ID POL_SIVM1 Reviewed; 1448 AA. AC P05896; DT 01-NOV-1988, integrated into UniProtKB/Swiss-Prot. DT 02-OCT-2007, sequence version 2. DT 27-MAR-2024, entry version 185. DE RecName: Full=Gag-Pol polyprotein; DE AltName: Full=Pr160Gag-Pol; DE Contains: DE RecName: Full=Matrix protein p17; DE Short=MA; DE Contains: DE RecName: Full=Capsid protein p24; DE Short=CA; DE Contains: DE RecName: Full=Nucleocapsid protein p7; DE Short=NC; DE Contains: DE RecName: Full=p6-pol; DE Short=p6*; DE Contains: DE RecName: Full=Protease; DE EC=3.4.23.16; DE AltName: Full=PR; DE AltName: Full=Retropepsin; DE Contains: DE RecName: Full=Reverse transcriptase/ribonuclease H; DE EC=2.7.7.49; DE EC=2.7.7.7; DE EC=3.1.26.13; DE AltName: Full=Exoribonuclease H; DE EC=3.1.13.2; DE AltName: Full=p66 RT; DE Contains: DE RecName: Full=p51 RT; DE Contains: DE RecName: Full=p15; DE Contains: DE RecName: Full=Integrase; DE Short=IN; DE EC=2.7.7.- {ECO:0000250|UniProtKB:P04585}; DE EC=3.1.-.- {ECO:0000250|UniProtKB:P04585}; GN Name=gag-pol; OS Simian immunodeficiency virus (isolate Mm142-83) (SIV-mac) (Simian OS immunodeficiency virus rhesus monkey). OC Viruses; Riboviria; Pararnavirae; Artverviricota; Revtraviricetes; OC Ortervirales; Retroviridae; Orthoretrovirinae; Lentivirus; OC Simian immunodeficiency virus. OX NCBI_TaxID=11733; OH NCBI_TaxID=9527; Cercopithecidae (Old World monkeys). RN [1] RP NUCLEOTIDE SEQUENCE [GENOMIC DNA]. RX PubMed=3649576; DOI=10.1038/328543a0; RA Chakrabarti L., Guyader M., Alizon M., Daniel M.D., Desrosiers R.C., RA Tiollais P., Sonigo P.; RT "Sequence of simian immunodeficiency virus from macaque and its RT relationship to other human and simian retroviruses."; RL Nature 328:543-547(1987). RN [2] RP X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 498-595. RX PubMed=9485411; DOI=10.1021/bi9716074; RA Rose R.B., Craik C.S., Stroud R.M.; RT "Domain flexibility in retroviral proteases: structural implications for RT drug resistant mutations."; RL Biochemistry 37:2607-2621(1998). CC -!- FUNCTION: Gag-Pol polyprotein and Gag polyprotein may regulate their CC own translation, by the binding genomic RNA in the 5'-UTR. At low CC concentration, Gag-Pol and Gag would promote translation, whereas at CC high concentration, the polyproteins encapsidate genomic RNA and then CC shut off translation (By similarity). {ECO:0000250}. CC -!- FUNCTION: Matrix protein p17 has two main functions: in infected cell, CC it targets Gag and Gag-pol polyproteins to the plasma membrane via a CC multipartite membrane-binding signal, that includes its CC myristointegration complex. The myristoylation signal and the NLS exert CC conflicting influences its subcellular localization. The key regulation CC of these motifs might be phosphorylation of a portion of MA molecules CC on the C-terminal tyrosine at the time of virus maturation, by virion- CC associated cellular tyrosine kinase. Implicated in the release from CC host cell mediated by Vpu (By similarity). {ECO:0000250}. CC -!- FUNCTION: Capsid protein p24 forms the conical core that encapsulates CC the genomic RNA-nucleocapsid complex in the virion. The core is CC constituted by capsid protein hexamer subunits. The core is CC disassembled soon after virion entry. Interaction with host PPIA/CYPA CC protects the virus from restriction by host TRIM5-alpha and from an CC unknown antiviral activity in host cells. This capsid restriction by CC TRIM5 is one of the factors which restricts SIV to the simian species CC (By similarity). {ECO:0000250}. CC -!- FUNCTION: Nucleocapsid protein p7 encapsulates and protects viral CC dimeric unspliced (genomic) RNA. Binds these RNAs through its zinc CC fingers. Facilitates rearangement of nucleic acid secondary structure CC during retrotranscription of genomic RNA. This capability is referred CC to as nucleic acid chaperone activity (By similarity). {ECO:0000250}. CC -!