, ECO:0000269|PubMed:23851395, CC ECO:0000269|PubMed:25073102, ECO:0000269|PubMed:4268693, CC ECO:0000269|PubMed:4552016, ECO:0000269|PubMed:4562392, CC ECO:0000269|PubMed:7608206, ECO:0000269|PubMed:9192629, CC ECO:0000269|PubMed:9230304, ECO:0000269|PubMed:9448271, CC ECO:0000269|PubMed:9790841, ECO:0000305|PubMed:33157039}. CC -!- CATALYTIC ACTIVITY: CC Reaction=Exonucleolytic cleavage (in the presence of ATP) in either CC 5'- to 3'- or 3'- to 5'-direction to yield 5'- CC phosphooligonucleotides.; EC=3.1.11.5; Evidence={ECO:0000255|HAMAP- CC Rule:MF_01485, ECO:0000269|PubMed:4552016}; CC -!- CATALYTIC ACTIVITY: CC Reaction=Couples ATP hydrolysis with the unwinding of duplex DNA by CC translocating in the 3'-5' direction.; EC=5.6.2.4; CC Evidence={ECO:0000255|HAMAP-Rule:MF_01485, CC ECO:0000269|PubMed:12815437, ECO:0000269|PubMed:12815438, CC ECO:0000269|PubMed:9448271}; CC -!- CATALYTIC ACTIVITY: CC Reaction=ATP + H2O = ADP + H(+) + phosphate; Xref=Rhea:RHEA:13065, CC ChEBI:CHEBI:15377, ChEBI:CHEBI:15378, ChEBI:CHEBI:30616, CC ChEBI:CHEBI:43474, ChEBI:CHEBI:456216; EC=5.6.2.4; CC Evidence={ECO:0000255|HAMAP-Rule:MF_01485, CC ECO:0000269|PubMed:12815437, ECO:0000269|PubMed:12815438}; CC -!- COFACTOR: CC Name=Mg(2+); Xref=ChEBI:CHEBI:18420; Evidence={ECO:0000255|HAMAP- CC Rule:MF_01485, ECO:0000269|PubMed:15538360, CC ECO:0000269|PubMed:16388588, ECO:0000269|PubMed:18668125}; CC Note=Binds 1 Mg(2+) ion per subunit. Magnesium is required for both CC helicase and nuclease activity; its relative concentration alters CC helicase speed and nuclease activity in a complicated fashion. CC {ECO:0000255|HAMAP-Rule:MF_01485, ECO:0000269|PubMed:15538360, CC ECO:0000269|PubMed:16388588, ECO:0000269|PubMed:18668125}; CC -!- ACTIVITY REGULATION: After reacting with DNA bearing a Chi site the CC holoenzyme is disassembled and loses exonuclease activity, DNA CC unwinding and Chi-directed DNA cleavage; RecB remains complexed with CC ssDNA, which may prevent holoenzyme reassembly (PubMed:10197988). High CC levels of Mg(2+) (13 mM MgCl(2+)) or incubation with DNase allows CC holoenzyme reassembly, suggesting it is DNA bound to RecB that prevents CC reassembly (PubMed:10197988). {ECO:0000269|PubMed:10197988, CC ECO:0000269|PubMed:1535156}. CC -!- ACTIVITY REGULATION: (Microbial infection) RecBCD is inhibited by the CC lambda virus gam protein (both GamL and GamS isoforms); in vitro a CC short preincubation prior to adding DNA results in maximal inhibition. CC {ECO:0000269|PubMed:1653221, ECO:0000269|PubMed:4275917}. CC -!- SUBUNIT: Heterotrimer of RecB, RecC and RecD. All subunits contribute CC to DNA-binding. The C-terminus interacts with RecA (PubMed:16483938). CC Interacts with YgbT (Cas1) (PubMed:21219465). CC {ECO:0000269|PubMed:15538360, ECO:0000269|PubMed:1618858, CC ECO:0000269|PubMed:16483938, ECO:0000269|PubMed:18668125, CC ECO:0000269|PubMed:21219465, ECO:0000269|PubMed:3526335, CC ECO:0000269|PubMed:4552016, ECO:0000269|PubMed:9448271}. CC -!- SUBUNIT: (Microbial infection) Lambda virus GamS protein interacts with CC the enzyme without displacing any of the subunits. CC {ECO:0000269|PubMed:1653221}. CC -!