Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P06700 (SIR2_YEAST) Reviewed, UniProtKB/Swiss-Prot

Last modified June 11, 2014. Version 160. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (5) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Web links·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
NAD-dependent histone deacetylase SIR2

EC=3.5.1.-
Alternative name(s):
Regulatory protein SIR2
Silent information regulator 2
Gene names
Name:SIR2
Synonyms:MAR1
Ordered Locus Names:YDL042C
ORF Names:D2714
OrganismSaccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [Reference proteome]
Taxonomic identifier559292 [NCBI]
Taxonomic lineageEukaryotaFungiDikaryaAscomycotaSaccharomycotinaSaccharomycetesSaccharomycetalesSaccharomycetaceaeSaccharomyces

Protein attributes

Sequence length562 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

NAD-dependent deacetylase, which participates in a wide range of cellular events including chromosome silencing, chromosome segregation, DNA recombination and the determination of life span. Involved in transcriptional repression of the silent mating-type loci HML and HMR and telomeric silencing via its association with SIR3 and SIR4. Plays a central role in ribosomal DNA (rDNA) silencing via its association with the RENT complex, preventing hyperrecombination, and repressing transcription from foreign promoters, which contributes to extending life span. Probably represses transcription via the formation of heterochromatin structure, which involves the compaction of chromatin fiber into a more condensed form, although this complex in at least one case can still bind euchromatic levels of positive transcription regulators. Although it displays some NAD-dependent histone deacetylase activity on histone H3K9Ac and H3K14Ac and histone H4K16Ac in vitro, such activity is unclear in vivo and may not be essential. Ref.6 Ref.7 Ref.8 Ref.17 Ref.20 Ref.23 Ref.25

Catalytic activity

NAD+ + an acetylprotein = nicotinamide + O-acetyl-ADP-ribose + a protein.

Cofactor

Binds 1 zinc ion per subunit By similarity.

Enzyme regulation

Its activity is increased by calorie restriction, which slows the pace of aging and increases maximum lifespan. Activated by resveratrol (3,5,4'-trihydroxy-trans-stilbene), which is found in red wine. Ref.19

Subunit structure

Homomultimer. Interacts with ESC8 and ZDS2. Component of the RENT complex, at least composed of SIR2, CDC14 and NET1. The RENT complex interacts with FOB1. Forms a complex with SIR3 and SIR4. Interacts with MCM10 and SLX5. Ref.9 Ref.10 Ref.11 Ref.12 Ref.15 Ref.17 Ref.21 Ref.23

Subcellular location

Nucleusnucleolus. Note: Associated with nucleolar chromatin. Preferentially bound to the spacer regions of the rDNA repeats through its interaction with NET1. Ref.5

Miscellaneous

Its stability is directly linked to life span, which is extended when it is present in high dosage. Conversely, its absence shortens life span.

The reported ADP-ribosyltransferase activity of sirtuins is likely some inefficient side reaction of the deacetylase activity and may not be physiologically relevant (Ref.25).

Present with 3350 molecules/cell in log phase SD medium.

Sequence similarities

Belongs to the sirtuin family. Class I subfamily.

Contains 1 deacetylase sirtuin-type domain.

Caution

Was originally (Ref.6) thought to be an ADP-ribosyltransferase.

Biophysicochemical properties

Kinetic parameters:

KM=29.3 µM for NAD+ Ref.20

KM=239 µM for a synthetic histone H3K9 acetyllysine peptide

KM=420 µM for a synthetic histone H3K14 acetyllysine peptide

KM=140 µM for a synthetic histone H4K5 acetyllysine peptide

KM=54 µM for a synthetic histone H4K8 acetyllysine peptide

KM=105 µM for a synthetic histone H4K12 acetyllysine peptide

KM=17 µM for a synthetic histone H4K16 acetyllysine peptide

Ontologies

Keywords
   Biological processDNA damage
DNA repair
Transcription
Transcription regulation
   Cellular componentNucleus
   LigandMetal-binding
NAD
Zinc
   Molecular functionChromatin regulator
Hydrolase
Repressor
   Technical term3D-structure
Complete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processDNA repair

