Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

P04585

- POL_HV1H2

UniProt

P04585 - POL_HV1H2

(max 400 entries)x

Your basket is currently empty.

Select item(s) and click on "Add to basket" to create your own collection here
(400 entries max)

Protein

Gag-Pol polyprotein

Gene

gag-pol

Organism
Human immunodeficiency virus type 1 group M subtype B (isolate HXB2) (HIV-1)
Status
Reviewed - Annotation score: 5 out of 5- Experimental evidence at protein leveli

Functioni

Gag-Pol polyprotein and Gag polyprotein may regulate their own translation, by the binding genomic RNA in the 5'-UTR. At low concentration, Gag-Pol and Gag would promote translation, whereas at high concentration, the polyproteins encapsidate genomic RNA and then shutt off translation.
Matrix protein p17 has two main functions: in infected cell, it targets Gag and Gag-pol polyproteins to the plasma membrane via a multipartite membrane-binding signal, that includes its myristoylated N-terminus. The second function is to play a role in nuclear localization of the viral genome at the very start of cell infection. Matrix protein is the part of the pre-integration complex. It binds in the cytoplasm the human BAF protein which prevent autointegration of the viral genome, and might be included in virions at the ration of zero to 3 BAF dimer per virion. The myristoylation signal and the NLS thus exert conflicting influences its subcellular localization. The key regulation of these motifs might be phosphorylation of a portion of MA molecules on the C-terminal tyrosine at the time of virus maturation, by virion-associated cellular tyrosine kinase. Implicated in the release from host cell mediated by Vpu.
Capsid protein p24 forms the conical core that encapsulates the genomic RNA-nucleocapsid complex in the virion. Most core are conical, with only 7% tubular. The core is constituted by capsid protein hexamer subunits. The core is disassembled soon after virion entry. Interaction with human PPIA/CYPA protects the virus from restriction by human TRIM5-alpha and from an unknown antiviral activity in human cells. This capsid restriction by TRIM5 is one of the factors which restricts HIV-1 to the human species.
Nucleocapsid protein p7 encapsulates and protects viral dimeric unspliced (genomic) RNA. Binds these RNAs through its zinc fingers. Facilitates rearangement of nucleic acid secondary structure during retrotranscription of genomic RNA. This capability is referred to as nucleic acid chaperone activity.
The aspartyl protease mediates proteolytic cleavages of Gag and Gag-Pol polyproteins during or shortly after the release of the virion from the plasma membrane. Cleavages take place as an ordered, step-wise cascade to yield mature proteins. This process is called maturation. Displays maximal activity during the budding process just prior to particle release from the cell. Also cleaves Nef and Vif, probably concomitantly with viral structural proteins on maturation of virus particles (By similarity). Hydrolyzes host EIF4GI and PABP1 in order to shut off the capped cellular mRNA translation. The resulting inhibition of cellular protein synthesis serves to ensure maximal viral gene expression and to evade host immune response.PROSITE-ProRule annotation
Reverse transcriptase/ribonuclease H (RT) is a multifunctional enzyme that converts the viral RNA genome into dsDNA in the cytoplasm, shortly after virus entry into the cell. This enzyme displays a DNA polymerase activity that can copy either DNA or RNA templates, and a ribonuclease H (RNase H) activity that cleaves the RNA strand of RNA-DNA heteroduplexes in a partially processive 3' to 5' endonucleasic mode. Conversion of viral genomic RNA into dsDNA requires many steps. A tRNA(3)-Lys binds to the primer-binding site (PBS) situated at the 5'-end of the viral RNA. RT uses the 3' end of the tRNA primer to perform a short round of RNA-dependent minus-strand DNA synthesis. The reading proceeds through the U5 region and ends after the repeated (R) region which is present at both ends of viral RNA. The portion of the RNA-DNA heteroduplex is digested by the RNase H, resulting in a ssDNA product attached to the tRNA primer. This ssDNA/tRNA hybridizes with the identical R region situated at the 3' end of viral RNA. This template exchange, known as minus-strand DNA strong stop transfer, can be either intra- or intermolecular. RT uses the 3' end of this newly synthesized short ssDNA to perform the RNA-dependent minus-strand DNA synthesis of the whole template. RNase H digests the RNA template except for two polypurine tracts (PPTs) situated at the 5'-end and near the center of the genome. It is not clear if both polymerase and RNase H activities are simultaneous. RNase H probably can proceed both in a polymerase-dependent (RNA cut into small fragments by the same RT performing DNA synthesis) and a polymerase-independent mode (cleavage of remaining RNA fragments by free RTs). Secondly, RT performs DNA-directed plus-strand DNA synthesis using the PPTs that have not been removed by RNase H as primers. PPTs and tRNA primers are then removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to form a circular dsDNA intermediate. Strand displacement synthesis by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA copy of the viral genome that includes long terminal repeats (LTRs) at both ends.
Integrase catalyzes viral DNA integration into the host chromosome, by performing a series of DNA cutting and joining reactions. This enzyme activity takes place after virion entry into a cell and reverse transcription of the RNA genome in dsDNA. The first step in the integration process is 3' processing. This step requires a complex comprising the viral genome, matrix protein, Vpr and integrase. This complex is called the pre-integration complex (PIC). The integrase protein removes 2 nucleotides from each 3' end of the viral DNA, leaving recessed CA OH's at the 3' ends. In the second step, the PIC enters cell nucleus. This process is mediated through integrase and Vpr proteins, and allows the virus to infect a non dividing cell. This ability to enter the nucleus is specific of lentiviruses, other retroviruses cannot and rely on cell division to access cell chromosomes. In the third step, termed strand transfer, the integrase protein joins the previously processed 3' ends to the 5' ends of strands of target cellular DNA at the site of integration. The 5'-ends are produced by integrase-catalyzed staggered cuts, 5 bp apart. A Y-shaped, gapped, recombination intermediate results, with the 5'-ends of the viral DNA strands and the 3' ends of target DNA strands remaining unjoined, flanking a gap of 5 bp. The last step is viral DNA integration into host chromosome. This involves host DNA repair synthesis in which the 5 bp gaps between the unjoined strands are filled in and then ligated. Since this process occurs at both cuts flanking the HIV genome, a 5 bp duplication of host DNA is produced at the ends of HIV-1 integration. Alternatively, Integrase may catalyze the excision of viral DNA just after strand transfer, this is termed disintegration.