- DOMAIN: The N-terminal DNA-binding domain (residues 1-929) is a ssDNA- CC dependent ATPase and has ATP-dependent 3'-5' helicase function; both CC are stimulated in the presence of RecC, suggesting this domain CC interacts with RecC. Holoenzyme reconstituted with this RecB N-terminal CC fragment has no nuclease activity (PubMed:9448271). The C-terminal CC domain (residues 928-1180) has weak ssDNA endonuclease activity as an CC isolated fragment (PubMed:9790841) (PubMed:10518611). RecD probably CC interacts with this domain. The C-terminal domain interacts with RecA, CC facilitating its loading onto ssDNA. Interaction is decreased by ATP CC (PubMed:16483938). The RecB helicase domains change conformation upon CC nucleotide binding. As ssDNA is unwound and fed to the RecD subunit the CC latter transmits conformational changes through each subunit to CC activate the RecB nuclease (PubMed:15538360). CC {ECO:0000269|PubMed:10518611, ECO:0000269|PubMed:15538360, CC ECO:0000269|PubMed:16483938, ECO:0000269|PubMed:9448271, CC ECO:0000269|PubMed:9790841}. CC -!- DOMAIN: The holoenzyme may undergo conformational shifts upon DNA CC binding: the nuclease domain of RecB may swing away from the DNA exit CC tunnel in RecC. When Chi DNA binds to the RecC tunnel, the nuclease CC domain may then swing back to its original position (that seen in CC crystal structures), allowing it to nick the DNA 3' of the Chi site and CC then rotate to load RecA. At high Mg(2+) the nuclease domain may swing CC back more frequently, explaining differences seen in assays performed CC at high Mg(2+). {ECO:0000269|PubMed:25073102}. CC -!- DISRUPTION PHENOTYPE: Decreased degradation of DNA with free ends that CC is unable to undergo homologous recombination, which can fortuitously CC lead to more efficient viral infection (PubMed:4562392, PubMed:123277). CC Cells are deficient in DNA recombination repair and have increased CC sensitivity to UV light. The cultures have many inviable cells CC (PubMed:6389498). Cells cannot be transformed with retron Ec48- CC containing plasmids (PubMed:33157039). {ECO:0000269|PubMed:123277, CC ECO:0000269|PubMed:33157039, ECO:0000269|PubMed:4562392, CC ECO:0000269|PubMed:6389498}. CC -!- MISCELLANEOUS: In the RecBCD complex, RecB has a slow 3'-5' helicase, CC an exonuclease activity and loads RecA onto ssDNA, RecD has a fast 5'- CC 3' helicase activity while RecC stimulates the ATPase and processivity CC of the RecB helicase and contributes to recognition of the Chi site. CC {ECO:0000255|HAMAP-Rule:MF_01485, ECO:0000303|PubMed:19052323, CC ECO:0000303|PubMed:22688812}. CC -!- SIMILARITY: Belongs to the helicase family. UvrD subfamily. CC {ECO:0000255|HAMAP-Rule:MF_01485}. CC --------------------------------------------------------------------------- CC Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms CC Distributed under the Creative Commons Attribution (CC BY 4.0) License CC --------------------------------------------------------------------------- DR EMBL; X04581; CAA28250.1; -; Genomic_DNA. DR EMBL; AF179304; AAD56369.1; -; Genomic_DNA. DR EMBL; U29581; AAB40467.1; -; Genomic_DNA. DR EMBL; U00096; AAC75859.1; -; Genomic_DNA. DR EMBL; AP009048; BAE76889.1; -; Genomic_DNA. DR EMBL; X06227; CAA29577.1; -; Genomic_DNA. DR EMBL; X04582; CAA28252.1; -; Genomic_DNA. DR PIR; A25532; NCECX5. DR RefSeq; NP_417297.1; NC_000913.3. DR RefSeq; WP_001285993.1; NZ_LN832404.1. DR PDB; 1W36; X-ray; 3.10 A; B/E=1-1180. DR PDB; 3K70; X-ray; 3.59 A; B/E=1-1180. DR PDB; 5LD2; EM; 3.83 A; B=1-1180. DR PDB; 5MBV; EM; 3.80 A; B=1-1180. DR PDB; 6SJB; EM; 3.70 A; B=1-1180. DR PDB; 6SJE; EM; 4.10 A; B=1-1180. DR PDB; 6SJF; EM; 3.90 A; B=1-1180. DR PDB; 6SJG; EM; 3.80 A; B=1-1180. DR PDB; 6T2U; EM; 3.60 A; B=1-1180. DR PDB; 6T2V; EM; 3.80 A; B=1-1180. DR PDB; 7MR0; EM; 3.70 A; B=1-1180. DR PDB; 7MR1; EM; 4.20 A; B=1-1180. DR PDB; 7MR2; EM; 4.30 A; B=1-1180. DR PDB; 7MR3; EM; 3.60 A; B=1-1180. DR PDB; 7MR4; EM; 4.50 A; B=1-1180. DR PDB; 8B1R; EM; 3.20 A; B=1-1180. DR PDB; 8B1T; EM; 3.40 A; B=1-1180. DR PDB; 8B1U; EM; 3.80 A; B=1-1180. DR PDBsum; 1W36; -. DR PDBsum; 3K70; -. DR