- FUNCTION: The aspartyl protease mediates proteolytic cleavages of Gag CC and Gag-Pol polyproteins during or shortly after the release of the CC virion from the plasma membrane. Cleavages take place as an ordered, CC step-wise cascade to yield mature proteins. This process is called CC maturation. Displays maximal activity during the budding process just CC prior to particle release from the cell. Also cleaves Nef and Vif, CC probably concomitantly with viral structural proteins on maturation of CC virus particles. Hydrolyzes host EIF4GI and PABP1 in order to shut off CC the capped cellular mRNA translation. The resulting inhibition of CC cellular protein synthesis serves to ensure maximal viral gene CC expression and to evade host immune response (By similarity). CC {ECO:0000255|PROSITE-ProRule:PRU00275}. CC -!- FUNCTION: Reverse transcriptase/ribonuclease H (RT) is a CC multifunctional enzyme that converts the viral dimeric RNA genome into CC dsDNA in the cytoplasm, shortly after virus entry into the cell. This CC enzyme displays a DNA polymerase activity that can copy either DNA or CC RNA templates, and a ribonuclease H (RNase H) activity that cleaves the CC RNA strand of RNA-DNA heteroduplexes in a partially processive 3' to 5' CC endonucleasic mode. Conversion of viral genomic RNA into dsDNA requires CC many steps. A tRNA binds to the primer-binding site (PBS) situated at CC the 5'-end of the viral RNA. RT uses the 3' end of the tRNA primer to CC perform a short round of RNA-dependent minus-strand DNA synthesis. The CC reading proceeds through the U5 region and ends after the repeated (R) CC region which is present at both ends of viral RNA. The portion of the CC RNA-DNA heteroduplex is digested by the RNase H, resulting in a ssDNA CC product attached to the tRNA primer. This ssDNA/tRNA hybridizes with CC the identical R region situated at the 3' end of viral RNA. This CC template exchange, known as minus-strand DNA strong stop transfer, can CC be either intra- or intermolecular. RT uses the 3' end of this newly CC synthesized short ssDNA to perform the RNA-dependent minus-strand DNA CC synthesis of the whole template. RNase H digests the RNA template CC except for two polypurine tracts (PPTs) situated at the 5'-end and near CC the center of the genome. It is not clear if both polymerase and RNase CC H activities are simultaneous. RNase H can probably proceed both in a CC polymerase-dependent (RNA cut into small fragments by the same RT CC performing DNA synthesis) and a polymerase-independent mode (cleavage CC of remaining RNA fragments by free RTs). Secondly, RT performs DNA- CC directed plus-strand DNA synthesis using the PPTs that have not been CC removed by RNase H as primers. PPTs and tRNA primers are then removed CC by RNase H. The 3' and 5' ssDNA PBS regions hybridize to form a CC circular dsDNA intermediate. Strand displacement synthesis by RT to the CC PBS and PPT ends produces a blunt ended, linear dsDNA copy of the viral CC genome that includes long terminal repeats (LTRs) at both ends (By CC similarity). {ECO:0000250}. CC -!