Inferred from electronic annotation. Source: UniProtKB-KW

chromatin assembly or disassembly

Inferred from direct assay PubMed 11553718. Source: SGD

chromatin silencing at rDNA

Inferred from mutant phenotype PubMed 2647300. Source: SGD

chromatin silencing at silent mating-type cassette

Inferred from mutant phenotype PubMed 11950950. Source: SGD

chromatin silencing at telomere

Inferred from mutant phenotype PubMed 11950950. Source: SGD

chronological cell aging

Inferred from mutant phenotype PubMed 16286010. Source: SGD

histone H3 deacetylation

Inferred from direct assay Ref.7. Source: GOC

histone H4 deacetylation

Inferred from direct assay Ref.7. Source: GOC

histone deacetylation

Inferred from direct assay PubMed 10811920. Source: GOC

negative regulation of DNA recombination

Inferred from genetic interaction PubMed 16182251. Source: SGD

negative regulation of DNA replication

Inferred from mutant phenotype PubMed 15082529. Source: SGD

replicative cell aging

Inferred from mutant phenotype PubMed 15722108. Source: SGD

transcription, DNA-templated

Inferred from electronic annotation. Source: UniProtKB-KW

   Cellular_componentRENT complex

Inferred from direct assay Ref.10. Source: SGD

chromatin silencing complex

Inferred from direct assay Ref.9. Source: SGD

nuclear chromosome, telomeric region

Inferred from direct assay PubMed 9710643. Source: SGD

nuclear heterochromatin

Inferred from direct assay PubMed 20176978. Source: SGD

nuclear telomeric heterochromatin

Inferred from direct assay PubMed 9000052. Source: SGD

nucleolus

Inferred from direct assay Ref.5. Source: SGD

   Molecular_functionNAD+ binding

Inferred from electronic annotation. Source: InterPro

NAD-dependent histone deacetylase activity

Inferred from direct assay PubMed 10811920. Source: SGD

NAD-dependent histone deacetylase activity (H3-K14 specific)

Inferred from direct assay Ref.7. Source: SGD

NAD-dependent histone deacetylase activity (H3-K9 specific)

Inferred from direct assay Ref.7. Source: SGD

NAD-dependent histone deacetylase activity (H4-K16 specific)

Inferred from direct assay Ref.7. Source: SGD

protein binding

Inferred from physical interaction PubMed 11805826PubMed 15282295PubMed 16429126PubMed 17043313PubMed 20489023PubMed 21179020. Source: IntAct

zinc ion binding

Inferred from electronic annotation. Source: InterPro

Complete GO annotation...

Binary interactions

With

Entry

#Exp.

IntAct

Notes

CDC14Q006845EBI-17219,EBI-4192
SIR4P119786EBI-17219,EBI-17237

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 562562NAD-dependent histone deacetylase SIR2
PRO_0000110280

Regions

Domain245 – 529285Deacetylase sirtuin-type
Nucleotide binding262 – 28120NAD
Nucleotide binding344 – 3474NAD By similarity
Nucleotide binding471 – 4733NAD By similarity
Nucleotide binding496 – 4983NAD By similarity

Sites

Active site3641Proton acceptor By similarity
Metal binding3721Zinc
Metal binding3751Zinc
Metal binding3961Zinc
Metal binding3991Zinc
Binding site5131NAD; via amide nitrogen By similarity

Experimental info

Mutagenesis1391R → K: Defects in telomeric silencing. Ref.16
Mutagenesis2701G → E: Defects in telomeric silencing. Ref.16
Mutagenesis2961F → L: Defects in telomeric silencing. Ref.16

Secondary structure

............................................................................. 562
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
P06700 [UniParc].

Last modified January 1, 1988. Version 1.
Checksum: 52E6937533654586

FASTA56263,262
        10         20         30         40         50         60 
MTIPHMKYAV SKTSENKVSN TVSPTQDKDA IRKQPDDIIN NDEPSHKKIK VAQPDSLRET 

        70         80         90        100        110        120 
NTTDPLGHTK AALGEVASME LKPTNDMDPL AVSAASVVSM SNDVLKPETP KGPIIISKNP 

       130        140        150        160        170        180 
SNGIFYGPSF TKRESLNARM FLKYYGAHKF LDTYLPEDLN SLYIYYLIKL LGFEVKDQAL 

       190        200        210        220        230        240 
IGTINSIVHI NSQERVQDLG SAISVTNVED PLAKKQTVRL IKDLQRAINK VLCTRLRLSN 

       250        260        270        280        290        300 
FFTIDHFIQK LHTARKILVL TGAGVSTSLG IPDFRSSEGF YSKIKHLGLD DPQDVFNYNI 

       310        320        330        340        350        360 
FMHDPSVFYN IANMVLPPEK IYSPLHSFIK MLQMKGKLLR NYTQNIDNLE SYAGISTDKL 

