Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Ketol-acid reductoisomerase (NADP(+))

Gene

ilvC

Organism
Escherichia coli (strain K12)
Status
Reviewed-Annotation score: Annotation score: 5 out of 5-Experimental evidence at protein leveli

Functioni

Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. Also able to use 2-ketopantoate, 2-ketoisovalerate, 2-ketovalerate, 2-ketobutyrate, 3-hydroxypyruvate, 3-hydroxy-2-ketobutyrate and pyruvate (PubMed:15654896).4 Publications

Catalytic activityi

(2R)-2,3-dihydroxy-3-methylbutanoate + NADP+ = (2S)-2-hydroxy-2-methyl-3-oxobutanoate + NADPH.4 Publications

Cofactori

Mg2+3 PublicationsNote: Binds 2 magnesium ions per subunit.2 Publications

Enzyme regulationi

Inhibited by N-hydroxy-N-isopropyloxamate (IpOHA).1 Publication

Kineticsi

Kcat is 7.2 min(-1) for reductoisomerase activity with NADPH as substrate (PubMed:9015391). Kcat is 3.1 min(-1) for reductoisomerase activity with NADPH as substrate (PubMed:9015391). Kcat is 0.11 min(-1) for reductoisomerase activity with NADH as substrate (PubMed:9015391). Kcat is 5.376 sec(-1) for reductoisomerase activity with 3-hydroxypyruvate as substrate (at pH 8 and 37 degrees Celsius) (PubMed:15654896). Kcat is 3.6 sec(-1) for reductoisomerase activity with NADPH as substrate (PubMed:21515217). Kcat is 3.511 sec(-1) for reductoisomerase activity with 3-hydroxy-3-methyl-2-ketobutyrate as substrate (at pH 8 and 37 degrees Celsius) (PubMed:15654896). Kcat is 2.231 sec(-1) for reductoisomerase activity with 2-acetolactate as substrate (at pH 8 and 37 degrees Celsius) (PubMed:15654896). Kcat is 0.594 sec(-1) for reductoisomerase activity with 3-hydroxy-2-ketobutyrate as substrate (at pH 8 and 37 degrees Celsius) (PubMed:15654896). Kcat is 0.3 sec(-1) for reductoisomerase activity with NADH as substrate (PubMed:21515217). Kcat is 0.194 sec(-1) for reductoisomerase activity with 2-ketopantoate as substrate (at pH 8 and 37 degrees Celsius) (PubMed:15654896). Kcat is 0.182 sec(-1) for reductoisomerase activity with 2-ketoisovalerate as substrate (at pH 8 and 37 degrees Celsius) (PubMed:15654896). Kcat is 0.167 sec(-1) for reductoisomerase activity with 2-ketobutyrate as substrate (at pH 8 and 37 degrees Celsius) (PubMed:15654896). Kcat is 0.05 sec(-1) for reductoisomerase activity with 2-ketovalerate as substrate (at pH 8 and 37 degrees Celsius) (PubMed:15654896). Kcat is 0.021 sec(-1) for reductoisomerase activity with pyruvate as substrate (at pH 8 and 37 degrees Celsius) (PubMed:15654896).3 Publications