PDBsum; 5LD2; -. DR PDBsum; 5MBV; -. DR PDBsum; 6SJB; -. DR PDBsum; 6SJE; -. DR PDBsum; 6SJF; -. DR PDBsum; 6SJG; -. DR PDBsum; 6T2U; -. DR PDBsum; 6T2V; -. DR PDBsum; 7MR0; -. DR PDBsum; 7MR1; -. DR PDBsum; 7MR2; -. DR PDBsum; 7MR3; -. DR PDBsum; 7MR4; -. DR PDBsum; 8B1R; -. DR PDBsum; 8B1T; -. DR PDBsum; 8B1U; -. DR AlphaFoldDB; P08394; -. DR EMDB; EMD-10214; -. DR EMDB; EMD-10215; -. DR EMDB; EMD-10216; -. DR EMDB; EMD-10217; -. DR EMDB; EMD-10369; -. DR EMDB; EMD-10370; -. DR EMDB; EMD-23952; -. DR EMDB; EMD-23953; -. DR EMDB; EMD-23954; -. DR EMDB; EMD-23955; -. DR EMDB; EMD-23956; -. DR EMDB; EMD-3460; -. DR EMDB; EMD-4038; -. DR SMR; P08394; -. DR BioGRID; 4262307; 585. DR BioGRID; 851614; 3. DR ComplexPortal; CPX-2197; Exodeoxyribonuclease V complex. DR DIP; DIP-540N; -. DR IntAct; P08394; 20. DR MINT; P08394; -. DR STRING; 511145.b2820; -. DR ChEMBL; CHEMBL2095232; -. DR jPOST; P08394; -. DR PaxDb; 511145-b2820; -. DR EnsemblBacteria; AAC75859; AAC75859; b2820. DR GeneID; 947286; -. DR KEGG; ecj:JW2788; -. DR KEGG; eco:b2820; -. DR PATRIC; fig|1411691.4.peg.3916; -. DR EchoBASE; EB0817; -. DR eggNOG; COG1074; Bacteria. DR HOGENOM; CLU_001114_6_0_6; -. DR InParanoid; P08394; -. DR OMA; EFSDIAH; -. DR OrthoDB; 9810135at2; -. DR PhylomeDB; P08394; -. DR BioCyc; EcoCyc:EG10824-MONOMER; -. DR BioCyc; MetaCyc:EG10824-MONOMER; -. DR BRENDA; 3.1.11.5; 2026. DR EvolutionaryTrace; P08394; -. DR PRO; PR:P08394; -. DR Proteomes; UP000000318; Chromosome. DR Proteomes; UP000000625; Chromosome. DR GO; GO:0005829; C:cytosol; IBA:GO_Central. DR GO; GO:0009338; C:exodeoxyribonuclease V complex; IDA:EcoCyc. DR GO; GO:0043138; F:3'-5' DNA helicase activity; IBA:GO_Central. DR GO; GO:0005524; F:ATP binding; IDA:EcoCyc. DR GO; GO:0008094; F:ATP-dependent activity, acting on DNA; IDA:EcoCyc. DR GO; GO:0003677; F:DNA binding; IEA:UniProtKB-UniRule. DR GO; GO:0004520; F:DNA endonuclease activity; IDA:EcoCyc. DR GO; GO:0003678; F:DNA helicase activity; IDA:EcoCyc. DR GO; GO:0015616; F:DNA translocase activity; IDA:EcoCyc. DR GO; GO:0008854; F:exodeoxyribonuclease V activity; IDA:EcoCyc. DR GO; GO:0000287; F:magnesium ion binding; IEA:UniProtKB-UniRule. DR GO; GO:0044355; P:clearance of foreign intracellular DNA; IMP:UniProtKB. DR GO; GO:0006310; P:DNA recombination; IDA:EcoCyc. DR GO; GO:0000724; P:double-strand break repair via homologous recombination; TAS:EcoCyc. DR GO; GO:0000725; P:recombinational repair; IDA:ComplexPortal. DR GO; GO:0009314; P:response to radiation; IMP:EcoCyc. DR CDD; cd22352; RecB_C-like; 1. DR CDD; cd18807; SF1_C_UvrD; 1. DR Gene3D; 3.90.320.10; -; 1. DR Gene3D; 3.40.50.300; P-loop containing nucleotide triphosphate hydrolases; 2. DR Gene3D; 1.10.3170.10; Recbcd, chain B, domain 2; 1. DR HAMAP; MF_01485; RecB; 1. DR InterPro; IPR014017; DNA_helicase_UvrD-like_C. DR InterPro; IPR000212; DNA_helicase_UvrD/REP. DR InterPro; IPR027417; P-loop_NTPase. DR InterPro; IPR011604; PDDEXK-like_dom_sf. DR InterPro; IPR038726; PDDEXK_AddAB-type. DR InterPro; IPR004586; RecB. DR InterPro; IPR011335; Restrct_endonuc-II-like. DR InterPro; IPR014016; UvrD-like_ATP-bd. DR NCBIfam; TIGR00609; recB; 1. DR PANTHER; PTHR11070:SF23; RECBCD ENZYME SUBUNIT RECB; 1. DR PANTHER; PTHR11070; UVRD / RECB / PCRA DNA HELICASE FAMILY MEMBER; 1. DR Pfam; PF12705; PDDEXK_1; 1. DR Pfam; PF00580; UvrD-helicase; 1. DR Pfam; PF13361; UvrD_C; 1. DR SUPFAM; SSF52540; P-loop containing nucleoside triphosphate hydrolases; 1. DR SUPFAM; SSF52980; Restriction endonuclease-like; 1. DR PROSITE; PS51198; UVRD_HELICASE_ATP_BIND; 1. DR PROSITE; PS51217; UVRD_HELICASE_CTER; 1. PE 1: Evidence at protein level; KW 