Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P08394 (RECB_ECOLI) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 130. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (3) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
RecBCD enzyme subunit RecB

EC=3.1.11.5
Alternative name(s):
Exodeoxyribonuclease V 135 kDa polypeptide
Exodeoxyribonuclease V beta chain
Exonuclease V subunit RecB
Short name=ExoV subunit RecB
Helicase/nuclease RecBCD subunit RecB
Gene names
Name:recB
Synonyms:ior, rorA
Ordered Locus Names:b2820, JW2788
OrganismEscherichia coli (strain K12) [Reference proteome] [HAMAP]
Taxonomic identifier83333 [NCBI]
Taxonomic lineageBacteriaProteobacteriaGammaproteobacteriaEnterobacterialesEnterobacteriaceaeEscherichia

Protein attributes

Sequence length1180 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a rapid and highly processive ATP-dependent bidirectional helicase (1350 bp/s). Degrades the ssDNA until it encounters a chi (crossover hotspot instigator, 5'-GCTGGTGG-3') sequence from the 3' direction. Cuts DNA near or within the chi site, attentuating 3'- but not 5'-exonuclease activity. The altered holoenzyme produces a long 3'-ssDNA overhang which facilitates RecA-binding to the ssDNA for homologous DNA recombination and repair. Holoenzyme degrades foreign DNA, contributing to antiviral protection. It may also be involved in alternative end-joining, a modified version of non-homologous end-joining of DSBs. This subunit has ss- and dsDNA-dependent ATPase activity, exo- and endonuclease activity, 3'-5' helicase activity and loads RecA onto ssDNA. The RecBC complex requires the RecD subunit for nuclease activity, but can translocate along ssDNA in both directions. Ref.2 Ref.6 Ref.8 Ref.9 Ref.10 Ref.11 Ref.14 Ref.15 Ref.16 Ref.17 Ref.18 Ref.19 Ref.20 Ref.21 Ref.22 Ref.24 Ref.25

Catalytic activity

Exonucleolytic cleavage (in the presence of ATP) in either 5'- to 3'- or 3'- to 5'-direction to yield 5'-phosphooligonucleotides. HAMAP-Rule MF_01485

Cofactor

Bind 1 Mg2+ per subunit Probable. Magnesium is required for both helicase and nuclease activity; its relative concentrations alter helicase speed and nuclease activity in a complicated fashion. Ref.22 Ref.27 Ref.28

Subunit structure

Heterotrimer of RecB, RecC and RecD. All subunits contribute to DNA-binding. The C-terminus interacts with RecA. Interacts with YgbT (Cas1). Ref.6 Ref.9 Ref.13 Ref.18 Ref.23 Ref.26 Ref.27 Ref.28

Domain

The N-terminal DNA-binding domain (residues 1-929) is a ssDNA-dependent ATPase and has ATP-dependent 3'-5' helicase function; both are stimulated in the presence of RecC, suggesting this domain interacts with RecC. Holoenzyme reconstituted with this truncated RecB has no nuclease activity (Ref.18). Ref.17 Ref.18 Ref.19 Ref.23

The C-terminal domain (residues 928-1180) has weak ssDNA endonuclease activity as an isolated fragment (Ref.17) (Ref.19). RecD probably interacts with this domain. It interacts with RecA, facilitating its loading onto ssDNA. Interaction is decreased by ATP (Ref.23). Ref.17 Ref.18 Ref.19 Ref.23

Disruption phenotype

Decreased degradation of viral DNA with free ends, more efficient viral infection. Cells are deficient in DNA recombination repair and have increased sensitivity to UV light. The cultures have many inviable cells. Ref.8 Ref.11 Ref.12

Sequence similarities

Belongs to the helicase family. UvrD subfamily.

Contains 1 uvrD-like helicase ATP-binding domain.

Contains 1 uvrD-like helicase C-terminal domain.

Ontologies

Keywords
   Biological processAntiviral defense
DNA damage
DNA repair
   LigandATP-binding
DNA-binding
Magnesium
Metal-binding
Nucleotide-binding
   Molecular functionEndonuclease
Exonuclease
Helicase
Hydrolase
Nuclease
   Technical term3D-structure
Complete proteome
Direct protein sequencing
Reference proteome
Gene Ontology (GO)
   Biological_processDNA catabolic process, exonucleolytic