  1. KM=0.04 mM for NADPH1 Publication
  2. KM=0.042 mM for NADP1 Publication
  3. KM=0.073 mM for NADPH1 Publication
  4. KM=0.17 mM for 2-ketopantoate (at pH 8 and 37 degrees Celsius)1 Publication
  5. KM=0.206 mM for NADH1 Publication
  6. KM=0.21 mM for 3-hydroxy-2-ketobutyrate (at pH 8 and 37 degrees Celsius)1 Publication
  7. KM=0.25 mM for 2-acetolactate (at pH 8 and 37 degrees Celsius)1 Publication
  8. KM=0.27 mM for 3-hydroxy-3-methyl-2-ketobutyrate (at pH 8 and 37 degrees Celsius)1 Publication
  9. KM=0.42 mM for magnesium (with S2AL and NADPH as substrates)1 Publication
  10. KM=1.08 mM for NADH1 Publication
  11. KM=1.54 mM for pyruvate (at pH 8 and 37 degrees Celsius)1 Publication
  12. KM=2.96 mM for 3-hydroxypyruvate (at pH 8 and 37 degrees Celsius)1 Publication
  13. KM=3.15 mM for 2-ketovalerate (at pH 8 and 37 degrees Celsius)1 Publication
  14. KM=4.56 mM for 2-ketobutyrate (at pH 8 and 37 degrees Celsius)1 Publication
  15. KM=6.91 mM for 2-ketoisovalerate (at pH 8 and 37 degrees Celsius)1 Publication
  1. Vmax=5.421 µmol/min/mg enzyme with 3-hydroxypyruvate as substrate (at pH 8 and 37 degrees Celsius)1 Publication
  2. Vmax=3.541 µmol/min/mg enzyme with 3-hydroxy-3-methyl-2-ketobutyrate as substrate (at pH 8 and 37 degrees Celsius)1 Publication
  3. Vmax=2.25 µmol/min/mg enzyme with 2-acetolactate as substrate (at pH 8 and 37 degrees Celsius)1 Publication
  4. Vmax=0.599 µmol/min/mg enzyme with 3-hydroxy-2-ketobutyrate as substrate (at pH 8 and 37 degrees Celsius)1 Publication
  5. Vmax=0.196 µmol/min/mg enzyme with 2-ketopantoate as substrate (at pH 8 and 37 degrees Celsius)1 Publication
  6. Vmax=0.184 µmol/min/mg enzyme with 2-ketoisovalerate as substrate (at pH 8 and 37 degrees Celsius)1 Publication
  7. Vmax=0.168 µmol/min/mg enzyme with 2-ketobutyrate as substrate (at pH 8 and 37 degrees Celsius)1 Publication
  8. Vmax=0.05 µmol/min/mg enzyme with 2-ketovalerate as substrate (at pH 8 and 37 degrees Celsius)1 Publication
  9. Vmax=0.021 µmol/min/mg enzyme with pyruvate as substrate (at pH 8 and 37 degrees Celsius)1 Publication

Pathwayi: L-isoleucine biosynthesis

This protein is involved in step 2 of the subpathway that synthesizes L-isoleucine from 2-oxobutanoate.Curated
Proteins known to be involved in the 4 steps of the subpathway in this organism are:
  1. Acetolactate synthase isozyme 1 small subunit (ilvN), Acetolactate synthase isozyme 1 large subunit (ilvB), Acetolactate synthase isozyme 2 small subunit (ilvM), Acetolactate synthase isozyme 3 large subunit (ilvI), Acetolactate synthase isozyme 3 small subunit (ilvH), Acetolactate synthase isozyme 2 large subunit (ilvG)
  2. Ketol-acid reductoisomerase (NADP(+)) (ilvC)
  3. Dihydroxy-acid dehydratase (ilvD)
  4. Branched-chain-amino-acid aminotransferase (ilvE)
This subpathway is part of the pathway L-isoleucine biosynthesis, which is itself part of Amino-acid biosynthesis.
View all proteins of this organism that are known to be involved in the subpathway that synthesizes L-isoleucine from 2-oxobutanoate, the pathway L-isoleucine biosynthesis and in Amino-acid biosynthesis.

Pathwayi: L-valine biosynthesis

This protein is involved in step 2 of the subpathway that synthesizes L-valine from pyruvate.1 Publication
Proteins known to be involved in the 4 steps of the subpathway in this organism are:
  1. Acetolactate synthase isozyme 1 small subunit (ilvN), Acetolactate synthase isozyme 1 large subunit (ilvB), Acetolactate synthase isozyme 2 small subunit (ilvM), Acetolactate synthase isozyme 3 large subunit (ilvI), Acetolactate synthase isozyme 3 small subunit (ilvH), Acetolactate synthase isozyme 2 large subunit (ilvG)
  2. Ketol-acid reductoisomerase (NADP(+)) (ilvC)
  3. Dihydroxy-acid dehydratase (ilvD)
  4. Branched-chain-amino-acid aminotransferase (ilvE)
This subpathway is part of the pathway L-valine biosynthesis, which is itself part of Amino-acid biosynthesis.
View all proteins of this organism that are known to be involved in the subpathway that synthesizes L-valine from pyruvate, the pathway L-valine biosynthesis and in Amino-acid biosynthesis.