       370        380        390        400        410        420 
VQCHGSFATA TCVTCHWNLP GERIFNKIRN LELPLCPYCY KKRREYFPEG YNNKVGVAAS 

       430        440        450        460        470        480 
QGSMSERPPY ILNSYGVLKP DITFFGEALP NKFHKSIRED ILECDLLICI GTSLKVAPVS 

       490        500        510        520        530        540 
EIVNMVPSHV PQVLINRDPV KHAEFDLSLL GYCDDIAAMV AQKCGWTIPH KKWNDLKNKN 

       550        560 
FKCQEKDKGV YVVTSDEHPK TL 

« Hide

References

« Hide 'large scale' references
[1]"Characterization of two genes required for the position-effect control of yeast mating-type genes."
Shore D., Squire M., Nasmyth K.A.
EMBO J. 3:2817-2823(1984) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
[2]"The sequence of a 36.7 kb segment on the left arm of chromosome IV from Saccharomyces cerevisiae reveals 20 non-overlapping open reading frames (ORFs) including SIT4, FAD1, NAM1, RNA11, SIR2, NAT1, PRP9, ACT2 and MPS1 and 11 new ORFs."
Saren A.-M., Laamanen P., Lejarcegui J.B., Paulin L.
Yeast 13:65-71(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
Strain: ATCC 204508 / S288c.
[3]"The nucleotide sequence of Saccharomyces cerevisiae chromosome IV."
Jacq C., Alt-Moerbe J., Andre B., Arnold W., Bahr A., Ballesta J.P.G., Bargues M., Baron L., Becker A., Biteau N., Bloecker H., Blugeon C., Boskovic J., Brandt P., Brueckner M., Buitrago M.J., Coster F., Delaveau T. expand/collapse author list , del Rey F., Dujon B., Eide L.G., Garcia-Cantalejo J.M., Goffeau A., Gomez-Peris A., Granotier C., Hanemann V., Hankeln T., Hoheisel J.D., Jaeger W., Jimenez A., Jonniaux J.-L., Kraemer C., Kuester H., Laamanen P., Legros Y., Louis E.J., Moeller-Rieker S., Monnet A., Moro M., Mueller-Auer S., Nussbaumer B., Paricio N., Paulin L., Perea J., Perez-Alonso M., Perez-Ortin J.E., Pohl T.M., Prydz H., Purnelle B., Rasmussen S.W., Remacha M.A., Revuelta J.L., Rieger M., Salom D., Saluz H.P., Saiz J.E., Saren A.-M., Schaefer M., Scharfe M., Schmidt E.R., Schneider C., Scholler P., Schwarz S., Soler-Mira A., Urrestarazu L.A., Verhasselt P., Vissers S., Voet M., Volckaert G., Wagner G., Wambutt R., Wedler E., Wedler H., Woelfl S., Harris D.E., Bowman S., Brown D., Churcher C.M., Connor R., Dedman K., Gentles S., Hamlin N., Hunt S., Jones L., McDonald S., Murphy L.D., Niblett D., Odell C., Oliver K., Rajandream M.A., Richards C., Shore L., Walsh S.V., Barrell B.G., Dietrich F.S., Mulligan J.T., Allen E., Araujo R., Aviles E., Berno A., Carpenter J., Chen E., Cherry J.M., Chung E., Duncan M., Hunicke-Smith S., Hyman R.W., Komp C., Lashkari D., Lew H., Lin D., Mosedale D., Nakahara K., Namath A., Oefner P., Oh C., Petel F.X., Roberts D., Schramm S., Schroeder M., Shogren T., Shroff N., Winant A., Yelton M.A., Botstein D., Davis R.W., Johnston M., Andrews S., Brinkman R., Cooper J., Ding H., Du Z., Favello A., Fulton L., Gattung S., Greco T., Hallsworth K., Hawkins J., Hillier L.W., Jier M., Johnson D., Johnston L., Kirsten J., Kucaba T., Langston Y., Latreille P., Le T., Mardis E., Menezes S., Miller N., Nhan M., Pauley A., Peluso D., Rifkin L., Riles L., Taich A., Trevaskis E., Vignati D., Wilcox L., Wohldman P., Vaudin M., Wilson R., Waterston R., Albermann K., Hani J., Heumann K., Kleine K., Mewes H.-W., Zollner A., Zaccaria P.
Nature 387:75-78(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: ATCC 204508 / S288c.
[4]"The reference genome sequence of Saccharomyces cerevisiae: Then and now."
Engel S.R., Dietrich F.S., Fisk D.G., Binkley G., Balakrishnan R., Costanzo M.C., Dwight S.S., Hitz B.C., Karra K., Nash R.S., Weng S., Wong E.D., Lloyd P., Skrzypek M.S., Miyasato S.R., Simison M., Cherry J.M.
G3 (Bethesda) 4:389-398(2014) [PubMed] [Europe PMC] [Abstract]
Cited for: GENOME REANNOTATION.
Strain: ATCC 204508 / S288c.
[5]"Localization of Sir2p: the nucleolus as a compartment for silent information regulators."
Gotta M., Strahl-Bolsinger S., Renauld H., Laroche T., Kennedy B.K., Grunstein M., Gasser S.M.
EMBO J. 16:3243-3255(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION.
[6]"An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing."
Tanny J.C., Dowd G.J., Huang J., Hilz H., Moazed D.
Cell 99:735-745(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: PRELIMINARY FUNCTION.
[7]"Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase."
Imai S., Armstrong C.M., Kaeberlein M., Guarente L.
Nature 403:795-800(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[8]"Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae."
Tsukamoto Y., Kato J., Ikeda H.