Inferred from mutant phenotype Ref.18. Source: GOC

DNA duplex unwinding

Inferred from direct assay PubMed 1311326PubMed 3155726. Source: GOC

DNA recombination

Inferred from mutant phenotype Ref.12. Source: EcoCyc

clearance of foreign intracellular DNA

Inferred from mutant phenotype Ref.11. Source: UniProtKB

defense response to virus

Inferred from electronic annotation. Source: UniProtKB-KW

double-strand break repair

Inferred from direct assay Ref.25. Source: EcoCyc

nucleic acid phosphodiester bond hydrolysis

Inferred from mutant phenotype Ref.18. Source: GOC

   Cellular_componentexodeoxyribonuclease V complex

Inferred from direct assay Ref.6. Source: EcoCyc

   Molecular_functionATP binding

Inferred from direct assay PubMed 3298248. Source: EcoliWiki

ATP-dependent DNA helicase activity

Inferred from direct assay PubMed 1311326PubMed 3155726. Source: EcoCyc

DNA binding

Inferred from electronic annotation. Source: UniProtKB-KW

endonuclease activity

Inferred from mutant phenotype Ref.18. Source: EcoCyc

exodeoxyribonuclease V activity

Inferred from mutant phenotype Ref.18. Source: EcoCyc

metal ion binding

Inferred from electronic annotation. Source: UniProtKB-KW

protein binding

Inferred from physical interaction Ref.26. Source: EcoCyc

Complete GO annotation...

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Initiator methionine11Removed Ref.6
Chain2 – 11801179RecBCD enzyme subunit RecB HAMAP-Rule MF_01485
PRO_0000102046

Regions

Domain2 – 450449UvrD-like helicase ATP-binding
Domain480 – 746267UvrD-like helicase C-terminal
Nucleotide binding23 – 308ATP HAMAP-Rule MF_01485
DNA binding252 – 2543 Ref.18 Ref.21
DNA binding511 – 5122 Ref.18 Ref.21
DNA binding560 – 5612 Ref.18 Ref.21
DNA binding7611 Ref.18 Ref.21
Region2 – 927926ATPase, DNA-binding and helicase activity, interacts with RecC HAMAP-Rule MF_01485
Region928 – 1180253Nuclease activity, interacts with RecD and RecA HAMAP-Rule MF_01485

Sites

Metal binding9561Magnesium; via tele nitrogen Probable
Metal binding10671Magnesium Probable
Metal binding10801Magnesium Probable
Metal binding10811Magnesium; via carbonyl oxygen Probable

Experimental info

Mutagenesis291K → Q: Subunit loses ATPase and 3'-5' helicase activity, holoenzyme has 3-fold less helicase activity, 20-fold less processivity. Ref.21
Mutagenesis8071T → I in recB-2109; absence of nuclease modification at chi sites. Ref.2
Mutagenesis10671D → A: Subunit loses nuclease activity. Ref.22
Mutagenesis10801D → A: Loss of holoenzyme nuclease activity, retains full helicase activity, does not recognize chi, no loading of RecA on ssDNA and no recombinational repair. Ref.17 Ref.19 Ref.22

Secondary structure

.................................................................................................................................................................................. 1180
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
P08394 [UniParc].

Last modified August 1, 1988. Version 1.
Checksum: F9AC331808E8F281

FASTA1,180133,959
        10         20         30         40         50         60 
MSDVAETLDP LRLPLQGERL IEASAGTGKT FTIAALYLRL LLGLGGSAAF PRPLTVEELL 

        70         80         90        100        110        120 
VVTFTEAATA ELRGRIRSNI HELRIACLRE TTDNPLYERL LEEIDDKAQA AQWLLLAERQ 

       130        140        150        160        170        180 
MDEAAVFTIH GFCQRMLNLN AFESGMLFEQ QLIEDESLLR YQACADFWRR HCYPLPREIA 

       190        200        210        220        230        240 
QVVFETWKGP QALLRDINRY LQGEAPVIKA PPPDDETLAS RHAQIVARID TVKQQWRDAV 

       250        260        270        280        290        300 
GELDALIESS GIDRRKFNRS NQAKWIDKIS AWAEEETNSY QLPESLEKFS QRFLEDRTKA 

       310        320        330        340        350        360 
GGETPRHPLF EAIDQLLAEP LSIRDLVITR ALAEIRETVA REKRRRGELG FDDMLSRLDS 

       370        380        390        400        410        420 
ALRSESGEVL AAAIRTRFPV AMIDEFQDTD PQQYRIFRRI WHHQPETALL LIGDPKQAIY 

       430        440        450        460        470        480 
AFRGADIFTY MKARSEVHAH YTLDTNWRSA PGMVNSVNKL FSQTDDAFMF REIPFIPVKS 