Sites

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Binding sitei68 – 681NADP1 Publication
Binding sitei76 – 761NADP1 Publication1 Publication
Binding sitei78 – 781NADP1 Publication
Active sitei132 – 1321UniRule annotation
Binding sitei158 – 1581NADP; via amide nitrogenUniRule annotation
Metal bindingi217 – 2171Magnesium 11 Publication
Metal bindingi217 – 2171Magnesium 21 Publication
Metal bindingi221 – 2211Magnesium 1UniRule annotation
Metal bindingi389 – 3891Magnesium 21 Publication
Metal bindingi393 – 3931Magnesium 21 Publication
Binding sitei414 – 4141SubstrateUniRule annotation

Regions

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Nucleotide bindingi45 – 484NADP1 Publication
Nucleotide bindingi108 – 1103NADP1 Publication

GO - Molecular functioni

  • ketol-acid reductoisomerase activity Source: UniProtKB
  • magnesium ion binding Source: UniProtKB
  • NADP binding Source: UniProtKB

GO - Biological processi

  • isoleucine biosynthetic process Source: EcoCyc
  • valine biosynthetic process Source: EcoCyc
Complete GO annotation...

Keywords - Molecular functioni

Oxidoreductase

Keywords - Biological processi

Amino-acid biosynthesis, Branched-chain amino acid biosynthesis

Keywords - Ligandi

Magnesium, Metal-binding, NADP

Enzyme and pathway databases

BioCyciEcoCyc:KETOLREDUCTOISOM-MONOMER.
ECOL316407:JW3747-MONOMER.
MetaCyc:KETOLREDUCTOISOM-MONOMER.
BRENDAi1.1.1.86. 2026.
UniPathwayiUPA00047; UER00056.
UPA00049; UER00060.

Names & Taxonomyi

Protein namesi
Recommended name:
Ketol-acid reductoisomerase (NADP(+))1 Publication (EC:1.1.1.864 Publications)
Short name:
KARI1 Publication
Alternative name(s):
Acetohydroxy-acid isomeroreductase1 Publication
Short name:
AHIR1 Publication
Alpha-keto-beta-hydroxylacyl reductoisomeraseUniRule annotation
Ketol-acid reductoisomerase type 21 Publication
Ketol-acid reductoisomerase type II1 Publication
Gene namesi
Name:ilvC
Ordered Locus Names:b3774, JW3747
OrganismiEscherichia coli (strain K12)
Taxonomic identifieri83333 [NCBI]
Taxonomic lineageiBacteriaProteobacteriaGammaproteobacteriaEnterobacterialesEnterobacteriaceaeEscherichia
Proteomesi
  • UP000000318 Componenti: Chromosome
  • UP000000625 Componenti: Chromosome

Organism-specific databases

EcoGeneiEG10495. ilvC.

Subcellular locationi

  • Cytoplasm 1 Publication

GO - Cellular componenti

  • cytosol Source: EcoCyc
Complete GO annotation...