- FUNCTION: Integrase catalyzes viral DNA integration into the host CC chromosome, by performing a series of DNA cutting and joining CC reactions. This enzyme activity takes place after virion entry into a CC cell and reverse transcription of the RNA genome in dsDNA. The first CC step in the integration process is 3' processing. This step requires a CC complex comprising the viral genome, matrix protein, Vpr and integrase. CC This complex is called the pre-integration complex (PIC). The integrase CC protein removes 2 nucleotides from each 3' end of the viral DNA, CC leaving recessed CA OH's at the 3' ends. In the second step, the PIC CC enters cell nucleus. This process is mediated through integrase and Vpr CC proteins, and allows the virus to infect a non dividing cell. This CC ability to enter the nucleus is specific of lentiviruses, other CC retroviruses cannot and rely on cell division to access cell CC chromosomes. In the third step, termed strand transfer, the integrase CC protein joins the previously processed 3' ends to the 5' ends of CC strands of target cellular DNA at the site of integration. The 5'-ends CC are produced by integrase-catalyzed staggered cuts, 5 bp apart. A Y- CC shaped, gapped, recombination intermediate results, with the 5'-ends of CC the viral DNA strands and the 3' ends of target DNA strands remaining CC unjoined, flanking a gap of 5 bp. The last step is viral DNA CC integration into host chromosome. This involves host DNA repair CC synthesis in which the 5 bp gaps between the unjoined strands are CC filled in and then ligated. Since this process occurs at both cuts CC flanking the SIV genome, a 5 bp duplication of host DNA is produced at CC the ends of SIV integration. Alternatively, Integrase may catalyze the CC excision of viral DNA just after strand transfer, this is termed CC disintegration (By similarity). {ECO:0000250}. CC -!- CATALYTIC ACTIVITY: CC Reaction=Specific for a P1 residue that is hydrophobic, and P1' CC variable, but often Pro.; EC=3.4.23.16; CC Evidence={ECO:0000255|PROSITE-ProRule:PRU00275}; CC -!- CATALYTIC ACTIVITY: CC Reaction=Endohydrolysis of RNA in RNA/DNA hybrids. Three different CC cleavage modes: 1. sequence-specific internal cleavage of RNA. Human CC immunodeficiency virus type 1 and Moloney murine leukemia virus CC enzymes prefer to cleave the RNA strand one nucleotide away from the CC RNA-DNA junction. 2. RNA 5'-end directed cleavage 13-19 nucleotides CC from the RNA end. 3. DNA 3'-end directed cleavage 15-20 nucleotides CC away from the primer terminus.; EC=3.1.26.13; CC -!- CATALYTIC ACTIVITY: CC Reaction=3'-end directed exonucleolytic cleavage of viral RNA-DNA CC hybrid.; EC=3.1.13.2; CC -!- CATALYTIC ACTIVITY: CC Reaction=a 2'-deoxyribonucleoside 5'-triphosphate + DNA(n) = CC diphosphate + DNA(n+1); Xref=Rhea:RHEA:22508, Rhea:RHEA-COMP:17339, CC Rhea:RHEA-COMP:17340, ChEBI:CHEBI:33019, ChEBI:CHEBI:61560, CC ChEBI:CHEBI:173112; EC=2.7.7.49; Evidence={ECO:0000255|PROSITE- CC ProRule:PRU00405}; CC -!- CATALYTIC ACTIVITY: CC Reaction=a 2'-deoxyribonucleoside 5'-triphosphate + DNA(n) = CC diphosphate + DNA(n+1); Xref=Rhea:RHEA:22508, Rhea:RHEA-COMP:17339, CC Rhea:RHEA-COMP:17340, ChEBI:CHEBI:33019, ChEBI:CHEBI:61560, CC ChEBI:CHEBI:173112; EC=2.7.7.7; Evidence={ECO:0000255|PROSITE- CC ProRule:PRU00405}; CC -!- COFACTOR: CC Name=Mg(2+); Xref=ChEBI:CHEBI:18420; Evidence={ECO:0000250}; CC Note=Binds 2 magnesium ions for reverse transcriptase polymerase CC activity. {ECO:0000250}; CC -!- COFACTOR: CC Name=Mg(2+); Xref=ChEBI:CHEBI:18420; Evidence={ECO:0000250}; CC Note=Binds 2 magnesium ions for ribonuclease H (RNase H) activity. CC Substrate-binding is a precondition for magnesium binding. CC {ECO:0000250}; CC -!- COFACTOR: CC Name=Mg(2+); Xref=ChEBI:CHEBI:18420; Evidence={ECO:0000250}; CC Note=Magnesium ions are required for integrase activity. Binds at least CC 1, maybe 2 magnesium ions. {ECO:0000250}; CC -!