3D-structure; ATP-binding; Direct protein sequencing; DNA damage; KW DNA repair; DNA-binding; Exonuclease; Helicase; Hydrolase; Isomerase; KW Magnesium; Metal-binding; Nuclease; Nucleotide-binding; Reference proteome. FT INIT_MET 1 FT /note="Removed" FT /evidence="ECO:0000269|PubMed:1618858" FT CHAIN 2..1180 FT /note="RecBCD enzyme subunit RecB" FT /id="PRO_0000102046" FT DOMAIN 2..450 FT /note="UvrD-like helicase ATP-binding" FT /evidence="ECO:0000255|HAMAP-Rule:MF_01485" FT DOMAIN 480..746 FT /note="UvrD-like helicase C-terminal" FT /evidence="ECO:0000255|HAMAP-Rule:MF_01485" FT DNA_BIND 252..254 FT DNA_BIND 511..512 FT DNA_BIND 560..561 FT DNA_BIND 761 FT REGION 2..853 FT /note="ATPase, DNA-binding and helicase activity, interacts FT with RecC" FT /evidence="ECO:0000255|HAMAP-Rule:MF_01485, FT ECO:0000269|PubMed:9448271" FT REGION 900..1180 FT /note="Nuclease activity, interacts with RecD and RecA" FT /evidence="ECO:0000255|HAMAP-Rule:MF_01485, FT ECO:0000269|PubMed:10518611, ECO:0000269|PubMed:9790841" FT ACT_SITE 1080 FT /note="For nuclease activity" FT /evidence="ECO:0000255|HAMAP-Rule:MF_01485, FT ECO:0000269|PubMed:10518611, ECO:0000269|PubMed:9790841" FT BINDING 23..30 FT /ligand="ATP" FT /ligand_id="ChEBI:CHEBI:30616" FT /evidence="ECO:0000255|HAMAP-Rule:MF_01485, FT ECO:0000269|PubMed:15538360" FT BINDING 447 FT /ligand="ATP" FT /ligand_id="ChEBI:CHEBI:30616" FT /evidence="ECO:0000269|PubMed:15538360" FT BINDING 956 FT /ligand="Mg(2+)" FT /ligand_id="ChEBI:CHEBI:18420" FT /evidence="ECO:0000255|HAMAP-Rule:MF_01485, FT ECO:0000305|PubMed:15538360, ECO:0000305|PubMed:18668125" FT BINDING 1067 FT /ligand="Mg(2+)" FT /ligand_id="ChEBI:CHEBI:18420" FT /evidence="ECO:0000255|HAMAP-Rule:MF_01485, FT ECO:0000305|PubMed:15538360, ECO:0000305|PubMed:18668125" FT BINDING 1080 FT /ligand="Mg(2+)" FT /ligand_id="ChEBI:CHEBI:18420" FT /evidence="ECO:0000255|HAMAP-Rule:MF_01485, FT ECO:0000305|PubMed:15538360, ECO:0000305|PubMed:18668125" FT BINDING 1081 FT /ligand="Mg(2+)" FT /ligand_id="ChEBI:CHEBI:18420" FT /evidence="ECO:0000305|PubMed:15538360, FT ECO:0000305|PubMed:18668125" FT MUTAGEN 29 FT /note="K->Q: Subunit loses ATPase and 3'-5' helicase FT activity, holoenzyme has 3-5 fold less helicase activity, FT 20-fold less processivity." FT /evidence="ECO:0000269|PubMed:12815437, FT ECO:0000269|PubMed:16041061, ECO:0000269|PubMed:23851395" FT MUTAGEN 803 FT /note="Y->H: Large decrease in recombination, loss of Chi FT hotspot activity, decreased RecB helicase rate, retains FT nuclease activity but not Chi-sequence specificity, does FT not load RecA." FT /evidence="ECO:0000269|PubMed:18079176" FT MUTAGEN 804 FT /note="V->E: Large decrease in recombination, loss of Chi FT hotspot activity, decreased RecB helicase rate, retains FT nuclease activity but not Chi-sequence specificity, does FT not load RecA." FT /evidence="ECO:0000269|PubMed:18079176" FT MUTAGEN 807 FT /note="T->I: In recB-2109; absence of nuclease modification FT at Chi sites." FT /evidence="ECO:0000269|PubMed:10766864" FT MUTAGEN 1067 FT /note="D->A: Subunit loses nuclease activity." FT /evidence="ECO:0000269|PubMed:16388588" FT MUTAGEN 1080 FT /note="D->A: Loss of holoenzyme nuclease activity, retains FT full helicase activity, does not act at Chi, no loading of FT RecA on ssDNA and no recombinational repair." FT /evidence="ECO:0000269|PubMed:10518611, FT ECO:0000269|PubMed:16388588, ECO:0000269|PubMed:27644322, FT ECO:0000269|PubMed:9790841" FT HELIX 10..12 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 19..22 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 29..41 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 