Keywords - Cellular componenti

Cytoplasm

Pathology & Biotechi

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi68 – 681R → D: Inversion of cofactor specificity from NADPH to NADH; when associated with L-69, V-75 and D-76. 1 Publication
Mutagenesisi68 – 681R → Q: 18-fold decrease of the catalytic efficiency and 3-fold decrease of the affinity for NADPH. 1 Publication
Mutagenesisi69 – 691K → L: Does not significantly alter the affinity for NADPH. Slight increase of the catalytic efficiency. Inversion of cofactor specificity from NADPH to NADH; when associated with D-68, V-75 and D-76. 1 Publication
Mutagenesisi71 – 711A → S: 7- and 2.5-fold increase of the reductoisomerase activity with NADH and NADPH, respectively. 1 Publication
Mutagenesisi75 – 751K → Q: 13-fold decrease of the catalytic efficiency and 3-fold increase of the affinity for NADPH. 1 Publication
Mutagenesisi75 – 751K → V: Inversion of cofactor specificity from NADPH to NADH; when associated with D-68, L-69 and D-76. 1 Publication
Mutagenesisi76 – 761R → D: 3-fold increase of the reductoisomerase activity with NADH and slight decrease of the reductoisomerase activity with NADPH. 1 Publication
Mutagenesisi76 – 761R → D: Strong increase of catalytic efficiency and 2.5-fold increase of the affinity for NADH. 4-fold decrease of the catalytic efficiency and strong decrease of the affinity for NADPH. Inversion of cofactor specificity from NADPH to NADH; when associated with D-68, L-69 and V-75. 1 Publication
Mutagenesisi76 – 761R → Q: 20-fold decrease of the catalytic efficiency and 5-fold decrease of the affinity for NADPH. 1 Publication
Mutagenesisi78 – 781S → D: 12-fold increase of the reductoisomerase activity with NADH and slight decrease of the reductoisomerase activity with NADPH. 1 Publication
Mutagenesisi110 – 1101Q → V or A: 12- and 2-fold increase of the reductoisomerase activity with NADH and NADPH, respectively. 1 Publication
Mutagenesisi132 – 1321H → K: Loss of reductoisomerase activity. 1 Publication
Mutagenesisi132 – 1321H → Q: Loss of reductoisomerase activity. The reductase activity with 3-hydroxypyruvate and HMKB is nearly normal, and the isomerase activity decreases 24-fold. 1 Publication
Mutagenesisi155 – 1551K → E or Q: Loss of reductoisomerase activity. 1 Publication
Mutagenesisi155 – 1551K → R: Loss of reductoisomerase activity. The reductase activity with 3-hydroxypyruvate and HMKB is nearly normal, and the isomerase activity decreases 40-fold. 1 Publication
Mutagenesisi213 – 2131E → D: Loss of reductoisomerase activity. 1.5-fold decrease of the reductase activity with 3-hydroxypyruvate and the isomerase activity decreases 48-fold. 1 Publication
Mutagenesisi217 – 2171D → E or N: Loss of reductoisomerase activity. 1 Publication
Mutagenesisi221 – 2211E → D or Q: Loss of reductoisomerase activity. 1 Publication
Mutagenesisi389 – 3891E → D: Loss of reductoisomerase activity. 1.5-fold decrease of the reductase activity with 3-hydroxypyruvate and the isomerase activity decreases 4-fold. 1 Publication
Mutagenesisi389 – 3891E → Q: Loss of reductoisomerase activity. 1 Publication
Mutagenesisi393 – 3931E → D: Loss of reductoisomerase activity. The reductase activity with HMKB is nearly normal. 1 Publication
Mutagenesisi414 – 4141S → A: Loss of reductoisomerase activity. The isomerase activity decreases 15-fold. 1 Publication
Mutagenesisi414 – 4141S → T: Loss of reductoisomerase activity. The isomerase activity decreases 24-fold. 1 Publication

Chemistry

ChEMBLiCHEMBL2366462.

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Initiator methionineiRemoved1 Publication
Chaini2 – 491490Ketol-acid reductoisomerase (NADP(+))PRO_0000151309Add
BLAST

Proteomic databases

EPDiP05793.
PaxDbiP05793.
PRIDEiP05793.

2D gel databases

SWISS-2DPAGEP05793.

Expressioni

Inductioni

In the presence of acetohydroxybutyrate and acetolactate and by the activator IlvY.2 Publications

Interactioni

Subunit structurei

Homotetramer.2 Publications

Protein-protein interaction databases

BioGridi4263331. 5 interactions.
IntActiP05793. 4 interactions.
STRINGi511145.b3774.

Chemistry

BindingDBiP05793.

Structurei

Secondary structure

1
491
Legend: HelixTurnBeta strand
Show more details
Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Helixi5 – 73Combined sources
Helixi10 – 178Combined sources
Beta strandi20 – 223Combined sources
Helixi25 – 284Combined sources
Turni29 – 324Combined sources
Helixi33 – 353Combined sources
Beta strandi38 – 447Combined sources
Helixi47 – 5812Combined sources
Beta strandi62 – 676Combined sources
Helixi69 – 735Combined sources
Helixi77 – 848Combined sources
Beta strandi88 – 914Combined sources
Helixi92 – 954Combined sources
Helixi96 – 983Combined sources
Beta strandi100 – 1045Combined sources
Helixi108 – 1103Combined sources
Helixi111 – 1188Combined sources
Helixi119 – 1213Combined sources
Beta strandi127 – 1326Combined sources
Helixi134 – 1374Combined sources
Beta strandi147 – 15610Combined sources
Helixi158 – 1669Combined sources
Beta strandi173 – 1775Combined sources
Helixi179 – 1813Combined sources
Helixi187 – 19711Combined sources
Helixi200 – 2023Combined sources
Beta strandi205 – 2073Combined sources
Helixi210 – 22213Combined sources
Turni223 – 2264Combined sources
Helixi227 – 24216Combined sources
Helixi247 – 27529Combined sources
Helixi279 – 30931Combined sources
Helixi311 – 32111Combined sources
Turni322 – 3243Combined sources
Helixi325 – 33612Combined sources
Helixi338 – 3414Combined sources
Helixi351 – 3566Combined sources
Helixi359 – 37719Combined sources
Turni378 – 3803Combined sources
Helixi383 – 3886Combined sources
Helixi391 – 3933Combined sources
Helixi394 – 41219Combined sources
Helixi415 – 43117Combined sources
Helixi433 – 4375Combined sources
Beta strandi443 – 4464Combined sources
Helixi455 – 46612Combined sources
Helixi469 – 48719Combined sources