- ACTIVITY REGULATION: The viral protease is inhibited by many synthetic CC protease inhibitors (PIs), such as amprenavir, atazanavir, indinavir, CC loprinavir, nelfinavir, ritonavir and saquinavir. RT can be inhibited CC either by nucleoside RT inhibitors (NRTIs) or by non nucleoside RT CC inhibitors (NNRTIs). NRTIs act as chain terminators, whereas NNRTIs CC inhibit DNA polymerization by binding a small hydrophobic pocket near CC the RT active site and inducing an allosteric change in this region. CC Classical NRTIs are abacavir, adefovir (PMEA), didanosine (ddI), CC lamivudine (3TC), stavudine (d4T), tenofovir (PMPA), zalcitabine (ddC), CC and zidovudine (AZT). Classical NNRTIs are atevirdine (BHAP U-87201E), CC delavirdine, efavirenz (DMP-266), emivirine (I-EBU), and nevirapine CC (BI-RG-587). The tritherapies used as a basic effective treatment of CC AIDS associate two NRTIs and one NNRTI. Use of protease inhibitors in CC tritherapy regimens permit more ambitious therapeutic strategies. CC -!- SUBUNIT: [Matrix protein p17]: Homotrimer. Interacts with gp41 (via C- CC terminus). {ECO:0000250|UniProtKB:P04591, CC ECO:0000250|UniProtKB:P12493}. CC -!- SUBUNIT: [Protease]: Homodimer. The active site consists of two apposed CC aspartic acid residues. {ECO:0000250|UniProtKB:P04585, CC ECO:0000250|UniProtKB:P12497}. CC -!- SUBUNIT: [Reverse transcriptase/ribonuclease H]: Heterodimer of p66 RT CC and p51 RT (RT p66/p51). Heterodimerization of RT is essential for DNA CC polymerase activity. Despite the sequence identities, p66 RT and p51 RT CC have distinct folding. {ECO:0000250|UniProtKB:P03366}. CC -!- SUBUNIT: [Integrase]: Homotetramer; may further associate as a CC homohexadecamer (By similarity). {ECO:0000250|UniProtKB:P03367}. CC -!- SUBCELLULAR LOCATION: [Matrix protein p17]: Virion {ECO:0000305}. Host CC nucleus {ECO:0000250}. Host cytoplasm {ECO:0000250}. Host cell membrane CC {ECO:0000305}; Lipid-anchor {ECO:0000305}. Note=Following virus entry, CC the nuclear localization signal (NLS) of the matrix protein CC participates with Vpr to the nuclear localization of the viral genome. CC During virus production, the nuclear export activity of the matrix CC protein counteracts the NLS to maintain the Gag and Gag-Pol CC polyproteins in the cytoplasm, thereby directing unspliced RNA to the CC plasma membrane (By similarity). {ECO:0000250}. CC -!- SUBCELLULAR LOCATION: [Capsid protein p24]: Virion {ECO:0000305}. CC -!- SUBCELLULAR LOCATION: [Nucleocapsid protein p7]: Virion {ECO:0000305}. CC -!- SUBCELLULAR LOCATION: [Reverse transcriptase/ribonuclease H]: Virion CC {ECO:0000305}. CC -!- SUBCELLULAR LOCATION: [Integrase]: Virion {ECO:0000305}. Host nucleus CC {ECO:0000305}. Host cytoplasm {ECO:0000305}. Note=Nuclear at initial CC phase, cytoplasmic at assembly. {ECO:0000305}. CC -!- ALTERNATIVE PRODUCTS: CC Event=Ribosomal frameshifting; Named isoforms=2; CC Comment=Translation results in the formation of the Gag polyprotein CC most of the time. Ribosomal frameshifting at the gag-pol genes CC boundary occurs at low frequency and produces the Gag-Pol CC polyprotein. This strategy of translation probably allows the virus CC to modulate the quantity of each viral protein. Maintenance of a CC correct Gag to Gag-Pol ratio is essential for RNA dimerization and CC viral infectivity.; CC Name=Gag-Pol polyprotein; CC IsoId=P05896-1; Sequence=Displayed; CC Name=Gag polyprotein; CC IsoId=P05894-1; Sequence=External; CC -!- DOMAIN: The p66 RT is structured in five subdomains: finger, palm, CC thumb, connection and RNase H. Within the palm subdomain, the 'primer CC grip' region is thought to be involved in the positioning of the primer CC terminus for accommodating the incoming nucleotide. The RNase H domain CC stabilizes the association of RT with primer-template (By similarity). CC {ECO:0000250}. CC -!- DOMAIN: The tryptophan repeat motif is involved in RT p66/p51 CC dimerization. {ECO:0000250}. CC -!