Catalytic activityi

Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.PROSITE-ProRule annotation
Endohydrolysis of RNA in RNA/DNA hybrids. Three different cleavage modes: 1. sequence-specific internal cleavage of RNA. Human immunodeficiency virus type 1 and Moloney murine leukemia virus enzymes prefer to cleave the RNA strand one nucleotide away from the RNA-DNA junction. 2. RNA 5'-end directed cleavage 13-19 nucleotides from the RNA end. 3. DNA 3'-end directed cleavage 15-20 nucleotides away from the primer terminus.
3'-end directed exonucleolytic cleavage of viral RNA-DNA hybrid.
Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).PROSITE-ProRule annotation

Cofactori

Protein has several cofactor binding sites:
  • Mg2+By similarityNote: Binds 2 magnesium ions for reverse transcriptase polymerase activity.By similarity
  • Mg2+By similarityNote: Binds 2 magnesium ions for ribonuclease H (RNase H) activity. Substrate-binding is a precondition for magnesium binding.By similarity
  • Mg2+By similarityNote: Magnesium ions are required for integrase activity. Binds at least 1, maybe 2 magnesium ions.By similarity

Enzyme regulationi

The viral protease is inhibited by many synthetic protease inhibitors (PIs), such as amprenavir, atazanavir, indinavir, loprinavir, nelfinavir, ritonavir and saquinavir. RT can be inhibited either by nucleoside RT inhibitors (NRTIs) or by non nucleoside RT inhibitors (NNRTIs). NRTIs act as chain terminators, whereas NNRTIs inhibit DNA polymerization by binding a small hydrophobic pocket near the RT active site and inducing an allosteric change in this region. Classical NRTIs are abacavir, adefovir (PMEA), didanosine (ddI), lamivudine (3TC), stavudine (d4T), tenofovir (PMPA), zalcitabine (ddC), and zidovudine (AZT). Classical NNRTIs are atevirdine (BHAP U-87201E), delavirdine, efavirenz (DMP-266), emivirine (I-EBU), and nevirapine (BI-RG-587). The tritherapies used as a basic effective treatment of AIDS associate two NRTIs and one NNRTI. Use of protease inhibitors in tritherapy regimens permit more ambitious therapeutic strategies.