45..49 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 56..58 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 59..64 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 66..88 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 95..103 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 107..120 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 121..123 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 125..128 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 129..139 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 141..144 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 157..172 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 177..186 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 190..197 FT /evidence="ECO:0007829|PDB:1W36" FT TURN 198..201 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 202..204 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 207..210 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 218..234 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 249..251 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 255..263 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 283..287 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 312..316 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 324..346 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 351..363 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 367..377 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 379..383 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 386..388 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 391..401 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 408..413 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 415..417 FT /evidence="ECO:0007829|PDB:1W36" FT TURN 421..424 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 427..436 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 440..442 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 451..462 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 463..466 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 482..484 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 487..491 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 494..496 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 498..503 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 513..534 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 538..542 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 545..548 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 551..553 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 554..560 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 561..572 FT /evidence="ECO:0007829|PDB:1W36" FT TURN 573..575 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 578..580 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 587..589 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 592..603 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 609..617 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 619..621 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 625..633 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 635..655 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 657..667 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 670..676 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 677..679 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 680..698 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 704..716 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 732..734 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 735..740 FT /evidence="ECO:0007829|PDB:1W36" FT TURN 741..744 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 749..754 FT /evidence="ECO:0007829|PDB:1W36" FT TURN 755..758 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 767..769 FT /evidence="ECO:0007829|PDB:1W36" FT TURN 771..773 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 776..781 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 784..806 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 809..817 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 832..835 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 837..842 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 850..859 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 865..869 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 901..906 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 908..910 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 917..920 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 942..944 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 949..958 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 964..966 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 970..979 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 984..986 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 987..998 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 1002..1006 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 1009..1011 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 1014..1016 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 1017..1027 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 1033..1043 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 1059..1074 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 1079..1082 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 1090..1092 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 1095..1104 FT /evidence="ECO:0007829|PDB:1W36" FT TURN 1105..1107 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 1108..1125 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 1126..1128 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 1131..1134 FT /evidence="ECO:0007829|PDB:1W36" FT STRAND 1139..1145 FT /evidence="ECO:0007829|PDB:1W36" FT HELIX 1164..1173 FT /evidence="ECO:0007829|PDB:1W36" SQ SEQUENCE 1180 AA; 133959 MW; F9AC331808E8F281 CRC64; MSDVAETLDP LRLPLQGERL IEASAGTGKT FTIAALYLRL LLGLGGSAAF PRPLTVEELL VVTFTEAATA ELRGRIRSNI HELRIACLRE TTDNPLYERL LEEIDDKAQA AQWLLLAERQ MDEAAVFTIH GFCQRMLNLN AFESGMLFEQ QLIEDESLLR YQACADFWRR HCYPLPREIA QVVFETWKGP QALLRDINRY LQGEAPVIKA PPPDDETLAS RHAQIVARID TVKQQWRDAV GELDALIESS GIDRRKFNRS NQAKWIDKIS AWAEEETNSY QLPESLEKFS QRFLEDRTKA GGETPRHPLF EAIDQLLAEP LSIRDLVITR ALAEIRETVA REKRRRGELG FDDMLSRLDS ALRSESGEVL AAAIRTRFPV AMIDEFQDTD PQQYRIFRRI WHHQPETALL LIGDPKQAIY AFRGADIFTY MKARSEVHAH YTLDTNWRSA PGMVNSVNKL FSQTDDAFMF REIPFIPVKS AGKNQALRFV FKGETQPAMK MWLMEGESCG VGDYQSTMAQ VCAAQIRDWL QAGQRGEALL MNGDDARPVR ASDISVLVRS RQEAAQVRDA LTLLEIPSVY LSNRDSVFET LEAQEMLWLL QAVMTPEREN TLRSALATSM MGLNALDIET LNNDEHAWDV VVEEFDGYRQ IWRKRGVMPM LRALMSARNI AENLLATAGG ERRLTDILHI SELLQEAGTQ LESEHALVRW LSQHILEPDS NASSQQMRLE SDKHLVQIVT IHKSKGLEYP LVWLPFITNF RVQEQAFYHD RHSFEAVLDL NAAPESVDLA EAERLAEDLR LLYVALTRSV WHCSLGVAPL VRRRGDKKGD TDVHQSALGR LLQKGEPQDA AGLRTCIEAL CDDDIAWQTA QTGDNQPWQV NDVSTAELNA KTLQRLPGDN WRVTSYSGLQ QRGHGIAQDL MPRLDVDAAG VASVVEEPTL TPHQFPRGAS PGTFLHSLFE DLDFTQPVDP NWVREKLELG GFESQWEPVL TEWITAVLQA PLNETGVSLS QLSARNKQVE MEFYLPISEP LIASQLDTLI RQFDPLSAGC PPLEFMQVRG MLKGFIDLVF RHEGRYYLLD YKSNWLGEDS SAYTQQAMAA AMQAHRYDLQ YQLYTLALHR YLRHRIADYD YEHHFGGVIY LFLRGVDKEH PQQGIYTTRP NAGLIALMDE MFAGMTLEEA //