- PTM: Specific enzymatic cleavages by the viral protease yield mature CC proteins. The protease is released by autocatalytic cleavage. The CC polyprotein is cleaved during and after budding, this process is termed CC maturation. Proteolytic cleavage of p66 RT removes the RNase H domain CC to yield the p51 RT subunit. {ECO:0000255|PROSITE-ProRule:PRU00405}. CC -!- PTM: Capsid protein p24 is phosphorylated. CC -!- MISCELLANEOUS: This is a macaque isolate. CC -!- MISCELLANEOUS: The reverse transcriptase is an error-prone enzyme that CC lacks a proof-reading function. High mutations rate is a direct CC consequence of this characteristic. RT also displays frequent template CC switching leading to high recombination rate. Recombination mostly CC occurs between homologous regions of the two copackaged RNA genomes. If CC these two RNA molecules derive from different viral strains, reverse CC transcription will give rise to highly recombinated proviral DNAs. CC -!- MISCELLANEOUS: [Isoform Gag-Pol polyprotein]: Produced by -1 ribosomal CC frameshifting. CC --------------------------------------------------------------------------- CC Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms CC Distributed under the Creative Commons Attribution (CC BY 4.0) License CC --------------------------------------------------------------------------- DR EMBL; Y00277; CAA68380.1; -; Genomic_DNA. DR PDB; 1AZ5; X-ray; 2.00 A; A=498-595. DR PDB; 1C6V; X-ray; 3.00 A; A/B/C/D=1205-1368. DR PDB; 1SIV; X-ray; 2.50 A; A/B=498-596. DR PDB; 1TCW; X-ray; 2.40 A; A/B=498-596. DR PDB; 1YTI; X-ray; 2.20 A; A=498-595. DR PDB; 1YTJ; X-ray; 2.50 A; A=498-595. DR PDBsum; 1AZ5; -. DR PDBsum; 1C6V; -. DR PDBsum; 1SIV; -. DR PDBsum; 1TCW; -. DR PDBsum; 1YTI; -. DR PDBsum; 1YTJ; -. DR SMR; P05896; -. DR DrugBank; DB04191; Skf 107457. DR EvolutionaryTrace; P05896; -. DR PRO; PR:P05896; -. DR Proteomes; UP000007220; Segment. DR GO; GO:0030430; C:host cell cytoplasm; IEA:UniProtKB-SubCell. DR GO; GO:0042025; C:host cell nucleus; IEA:UniProtKB-SubCell. DR GO; GO:0020002; C:host cell plasma membrane; IEA:UniProtKB-SubCell. DR GO; GO:0016020; C:membrane; IEA:UniProtKB-KW. DR GO; GO:0019013; C:viral nucleocapsid; IEA:UniProtKB-KW. DR GO; GO:0004190; F:aspartic-type endopeptidase activity; IEA:UniProtKB-KW. DR GO; GO:0003677; F:DNA binding; IEA:UniProtKB-KW. DR GO; GO:0003887; F:DNA-directed DNA polymerase activity; IEA:UniProtKB-KW. DR GO; GO:0004533; F:exoribonuclease H activity; IEA:UniProtKB-EC. DR GO; GO:0003723; F:RNA binding; IEA:UniProtKB-KW. DR GO; GO:0003964; F:RNA-directed DNA polymerase activity; IEA:UniProtKB-KW. DR GO; GO:0004523; F:RNA-DNA hybrid ribonuclease activity; IEA:InterPro. DR GO; GO:0005198; F:structural molecule activity; IEA:InterPro. DR GO; GO:0008270; F:zinc ion binding; IEA:InterPro. DR GO; GO:0015074; P:DNA integration; IEA:UniProtKB-KW. DR GO; GO:0006310; P:DNA recombination; IEA:UniProtKB-KW. DR GO; GO:0075713; P:establishment of integrated proviral latency; IEA:UniProtKB-KW. DR GO; GO:0006508; P:proteolysis; IEA:UniProtKB-KW. DR GO; GO:0039657; P:suppression by virus of host gene expression; IEA:UniProtKB-KW. DR GO; GO:0046718; P:viral entry into host cell; IEA:UniProtKB-KW. DR GO; GO:0044826; P:viral genome integration into host DNA; IEA:UniProtKB-KW. DR GO; GO:0075732; P:viral penetration into host nucleus; IEA:UniProtKB-KW. DR CDD; cd05482; HIV_retropepsin_like; 1. DR Gene3D; 1.10.10.200; -; 1. DR Gene3D; 1.10.1200.30; -; 1. DR Gene3D; 3.30.70.270; -; 3. DR Gene3D; 2.40.70.10; Acid Proteases; 1. DR Gene3D; 3.10.10.10; HIV Type 1 Reverse Transcriptase, subunit A, domain 1; 1. DR Gene3D; 1.10.375.10; Human Immunodeficiency Virus Type 1 Capsid Protein; 1. DR Gene3D; 1.10.150.90; Immunodeficiency lentiviruses, gag gene matrix protein p17; 1. DR Gene3D; 