Nature 388:900-903(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[9]"Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3."
Moazed D., Kistler A., Axelrod A., Rine J., Johnson A.D.
Proc. Natl. Acad. Sci. U.S.A. 94:2186-2191(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SIR3 AND SIR4.
[10]"Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex."
Shou W., Seol J.H., Shevchenko A., Baskerville C., Moazed D., Chen Z.W.S., Jang J., Shevchenko A., Charbonneau H., Deshaies R.J.
Cell 97:233-244(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN A RENT COMPLEX WITH CDC14.
[11]"Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity."
Straight A.F., Shou W., Dowd G.J., Turck C.W., Deshaies R.J., Johnson A.D., Moazed D.
Cell 97:245-256(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN A RENT COMPLEX WITH NET1.
[12]"Two paralogs involved in transcriptional silencing that antagonistically control yeast life span."
Roy N., Runge K.W.
Curr. Biol. 10:111-114(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH ZDS2.
[13]"Silenced chromatin is permissive to activator binding and PIC recruitment."
Sekinger E.A., Gross D.S.
Cell 105:403-414(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: MECHANISM OF TRANSCRIPTION REPRESSION.
[14]"The molecular biology of the SIR proteins."
Gasser S.M., Cockell M.M.
Gene 279:1-16(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW.
[15]"Restoration of silencing in Saccharomyces cerevisiae by tethering of a novel Sir2-interacting protein, Esc8."
Cuperus G., Shore D.
Genetics 162:633-645(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH ESC8.
[16]"A unique class of conditional sir2 mutants displays distinct silencing defects in Saccharomyces cerevisiae."
Garcia S.N., Pillus L.
Genetics 162:721-736(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: MUTAGENESIS OF ARG-139; GLY-270 AND PHE-296.
[17]"Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing."
Huang J., Moazed D.
Genes Dev. 17:2162-2176(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH FOB1.
[18]"Global analysis of protein expression in yeast."
Ghaemmaghami S., Huh W.-K., Bower K., Howson R.W., Belle A., Dephoure N., O'Shea E.K., Weissman J.S.
Nature 425:737-741(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: LEVEL OF PROTEIN EXPRESSION [LARGE SCALE ANALYSIS].
[19]"Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan."
Howitz K.T., Bitterman K.J., Cohen H.Y., Lamming D.W., Lavu S., Wood J.G., Zipkin R.E., Chung P., Kisielewski A., Zhang L.-L., Scherer B., Sinclair D.A.
Nature 425:191-196(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: ENZYME REGULATION.
[20]"Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases."
Borra M.T., Langer M.R., Slama J.T., Denu J.M.
Biochemistry 43:9877-9887(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, BIOPHYSICOCHEMICAL PROPERTIES.
[21]"Dual roles for Mcm10 in DNA replication initiation and silencing at the mating-type loci."
Douglas N.L., Dozier S.K., Donato J.J.
Mol. Biol. Rep. 32:197-204(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH MCM10.
[22]"Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae."
Li X., Gerber S.A., Rudner A.D., Beausoleil S.A., Haas W., Villen J., Elias J.E., Gygi S.P.
J. Proteome Res. 6:1190-1197(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Strain: ADR376.
[23]"Slx5 promotes transcriptional silencing and is required for robust growth in the absence of Sir2."
Darst R.P., Garcia S.N., Koch M.R., Pillus L.
Mol. Cell. Biol. 28:1361-1372(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH SLX5/HEX3.
[24]"A multidimensional chromatography technology for in-depth phosphoproteome analysis."
Albuquerque C.P., Smolka M.B., Payne S.H., Bafna V., Eng J., Zhou H.
Mol. Cell. Proteomics 7:1389-1396(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[25]"Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD."
Du J., Jiang H., Lin H.
Biochemistry 48:2878-2890(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[26]"Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution."
Holt L.J., Tuch B.B., Villen J., Johnson A.D., Gygi S.P., Morgan D.O.
Science 325:1682-1686(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[27]"Autoregulation of the yeast Sir2 deacetylase by reaction and trapping of a pseudosubstrate motif in the active site."
Hall B.E., Buchberger J.R., Gerber S.A., Ambrosio A.L.B., Gygi S.P., Filman D., Moazed D., Ellenberger T.
Submitted (JUN-2006) to the PDB data bank
Cited for: X-RAY CRYSTALLOGRAPHY (1.85 ANGSTROMS) OF 209-562 IN COMPLEX WITH ZINC AND NICOTINAMIDE.
+Additional computationally mapped references.