       490        500        510        520        530        540 
AGKNQALRFV FKGETQPAMK MWLMEGESCG VGDYQSTMAQ VCAAQIRDWL QAGQRGEALL 

       550        560        570        580        590        600 
MNGDDARPVR ASDISVLVRS RQEAAQVRDA LTLLEIPSVY LSNRDSVFET LEAQEMLWLL 

       610        620        630        640        650        660 
QAVMTPEREN TLRSALATSM MGLNALDIET LNNDEHAWDV VVEEFDGYRQ IWRKRGVMPM 

       670        680        690        700        710        720 
LRALMSARNI AENLLATAGG ERRLTDILHI SELLQEAGTQ LESEHALVRW LSQHILEPDS 

       730        740        750        760        770        780 
NASSQQMRLE SDKHLVQIVT IHKSKGLEYP LVWLPFITNF RVQEQAFYHD RHSFEAVLDL 

       790        800        810        820        830        840 
NAAPESVDLA EAERLAEDLR LLYVALTRSV WHCSLGVAPL VRRRGDKKGD TDVHQSALGR 

       850        860        870        880        890        900 
LLQKGEPQDA AGLRTCIEAL CDDDIAWQTA QTGDNQPWQV NDVSTAELNA KTLQRLPGDN 

       910        920        930        940        950        960 
WRVTSYSGLQ QRGHGIAQDL MPRLDVDAAG VASVVEEPTL TPHQFPRGAS PGTFLHSLFE 

       970        980        990       1000       1010       1020 
DLDFTQPVDP NWVREKLELG GFESQWEPVL TEWITAVLQA PLNETGVSLS QLSARNKQVE 

      1030       1040       1050       1060       1070       1080 
MEFYLPISEP LIASQLDTLI RQFDPLSAGC PPLEFMQVRG MLKGFIDLVF RHEGRYYLLD 

      1090       1100       1110       1120       1130       1140 
YKSNWLGEDS SAYTQQAMAA AMQAHRYDLQ YQLYTLALHR YLRHRIADYD YEHHFGGVIY 