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
EntryMethodResolution (Å)ChainPositionsPDBsum
1YRLX-ray2.60A/B/C/D1-491[»]
3ULKX-ray2.30A/B1-491[»]
ProteinModelPortaliP05793.
SMRiP05793. Positions 3-489.
ModBaseiSearch...
MobiDBiSearch...

Miscellaneous databases

EvolutionaryTraceiP05793.

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Domaini35 – 204170IlvNSequence analysis1 PublicationAdd
BLAST
Domaini210 – 342133IlvC 1Sequence analysis1 PublicationAdd
BLAST
Domaini357 – 482126IlvC 2Sequence analysis1 PublicationAdd
BLAST

Sequence similaritiesi

Belongs to the ketol-acid reductoisomerase family.Curated
Contains 2 IlvC domains.Sequence analysis
Contains 1 IlvN domain.Sequence analysis

Keywords - Domaini

Repeat

Phylogenomic databases

eggNOGiENOG4105C6M. Bacteria.
COG0059. LUCA.
HOGENOMiHOG000286135.
InParanoidiP05793.
KOiK00053.
OMAiKLFEMNR.
OrthoDBiEOG625K07.
PhylomeDBiP05793.

Family and domain databases

Gene3Di1.10.1040.10. 1 hit.
3.40.50.720. 1 hit.
HAMAPiMF_00435. IlvC.
InterProiIPR008927. 6-PGluconate_DH_C-like.
IPR013328. 6PGD_dom_2.
IPR000506. AcH_isomrdctse_C.
IPR013116. IlvN.
IPR013023. Ketol-acid_reductoisomrdctse.
IPR016040. NAD(P)-bd_dom.
[Graphical view]
PANTHERiPTHR21371. PTHR21371. 1 hit.
PfamiPF01450. IlvC. 2 hits.
PF07991. IlvN. 1 hit.
[Graphical view]
SUPFAMiSSF48179. SSF48179. 2 hits.
SSF51735. SSF51735. 1 hit.
TIGRFAMsiTIGR00465. ilvC. 1 hit.

Sequencei

Sequence statusi: Complete.

Sequence processingi: The displayed sequence is further processed into a mature form.

P05793-1 [UniParc]FASTAAdd to basket

« Hide

        10         20         30         40         50
MANYFNTLNL RQQLAQLGKC RFMGRDEFAD GASYLQGKKV VIVGCGAQGL
60 70 80 90 100
NQGLNMRDSG LDISYALRKE AIAEKRASWR KATENGFKVG TYEELIPQAD
110 120 130 140 150
LVINLTPDKQ HSDVVRTVQP LMKDGAALGY SHGFNIVEVG EQIRKDITVV
160 170 180 190 200
MVAPKCPGTE VREEYKRGFG VPTLIAVHPE NDPKGEGMAI AKAWAAATGG
210 220 230 240 250
HRAGVLESSF VAEVKSDLMG EQTILCGMLQ AGSLLCFDKL VEEGTDPAYA
260 270 280 290 300
EKLIQFGWET ITEALKQGGI TLMMDRLSNP AKLRAYALSE QLKEIMAPLF
310 320 330 340 350
QKHMDDIISG EFSSGMMADW ANDDKKLLTW REETGKTAFE TAPQYEGKIG
360 370 380 390 400
EQEYFDKGVL MIAMVKAGVE LAFETMVDSG IIEESAYYES LHELPLIANT
410 420 430 440 450
IARKRLYEMN VVISDTAEYG NYLFSYACVP LLKPFMAELQ PGDLGKAIPE
460 470 480 490
GAVDNGQLRD VNEAIRSHAI EQVGKKLRGY MTDMKRIAVA G
Length:491
Mass (Da):54,069
Last modified:January 23, 2007 - v4
Checksum:i9CA34BA61C9AEBBA
GO

Experimental Info

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sequence conflicti251 – 2511E → K in AAA24029 (PubMed:3003115).Curated

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
M11689 Genomic DNA. Translation: AAA24029.1.
M87049 Genomic DNA. Translation: AAA67577.1.
U00096 Genomic DNA. Translation: AAC76779.1.
AP009048 Genomic DNA. Translation: BAE77523.1.
PIRiA65181. ISECKR.
RefSeqiNP_418222.1. NC_000913.3.
WP_000024939.1. NZ_LN832404.1.