Web resources

Protein Spotlight

In vino vita? - Issue 40 of November 2003

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
X01419 Genomic DNA. Translation: CAA25667.1.
Z71781 Genomic DNA. Translation: CAA96447.1.
Z74090 Genomic DNA. Translation: CAA98600.1.
BK006938 Genomic DNA. Translation: DAA11814.1.
PIRRGBYS2. S05891.
RefSeqNP_010242.1. NM_001180101.1.

3D structure databases

PDBe
RCSB-PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
2HJHX-ray1.85A/B209-562[»]
4IAOX-ray2.90A/B87-562[»]
ProteinModelPortalP06700.
SMRP06700. Positions 99-555.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid32017. 291 interactions.
DIPDIP-596N.
IntActP06700. 48 interactions.
MINTMINT-509141.
STRING4932.YDL042C.

Chemistry

BindingDBP06700.
ChEMBLCHEMBL3275.

Proteomic databases

MaxQBP06700.
PaxDbP06700.
PeptideAtlasP06700.
PRIDEP06700.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblFungiYDL042C; YDL042C; YDL042C.
GeneID851520.
KEGGsce:YDL042C.

Organism-specific databases

CYGDYDL042c.
SGDS000002200. SIR2.

Phylogenomic databases

eggNOGCOG0846.
GeneTreeENSGT00740000115330.
HOGENOMHOG000191845.
KOK11121.
OMAPVKHAEF.
OrthoDBEOG7MWH64.

Enzyme and pathway databases

BioCycYEAST:MONOMER3O-4152.
SABIO-RKP06700.

Gene expression databases

GenevestigatorP06700.

Family and domain databases

Gene3D3.30.1600.10. 3 hits.
3.40.50.1220. 3 hits.
InterProIPR029035. DHS-like_NAD/FAD-binding_dom.
IPR007654. NAD-dep_histone_deAcase_SIR2_N.
IPR003000. Sirtuin.
IPR026591. Sirtuin_cat_small_dom.
IPR026590. Ssirtuin_cat_dom.
[Graphical view]
PANTHERPTHR11085. PTHR11085. 1 hit.
PfamPF04574. DUF592. 1 hit.
PF02146. SIR2. 1 hit.
[Graphical view]
SUPFAMSSF52467. SSF52467. 2 hits.
PROSITEPS50305. SIRTUIN. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

EvolutionaryTraceP06700.
NextBio968896.

Entry information

Entry nameSIR2_YEAST
AccessionPrimary (citable) accession number: P06700
Secondary accession number(s): D6VRV4
Entry history
Integrated into UniProtKB/Swiss-Prot: January 1, 1988
Last sequence update: January 1, 1988
Last modified: June 11, 2014
This is version 160 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programFungal Protein Annotation Program

Relevant documents

Yeast chromosome IV

Yeast (Saccharomyces cerevisiae) chromosome IV: entries and gene names

Yeast

Yeast (Saccharomyces cerevisiae): entries, gene names and cross-references to SGD

SIMILARITY comments

Index of protein domains and families

Protein Spotlight

Protein Spotlight articles and cited UniProtKB/Swiss-Prot entries

PDB cross-references

Index of Protein Data Bank (PDB) cross-references