      1150       1160       1170       1180 
LFLRGVDKEH PQQGIYTTRP NAGLIALMDE MFAGMTLEEA 

« Hide

References

« Hide 'large scale' references
[1]"Complete nucleotide sequence of the Escherichia coli recB gene."
Finch P.W., Storey A., Chapman K.E., Brown K., Hickson I.D., Emmerson P.T.
Nucleic Acids Res. 14:8573-8582(1986) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
[2]"Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme."
Arnold D.A., Kowalczykowski S.C.
J. Biol. Chem. 275:12261-12265(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], FUNCTION IN RECA LOADING, MUTAGENESIS OF THR-807.
Strain: V1000.
[3]"The complete genome sequence of Escherichia coli K-12."
Blattner F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B., Shao Y.
Science 277:1453-1462(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: K12 / MG1655 / ATCC 47076.
[4]"Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110."
Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S., Ohtsubo E., Baba T., Wanner B.L., Mori H., Horiuchi T.
Mol. Syst. Biol. 2:E1-E5(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: K12 / W3110 / ATCC 27325 / DSM 5911.
[5]"Complete nucleotide sequence of the Escherichia coli ptr gene encoding protease III."
Finch P.W., Wilson R.E., Brown K., Hickson I.D., Emmerson P.T.
Nucleic Acids Res. 14:7695-7703(1986) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1-11.
[6]"Reconstitution of the activities of the RecBCD holoenzyme of Escherichia coli from the purified subunits."
Masterson C., Boehmer P.E., McDonald F., Chaudhuri S., Hickson I.D., Emmerson P.T.
J. Biol. Chem. 267:13564-13572(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 2-11, FUNCTION AS AN EXONUCLEASE; ENDONUCLEASE; HELICASE AND ATPASE, SUBUNIT.
[7]"Complete nucleotide sequence of recD, the structural gene for the alpha subunit of Exonuclease V of Escherichia coli."
Finch P.W., Storey A., Brown K., Hickson I.D., Emmerson P.T.
Nucleic Acids Res. 14:8583-8594(1986) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 1093-1180.
[8]"Degradation of bacteriophage lambda deoxyribonucleic acid after restriction by Escherichia coli K-12."
Simmon V.F., Lederberg S.
J. Bacteriol. 112:161-169(1972) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DEGRADATION OF LAMBDA VIRUS DNA, DISRUPTION PHENOTYPE.
Strain: K12.
[9]"Purification and properties of the recBC DNase of Escherichia coli K-12."
Goldmark P.J., Linn S.
J. Biol. Chem. 247:1849-1860(1972) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS AN ENDO- AND EXODEOXYRIBONUCLEASE, ATP-DEPENDENCE, SUBUNIT.
Strain: K12.
[10]"The recBC deoxyribonuclease of Escherichia coli K-12. Substrate specificity and reaction intermediates."
Karu A.E., MacKay V., Goldmark P.J., Linn S.
J. Biol. Chem. 248:4874-4884(1973) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBSTRATES, PROCESSIVITY.
[11]"Transfection of Escherichia coli spheroplasts. V. Activity of recBC nuclease in rec+ and rec minus spheroplasts measured with different forms of bacteriophage DNA."
Benzinger R., Enquist L.W., Skalka A.
J. Virol. 15:861-871(1975) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DEGRADATION OF VIRUS DNA, DISRUPTION PHENOTYPE.
[12]"Escherichia coli recBC deletion mutants."
Chaudhury A.M., Smith G.R.
J. Bacteriol. 160:788-791(1984) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE.
[13]"recD: the gene for an essential third subunit of exonuclease V."
Amundsen S.K., Taylor A.F., Chaudhury A.M., Smith G.R.
Proc. Natl. Acad. Sci. U.S.A. 83:5558-5562(1986) [PubMed] [Europe PMC] [Abstract]
Cited for: OPERON, SUBUNIT.
[14]"Role of the Escherichia coli recombination hotspot, chi, in RecABCD-dependent homologous pairing."
Dixon D.A., Kowalczykowski S.C.
J. Biol. Chem. 270:16360-16370(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN HOMOLOGOUS RECOMBINATION.
[15]"The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner."
Anderson D.G., Kowalczykowski S.C.
Cell 90:77-86(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN RECA-LOADING.
[16]"The recombination hotspot Chi is recognized by the translocating RecBCD enzyme as the single strand of DNA containing the sequence 5'-GCTGGTGG-3'."
Bianco P.R., Kowalczykowski S.C.
Proc. Natl. Acad. Sci. U.S.A. 94:6706-6711(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN RECOGNITION OF CHI.
[17]"Identification of the nuclease active site in the multifunctional RecBCD enzyme by creation of a chimeric enzyme."
Yu M., Souaya J., Julin D.A.
J. Mol. Biol. 283:797-808(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, DOMAIN, MUTAGENESIS OF ASP-1080.
[18]"The 30-kDa C-terminal domain of the RecB protein is critical for the nuclease activity, but not the helicase activity, of the RecBCD enzyme from Escherichia coli."
Yu M., Souaya J., Julin D.A.
Proc. Natl. Acad. Sci. U.S.A. 95:981-986(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH RECC, DOMAIN, DNA-BINDING.
[19]"Isolation and characterization of the C-terminal nuclease domain from the RecB protein of Escherichia coli."
Zhang X.J., Julin D.A.
Nucleic Acids Res. 27:4200-4207(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, DOMAIN, MUTAGENESIS OF ASP-1080.
[20]"RecBCD enzyme is a bipolar DNA helicase."
Dillingham M.S., Spies M., Kowalczykowski S.C.
Nature 423:893-897(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS A BIPOLAR HELICASE.
[21]"Bipolar DNA translocation contributes to highly processive DNA unwinding by RecBCD enzyme."
Dillingham M.S., Webb M.R., Kowalczykowski S.C.
J. Biol. Chem. 280:37069-37077(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, RATE, DNA-BINDING, MUTAGENESIS OF LYS-29.
[22]"The nuclease domain of the Escherichia coli RecBCD enzyme catalyzes degradation of linear and circular single-stranded and double-stranded DNA."
Sun J.Z., Julin D.A., Hu J.S.
Biochemistry 45:131-140(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION AS A NUCLEASE, COFACTOR, MUTAGENESIS OF ASP-1067 AND ASP-1080.
[23]"The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins."
Spies M., Kowalczykowski S.C.
Mol. Cell 21:573-580(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RECA, SUBUNIT, DOMAIN.
[24]"Escherichia coli RecBC helicase has two translocase activities controlled by a single ATPase motor."
Wu C.G., Bradford C., Lohman T.M.
Nat. Struct. Mol. Biol. 17:1210-1217(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DUAL DIRECTION TRANSLOCATION.
[25]"An end-joining repair mechanism in Escherichia coli."
Chayot R., Montagne B., Mazel D., Ricchetti M.
Proc. Natl. Acad. Sci. U.S.A. 107:2141-2146(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: POSSIBLE FUNCTION IN ALTERNATIVE END-JOINING.
Strain: K12 / TG1.
[26]"A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair."
Babu M., Beloglazova N., Flick R., Graham C., Skarina T., Nocek B., Gagarinova A., Pogoutse O., Brown G., Binkowski A., Phanse S., Joachimiak A., Koonin E.V., Savchenko A., Emili A., Greenblatt J., Edwards A.M., Yakunin A.F.
Mol. Microbiol. 79:484-502(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH YGBT.
Strain: K12.
[27]"Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks."
Singleton M.R., Dillingham M.S., Gaudier M., Kowalczykowski S.C., Wigley D.B.
Nature 432:187-193(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (3.1 ANGSTROMS) IN COMPLEX WITH DNA, COFACTOR, SUBUNIT.
[28]"DNA binding to RecD: role of the 1B domain in SF1B helicase activity."
Saikrishnan K., Griffiths S.P., Cook N., Court R., Wigley D.B.
EMBO J. 27:2222-2229(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (3.59 ANGSTROMS) IN COMPLEX WITH DNA, COFACTOR, SUBUNIT.
[29]"RecBCD enzyme and the repair of double-stranded DNA breaks."
Dillingham M.S., Kowalczykowski S.C.
Microbiol. Mol. Biol. Rev. 72:642-671(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
X04581 Genomic DNA. Translation: CAA28250.1.
AF179304 Genomic DNA. Translation: AAD56369.1.
U29581 Genomic DNA. Translation: AAB40467.1.
U00096 Genomic DNA. Translation: AAC75859.1.
AP009048 Genomic DNA. Translation: BAE76889.1.
X06227 Genomic DNA. Translation: CAA29577.1.
X04582 Genomic DNA. Translation: CAA28252.1.
PIRNCECX5. A25532.
RefSeqNP_417297.1. NC_000913.3.
YP_491025.1. NC_007779.1.