Genome annotation databases

EnsemblBacteriaiAAC76779; AAC76779; b3774.
BAE77523; BAE77523; BAE77523.
GeneIDi948286.
KEGGiecj:JW3747.
eco:b3774.
PATRICi32123043. VBIEscCol129921_3891.

Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
M11689 Genomic DNA. Translation: AAA24029.1.
M87049 Genomic DNA. Translation: AAA67577.1.
U00096 Genomic DNA. Translation: AAC76779.1.
AP009048 Genomic DNA. Translation: BAE77523.1.
PIRiA65181. ISECKR.
RefSeqiNP_418222.1. NC_000913.3.
WP_000024939.1. NZ_LN832404.1.

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
EntryMethodResolution (Å)ChainPositionsPDBsum
1YRLX-ray2.60A/B/C/D1-491[»]
3ULKX-ray2.30A/B1-491[»]
ProteinModelPortaliP05793.
SMRiP05793. Positions 3-489.
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

BioGridi4263331. 5 interactions.
IntActiP05793. 4 interactions.
STRINGi511145.b3774.

Chemistry

BindingDBiP05793.
ChEMBLiCHEMBL2366462.

2D gel databases

SWISS-2DPAGEP05793.

Proteomic databases

EPDiP05793.
PaxDbiP05793.
PRIDEiP05793.

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsemblBacteriaiAAC76779; AAC76779; b3774.
BAE77523; BAE77523; BAE77523.
GeneIDi948286.
KEGGiecj:JW3747.
eco:b3774.
PATRICi32123043. VBIEscCol129921_3891.

Organism-specific databases

EchoBASEiEB0490.
EcoGeneiEG10495. ilvC.

Phylogenomic databases

eggNOGiENOG4105C6M. Bacteria.
COG0059. LUCA.
HOGENOMiHOG000286135.
InParanoidiP05793.
KOiK00053.
OMAiKLFEMNR.
OrthoDBiEOG625K07.
PhylomeDBiP05793.

Enzyme and pathway databases

UniPathwayiUPA00047; UER00056.
UPA00049; UER00060.
BioCyciEcoCyc:KETOLREDUCTOISOM-MONOMER.
ECOL316407:JW3747-MONOMER.
MetaCyc:KETOLREDUCTOISOM-MONOMER.
BRENDAi1.1.1.86. 2026.

Miscellaneous databases

EvolutionaryTraceiP05793.
PROiP05793.

Family and domain databases

Gene3Di1.10.1040.10. 1 hit.
3.40.50.720. 1 hit.
HAMAPiMF_00435. IlvC.
InterProiIPR008927. 6-PGluconate_DH_C-like.
IPR013328. 6PGD_dom_2.
IPR000506. AcH_isomrdctse_C.
IPR013116. IlvN.
IPR013023. Ketol-acid_reductoisomrdctse.
IPR016040. NAD(P)-bd_dom.
[Graphical view]
PANTHERiPTHR21371. PTHR21371. 1 hit.
PfamiPF01450. IlvC. 2 hits.
PF07991. IlvN. 1 hit.
[Graphical view]
SUPFAMiSSF48179. SSF48179. 2 hits.
SSF51735. SSF51735. 1 hit.
TIGRFAMsiTIGR00465. ilvC. 1 hit.
ProtoNetiSearch...