2.30.30.10; Integrase, C-terminal domain superfamily, retroviral; 1. DR Gene3D; 3.30.420.10; Ribonuclease H-like superfamily/Ribonuclease H; 2. DR Gene3D; 1.20.5.760; Single helix bin; 1. DR Gene3D; 4.10.60.10; Zinc finger, CCHC-type; 1. DR InterPro; IPR001969; Aspartic_peptidase_AS. DR InterPro; IPR043502; DNA/RNA_pol_sf. DR InterPro; IPR045345; Gag_p24_C. DR InterPro; IPR017856; Integrase-like_N. DR InterPro; IPR036862; Integrase_C_dom_sf_retrovir. DR InterPro; IPR001037; Integrase_C_retrovir. DR InterPro; IPR001584; Integrase_cat-core. DR InterPro; IPR003308; Integrase_Zn-bd_dom_N. DR InterPro; IPR000071; Lentvrl_matrix_N. DR InterPro; IPR012344; Matrix_HIV/RSV_N. DR InterPro; IPR001995; Peptidase_A2_cat. DR InterPro; IPR021109; Peptidase_aspartic_dom_sf. DR InterPro; IPR034170; Retropepsin-like_cat_dom. DR InterPro; IPR018061; Retropepsins. DR InterPro; IPR008916; Retrov_capsid_C. DR InterPro; IPR008919; Retrov_capsid_N. DR InterPro; IPR010999; Retrovr_matrix. DR InterPro; IPR043128; Rev_trsase/Diguanyl_cyclase. DR InterPro; IPR012337; RNaseH-like_sf. DR InterPro; IPR002156; RNaseH_domain. DR InterPro; IPR036397; RNaseH_sf. DR InterPro; IPR000477; RT_dom. DR InterPro; IPR010659; RVT_connect. DR InterPro; IPR010661; RVT_thumb. DR InterPro; IPR001878; Znf_CCHC. DR InterPro; IPR036875; Znf_CCHC_sf. DR PANTHER; PTHR41694; ENDOGENOUS RETROVIRUS GROUP K MEMBER POL PROTEIN; 1. DR PANTHER; PTHR41694:SF3; RNA-DIRECTED DNA POLYMERASE-RELATED; 1. DR Pfam; PF00540; Gag_p17; 1. DR Pfam; PF00607; Gag_p24; 1. DR Pfam; PF19317; Gag_p24_C; 1. DR Pfam; PF00552; IN_DBD_C; 1. DR Pfam; PF02022; Integrase_Zn; 1. DR Pfam; PF00075; RNase_H; 1. DR Pfam; PF00665; rve; 1. DR Pfam; PF00077; RVP; 1. DR Pfam; PF00078; RVT_1; 1. DR Pfam; PF06815; RVT_connect; 1. DR Pfam; PF06817; RVT_thumb; 1. DR Pfam; PF00098; zf-CCHC; 1. DR PRINTS; PR00234; HIV1MATRIX. DR SMART; SM00343; ZnF_C2HC; 2. DR SUPFAM; SSF50630; Acid proteases; 1. DR SUPFAM; SSF50122; DNA-binding domain of retroviral integrase; 1. DR SUPFAM; SSF56672; DNA/RNA polymerases; 1. DR SUPFAM; SSF46919; N-terminal Zn binding domain of HIV integrase; 1. DR SUPFAM; SSF47836; Retroviral matrix proteins; 1. DR SUPFAM; SSF47353; Retrovirus capsid dimerization domain-like; 1. DR SUPFAM; SSF47943; Retrovirus capsid protein, N-terminal core domain; 1. DR SUPFAM; SSF57756; Retrovirus zinc finger-like domains; 1. DR SUPFAM; SSF53098; Ribonuclease H-like; 2. DR PROSITE; PS50175; ASP_PROT_RETROV; 1. DR PROSITE; PS00141; ASP_PROTEASE; 1. DR PROSITE; PS50994; INTEGRASE; 1. DR PROSITE; PS51027; INTEGRASE_DBD; 1. DR PROSITE; PS50879; RNASE_H_1; 1. DR PROSITE; PS50878; RT_POL; 1. DR PROSITE; PS50158; ZF_CCHC; 2. DR PROSITE; PS50876; ZF_INTEGRASE; 1. PE 1: Evidence at protein level; KW 3D-structure; Aspartyl protease; Capsid protein; DNA integration; KW DNA recombination; DNA-binding; DNA-directed DNA polymerase; Endonuclease; KW Eukaryotic host gene expression shutoff by virus; KW Eukaryotic host translation shutoff by virus; Host cell membrane; KW Host cytoplasm; Host gene expression shutoff by virus; Host membrane; KW Host nucleus; Host-virus interaction; Hydrolase; Lipoprotein; Magnesium; KW Membrane; Metal-binding; Multifunctional enzyme; Myristate; Nuclease; KW Nucleotidyltransferase; Phosphoprotein; Protease; Repeat; KW Ribosomal frameshifting; RNA-binding; RNA-directed DNA polymerase; KW Transferase; Viral genome integration; Viral nucleoprotein; KW Viral penetration into host nucleus; Viral release from host cell; Virion; KW Virion maturation; Virus entry into host cell; Zinc; Zinc-finger. FT INIT_MET 1 FT /note="Removed; by host" FT /evidence="ECO:0000250" FT CHAIN 2..1448 FT /note="Gag-Pol polyprotein" FT /id="PRO_0000306035" FT CHAIN 2..135 FT /note="Matrix protein p17" FT /evidence="ECO:0000250" FT /id="PRO_0000306036" FT CHAIN 136..364 FT /note="Capsid protein p24" FT /evidence="ECO:0000250" FT /id="PRO_0000306037" FT CHAIN 365..433 FT /note="Nucleocapsid protein p7" FT /evidence="ECO:0000250" FT /id="PRO_0000306038" FT CHAIN 434..500 FT /note="p6-pol" FT /evidence="ECO:0000255" FT /id="PRO_0000306039" FT CHAIN 501..596 FT /note="Protease" FT /evidence="ECO:0000250" FT /id="PRO_0000306040" FT CHAIN 597..1155 FT /note="Reverse transcriptase/ribonuclease H" FT /evidence="ECO:0000250" FT /id="PRO_0000306041" FT CHAIN 597..1035 FT /note="p51 RT" FT /evidence="ECO:0000250" FT /id="PRO_0000306042" FT CHAIN 1036..1155 FT /note="p15" FT /evidence="ECO:0000250" FT /id="PRO_0000306043" FT CHAIN 1156..1448 FT /note="Integrase" FT /evidence="ECO:0000250" FT /id="PRO_0000306044" FT DOMAIN 517..586 FT /note="Peptidase A2" FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00275" FT DOMAIN 640..830 FT /note="Reverse transcriptase" FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00405" FT DOMAIN 1029..1152 FT /note="RNase H type-1" FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00408" FT DOMAIN 1209..1359 FT /note="Integrase catalytic" FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00457" FT ZN_FING 391..408 FT /note="CCHC-type 1" FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00047" FT ZN_FING 412..429 FT /note="CCHC-type 2" FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00047" FT ZN_FING 1158..1199 FT /note="Integrase-type" FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00450" FT DNA_BIND 1378..1425 FT /note="Integrase-type" FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00506" FT REGION 218..237 FT /note="Disordered" FT /evidence="ECO:0000256|SAM:MobiDB-lite" FT REGION 440..461 FT /note="Disordered" FT /evidence="ECO:0000256|SAM:MobiDB-lite" FT REGION 823..831 FT /note="RT 'primer grip'" FT /evidence="ECO:0000250" FT REGION 1426..1448 FT /note="Disordered" FT /evidence="ECO:0000256|SAM:MobiDB-lite" FT MOTIF 16..22 FT /note="Nuclear export signal" FT /evidence="ECO:0000250" FT MOTIF 26..32 FT /note="Nuclear localization signal" FT /evidence="ECO:0000250" FT MOTIF 993..1009 FT /note="Tryptophan repeat motif" FT /evidence="ECO:0000250" FT ACT_SITE 522 FT /note="For protease activity; shared with dimeric partner" FT /evidence="ECO:0000255|PROSITE-ProRule:PRU10094" FT BINDING 706 FT /ligand="Mg(2+)" FT /ligand_id="ChEBI:CHEBI:18420" FT /ligand_label="1" FT /ligand_note="catalytic; for reverse transcriptase FT activity" FT /evidence="ECO:0000250" FT BINDING 781 FT /ligand="Mg(2+)" FT /ligand_id="ChEBI:CHEBI:18420" FT /ligand_label="1" FT /ligand_note="catalytic; for reverse transcriptase FT activity" FT /evidence="ECO:0000250" FT BINDING 782 FT /ligand="Mg(2+)" FT /ligand_id="ChEBI:CHEBI:18420" FT /ligand_label="1" FT /ligand_note="catalytic; for reverse transcriptase FT activity" FT /evidence="ECO:0000250" FT BINDING 1038 FT /ligand="Mg(2+)" FT /ligand_id="ChEBI:CHEBI:18420" FT /ligand_label="2" FT /ligand_note="catalytic; for RNase H activity" FT /evidence="ECO:0000250" FT BINDING 1073 FT /ligand="Mg(2+)" FT /ligand_id="ChEBI:CHEBI:18420" FT /ligand_label="2" FT /ligand_note="catalytic; for RNase H activity" FT /evidence="ECO:0000250" FT BINDING 1093 FT /ligand="Mg(2+)" FT /ligand_id="ChEBI:CHEBI:18420" FT /ligand_label="2" FT /ligand_note="catalytic; for RNase H activity" FT /evidence="ECO:0000250" FT BINDING 1144 FT /ligand="Mg(2+)" FT /ligand_id="ChEBI:CHEBI:18420" FT /ligand_label="2" FT /ligand_note="catalytic; for RNase H activity" FT /evidence="ECO:0000250" FT BINDING 1167 FT /ligand="Zn(2+)" FT /ligand_id="ChEBI:CHEBI:29105" FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00450" FT