3D structure databases

PDBe
RCSB-PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1W36X-ray3.10B/E1-1180[»]
3K70X-ray3.59B/E1-1180[»]
ProteinModelPortalP08394.
SMRP08394. Positions 343-809.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

DIPDIP-540N.
IntActP08394. 19 interactions.
MINTMINT-1224378.
STRING511145.b2820.

Chemistry

ChEMBLCHEMBL2095232.

Proteomic databases

PaxDbP08394.
PRIDEP08394.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblBacteriaAAC75859; AAC75859; b2820.
BAE76889; BAE76889; BAE76889.
GeneID12933313.
947286.
KEGGecj:Y75_p2754.
eco:b2820.
PATRIC32121058. VBIEscCol129921_2918.

Organism-specific databases

EchoBASEEB0817.
EcoGeneEG10824. recB.

Phylogenomic databases

eggNOGCOG1074.
HOGENOMHOG000258330.
KOK03582.
OMAHIGELLQ.
OrthoDBEOG6677M1.
PhylomeDBP08394.

Enzyme and pathway databases

BioCycEcoCyc:EG10824-MONOMER.
ECOL316407:JW2788-MONOMER.
MetaCyc:EG10824-MONOMER.

Gene expression databases

GenevestigatorP08394.

Family and domain databases

Gene3D3.40.50.300. 5 hits.
3.90.320.10. 1 hit.
HAMAPMF_01485. RecB.
InterProIPR014017. DNA_helicase_UvrD-like_C.
IPR000212. DNA_helicase_UvrD/REP.
IPR004586. ExoDNase_V_bsu.
IPR011604. Exonuc_phg/RecB_C.
IPR027417. P-loop_NTPase.
IPR011335. Restrct_endonuc-II-like.
IPR014016. UvrD-like_ATP-bd.
[Graphical view]
PANTHERPTHR11070. PTHR11070. 1 hit.
PfamPF00580. UvrD-helicase. 1 hit.
PF13361. UvrD_C. 1 hit.
[Graphical view]
SUPFAMSSF52540. SSF52540. 3 hits.
SSF52980. SSF52980. 1 hit.
TIGRFAMsTIGR00609. recB. 1 hit.
PROSITEPS51198. UVRD_HELICASE_ATP_BIND. 1 hit.
PS51217. UVRD_HELICASE_CTER. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

EvolutionaryTraceP08394.
PROP08394.

Entry information

Entry nameRECB_ECOLI
AccessionPrimary (citable) accession number: P08394
Secondary accession number(s): Q2MA17
Entry history
Integrated into UniProtKB/Swiss-Prot: August 1, 1988
Last sequence update: August 1, 1988
Last modified: July 9, 2014
This is version 130 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programProkaryotic Protein Annotation Program

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

Escherichia coli

Escherichia coli (strain K12): entries and cross-references to EcoGene