Publicationsi

« Hide 'large scale' publications
  1. "Nucleotide sequence and in vivo expression of the ilvY and ilvC genes in Escherichia coli K12. Transcription from divergent overlapping promoters."
    Wek R.C., Hatfield G.W.
    J. Biol. Chem. 261:2441-2450(1986) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], INDUCTION.
    Strain: K12.
  2. "Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes."
    Daniels D.L., Plunkett G. III, Burland V.D., Blattner F.R.
    Science 257:771-778(1992) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
    Strain: K12 / MG1655 / ATCC 47076.
  3. Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
    Strain: K12 / MG1655 / ATCC 47076.
  4. "Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110."
    Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S., Ohtsubo E., Baba T., Wanner B.L., Mori H., Horiuchi T.
    Mol. Syst. Biol. 2:E1-E5(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
    Strain: K12 / W3110 / ATCC 27325 / DSM 5911.
  5. "Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12."
    Link A.J., Robison K., Church G.M.
    Electrophoresis 18:1259-1313(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: PROTEIN SEQUENCE OF 2-13.
    Strain: K12 / EMG2.
  6. "Transcriptional activation at adjacent operators in the divergent-overlapping ilvY and ilvC promoters of Escherichia coli."
    Wek R.C., Hatfield G.W.
    J. Mol. Biol. 203:643-663(1988) [PubMed] [Europe PMC] [Abstract]
    Cited for: INDUCTION.
  7. "Mechanism of ketol acid reductoisomerase--steady-state analysis and metal ion requirement."
    Chunduru S.K., Mrachko G.T., Calvo K.C.
    Biochemistry 28:486-493(1989) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, CATALYTIC ACTIVITY, BIOPHYSICOCHEMICAL PROPERTIES, COFACTOR, SUBCELLULAR LOCATION, PATHWAY.
  8. "Oxalyl hydroxamates as reaction-intermediate analogues for ketol-acid reductoisomerase."
    Aulabaugh A., Schloss J.V.
    Biochemistry 29:2824-2830(1990) [PubMed] [Europe PMC] [Abstract]
    Cited for: ENZYME REGULATION.
  9. "Reversal of the nucleotide specificity of ketol acid reductoisomerase by site-directed mutagenesis identifies the NADPH binding site."
    Rane M.J., Calvo K.C.
    Arch. Biochem. Biophys. 338:83-89(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, CATALYTIC ACTIVITY, BIOPHYSICOCHEMICAL PROPERTIES, MUTAGENESIS OF ARG-68; LYS-69; LYS-75 AND ARG-76.
  10. "Probing the mechanism of the bifunctional enzyme ketol-acid reductoisomerase by site-directed mutagenesis of the active site."
    Tyagi R., Lee Y.T., Guddat L.W., Duggleby R.G.
    FEBS J. 272:593-602(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, CATALYTIC ACTIVITY, BIOPHYSICOCHEMICAL PROPERTIES, COFACTOR, MUTAGENESIS OF HIS-132; LYS-155; GLU-213; ASP-217; GLU-221; GLU-389; GLU-393 AND SER-414, SUBSTRATE SPECIFICITY.
  11. "Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli."
    Bastian S., Liu X., Meyerowitz J.T., Snow C.D., Chen M.M., Arnold F.H.
    Metab. Eng. 13:345-352(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, CATALYTIC ACTIVITY, BIOPHYSICOCHEMICAL PROPERTIES, MUTAGENESIS OF ALA-71; ARG-76; SER-78 AND GLN-110.
  12. "The crystal structure of a bacterial class II ketol-acid reductoisomerase: domain conservation and evolution."
    Tyagi R., Duquerroy S., Navaza J., Guddat L.W., Duggleby R.G.
    Protein Sci. 14:3089-3100(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.60 ANGSTROMS), SUBUNIT.
  13. "Bacterial and plant ketol-acid reductoisomerases have different mechanisms of induced fit during the catalytic cycle."
    Wong S.H., Lonhienne T.G., Winzor D.J., Schenk G., Guddat L.W.
    J. Mol. Biol. 424:168-179(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.30 ANGSTROMS) IN COMPLEX WITH MAGNESIUM AND NADP, COFACTOR, SUBUNIT.

Entry informationi

Entry nameiILVC_ECOLI
AccessioniPrimary (citable) accession number: P05793
Secondary accession number(s): Q2M883
Entry historyi
Integrated into UniProtKB/Swiss-Prot: November 1, 1988
Last sequence update: January 23, 2007
Last modified: July 6, 2016
This is version 152 of the entry and version 4 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programProkaryotic Protein Annotation Program

Miscellaneousi

Keywords - Technical termi

3D-structure, Complete proteome, Direct protein sequencing, Reference proteome

Documents

  1. Escherichia coli
    Escherichia coli (strain K12): entries and cross-references to EcoGene
  2. PATHWAY comments
    Index of metabolic and biosynthesis pathways
  3. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  4. SIMILARITY comments
    Index of protein domains and families

Similar proteinsi

Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into one UniRef entry.
90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.