BINDING 1171 FT /ligand="Zn(2+)" FT /ligand_id="ChEBI:CHEBI:29105" FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00450" FT BINDING 1195 FT /ligand="Zn(2+)" FT /ligand_id="ChEBI:CHEBI:29105" FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00450" FT BINDING 1198 FT /ligand="Zn(2+)" FT /ligand_id="ChEBI:CHEBI:29105" FT /evidence="ECO:0000255|PROSITE-ProRule:PRU00450" FT BINDING 1219 FT /ligand="Mg(2+)" FT /ligand_id="ChEBI:CHEBI:18420" FT /ligand_label="3" FT /ligand_note="catalytic; for integrase activity" FT /evidence="ECO:0000250" FT BINDING 1271 FT /ligand="Mg(2+)" FT /ligand_id="ChEBI:CHEBI:18420" FT /ligand_label="3" FT /ligand_note="catalytic; for integrase activity" FT /evidence="ECO:0000250" FT SITE 135..136 FT /note="Cleavage; by viral protease" FT /evidence="ECO:0000250" FT SITE 364..365 FT /note="Cleavage; by viral protease" FT /evidence="ECO:0000250" FT SITE 433..434 FT /note="Cleavage; by viral protease" FT /evidence="ECO:0000250" FT SITE 500..501 FT /note="Cleavage; by viral protease" FT /evidence="ECO:0000250" FT SITE 596..597 FT /note="Cleavage; by viral protease" FT /evidence="ECO:0000250" FT SITE 996 FT /note="Essential for RT p66/p51 heterodimerization" FT /evidence="ECO:0000250" FT SITE 1009 FT /note="Essential for RT p66/p51 heterodimerization" FT /evidence="ECO:0000250" FT SITE 1035..1036 FT /note="Cleavage; by viral protease" FT /evidence="ECO:0000250" FT SITE 1155..1156 FT /note="Cleavage; by viral protease" FT /evidence="ECO:0000250" FT LIPID 2 FT /note="N-myristoyl glycine; by host" FT /evidence="ECO:0000250" FT STRAND 502..504 FT /evidence="ECO:0007829|PDB:1AZ5" FT STRAND 507..512 FT /evidence="ECO:0007829|PDB:1AZ5" FT STRAND 515..521 FT /evidence="ECO:0007829|PDB:1AZ5" FT STRAND 525..527 FT /evidence="ECO:0007829|PDB:1YTI" FT STRAND 540..544 FT /evidence="ECO:0007829|PDB:1AZ5" FT STRAND 551..563 FT /evidence="ECO:0007829|PDB:1AZ5" FT STRAND 566..575 FT /evidence="ECO:0007829|PDB:1AZ5" FT HELIX 584..589 FT /evidence="ECO:0007829|PDB:1AZ5" FT STRAND 593..595 FT /evidence="ECO:0007829|PDB:1TCW" SQ SEQUENCE 1448 AA; 163372 MW; 460D13331B3E68E5 CRC64; MGARNSVLSG KKADELEKIR LRPGGKKKYM LKHVVWAANE LDRFGLAESL LENKEGCQKI LSVLAPLVPT GSENLKSLYN TVCVIWCIHA EEKVKHTEEA KQIVQRHLVM ETGTAETMPK TSRPTAPFSG RGGNYPVQQI GGNYTHLPLS PRTLNAWVKL IEEKKFGAEV VSGFQALSEG CLPYDINQML NCVGDHQAAM QIIRDIINEE AADWDLQHPQ QAPQQGQLRE PSGSDIAGTT STVEEQIQWM YRQQNPIPVG NIYRRWIQLG LQKCVRMYNP TNILDVKQGP KEPFQSYVDR FYKSLRAEQT DPAVKNWMTQ TLLIQNANPD CKLVLKGLGT NPTLEEMLTA CQGVGGPGQK ARLMAEALKE ALAPAPIPFA AAQQKGPRKP IKCWNCGKEG HSARQCRAPR RQGCWKCGKM DHVMAKCPNR QAGFFRPWPL GKEAPQFPHG SSASGADANC SPRRTSCGSA KELHALGQAA ERKQREALQG GDRGFAAPQF SLWRRPVVTA HIEGQPVEVL LDTGADDSIV TGIELGPHYT PKIVGGIGGF INTKEYKNVE IEVLGKRIKG TIMTGDTPIN IFGRNLLTAL GMSLNLPIAK VEPVKSPLKP GKDGPKLKQW PLSKEKIVAL REICEKMEKD GQLEEAPPTN PYNTPTFAIK KKDKNKWRML IDFRELNRVT QDFTEVQLGI PHPAGLAKRK RITVLDIGDA YFSIPLDEEF RQYTAFTLPS VNNAEPGKRY IYKVLPQGWK GSPAIFQYTM RHVLEPFRKA NPDVTLVQYM DDILIASDRT DLEHDRVVLQ LKELLNSIGF SSPEEKFQKD PPFQWMGYEL WPTKWKLQKI ELPQRETWTV NDIQKLVGVL NWAAQIYPGI KTKHLCRLIR GKMTLTEEVQ WTEMAEAEYE ENKIILSQEQ EGCYYQESKP LEATVIKSQD NQWSYKIHQE DKILKVGKFA KIKNTHTNGV RLLAHVIQKI GKEAIVIWGQ VPKFHLPVEK DVWEQWWTDY WQVTWIPEWD FISTPPLVRL VFNLVKDPIE GEETYYVDGS CSKQSKEGKA GYITDRGKDK VKVLEQTTNQ QAELEAFLMA LTDSGPKANI IVDSQYVMGI ITGCPTESES RLVNQIIEEM IKKTEIYVAW VPAHKGIGGN QEIDHLVSQG IRQVLFLEKI EPAQEEHSKY HSNIKELVFK FGLPRLVAKQ IVDTCDKCHQ KGEAIHGQVN SDLGTWQMDC THLEGKIVIV AVHVASGFIE AEVIPQETGR QTALFLLKLA SRWPITHLHT DNGANFASQE VKMVAWWAGI EHTFGVPYNP QSQGVVEAMN HHLKNQIDRI REQANSVETI VLMAVHCMNF KRRGGIGDMT PAERLINMIT TEQEIQFQQS KNSKFKNFRV YYREGRDQLW KGPGELLWKG EGAVILKVGT DIKVVPRRKA KIIKDYGGGK EMDSSSHMED TGEAREVA //