Sites

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sitei132 – 1332Cleavage; by viral proteaseBy similarity
Sitei221 – 2222Cis/trans isomerization of proline peptide bond; by human PPIA/CYPA
Sitei363 – 3642Cleavage; by viral proteaseBy similarity
Sitei377 – 3782Cleavage; by viral proteaseBy similarity
Sitei393 – 3942Cleavage; by viral proteaseSequence Analysis
Sitei426 – 4272Cleavage; by viral proteaseSequence Analysis
Sitei432 – 4332Cleavage; by viral proteaseSequence Analysis
Sitei440 – 4412Cleavage; by viral proteaseBy similarity
Sitei488 – 4892Cleavage; by viral proteaseBy similarity
Active sitei513 – 5131For protease activity; shared with dimeric partnerPROSITE-ProRule annotation
Sitei587 – 5882Cleavage; by viral proteaseBy similarity
Metal bindingi697 – 6971Magnesium; catalytic; for reverse transcriptase activityBy similarity
Metal bindingi772 – 7721Magnesium; catalytic; for reverse transcriptase activityBy similarity
Metal bindingi773 – 7731Magnesium; catalytic; for reverse transcriptase activityBy similarity
Sitei988 – 9881Essential for RT p66/p51 heterodimerizationBy similarity
Sitei1001 – 10011Essential for RT p66/p51 heterodimerizationBy similarity
Sitei1027 – 10282Cleavage; by viral protease; partialBy similarity
Metal bindingi1030 – 10301Magnesium; catalytic; for RNase H activity
Metal bindingi1065 – 10651Magnesium; catalytic; for RNase H activity
Metal bindingi1085 – 10851Magnesium; catalytic; for RNase H activity
Metal bindingi1136 – 11361Magnesium; catalytic; for RNase H activity
Sitei1147 – 11482Cleavage; by viral proteaseBy similarity
Metal bindingi1211 – 12111Magnesium; catalytic; for integrase activityBy similarity
Metal bindingi1263 – 12631Magnesium; catalytic; for integrase activityBy similarity

Regions

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Zinc fingeri390 – 40718CCHC-type 1PROSITE-ProRule annotationAdd
BLAST
Zinc fingeri411 – 42818CCHC-type 2PROSITE-ProRule annotationAdd
BLAST
Zinc fingeri1150 – 119142Integrase-typePROSITE-ProRule annotationAdd
BLAST
DNA bindingi1370 – 141748Integrase-typePROSITE-ProRule annotationAdd
BLAST

GO - Molecular functioni

  1. aspartic-type endopeptidase activity Source: UniProtKB-KW
  2. DNA binding Source: UniProtKB-KW
  3. DNA-directed DNA polymerase activity Source: UniProtKB-KW
  4. exoribonuclease H activity Source: UniProtKB-EC
  5. identical protein binding Source: IntAct
  6. RNA binding Source: UniProtKB-KW
  7. RNA-directed DNA polymerase activity Source: UniProtKB-KW
  8. RNA-DNA hybrid ribonuclease activity Source: InterPro
  9. structural molecule activity Source: InterPro
  10. zinc ion binding Source: InterPro

GO - Biological processi

  1. DNA integration Source: UniProtKB-KW
  2. DNA recombination Source: UniProtKB-KW
  3. entry into host cell Source: Reactome
  4. establishment of integrated proviral latency Source: Reactome
  5. induction by virus of host cysteine-type endopeptidase activity involved in apoptotic process Source: UniProtKB-KW
  6. RNA-dependent DNA replication Source: Reactome
  7. suppression by virus of host gene expression Source: UniProtKB-KW
  8. uncoating of virus Source: Reactome
  9. viral entry into host cell Source: UniProtKB-KW
  10. viral life cycle Source: Reactome
  11. viral penetration into host nucleus Source: UniProtKB-KW
  12. viral process Source: Reactome
  13. viral release from host cell Source: UniProtKB-KW
  14. virion assembly Source: Reactome
Complete GO annotation...

Keywords - Molecular functioni

Aspartyl protease, DNA-directed DNA polymerase, Endonuclease, Hydrolase, Nuclease, Nucleotidyltransferase, Protease, RNA-directed DNA polymerase, Transferase

Keywords - Biological processi

Activation of host caspases by virus, DNA integration, DNA recombination, Eukaryotic host gene expression shutoff by virus, Eukaryotic host translation shutoff by virus, Host gene expression shutoff by virus, Host-virus interaction, Modulation of host cell apoptosis by virus, Viral genome integration, Viral penetration into host nucleus, Virion maturation, Virus entry into host cell, Virus exit from host cell

Keywords - Ligandi

DNA-binding, Magnesium, Metal-binding, RNA-binding, Viral nucleoprotein, Zinc

Enzyme and pathway databases

ReactomeiREACT_6266. Early Phase of HIV Life Cycle.
REACT_6359. Budding and maturation of HIV virion.
REACT_6818. Assembly Of The HIV Virion.
REACT_6866. Autointegration results in viral DNA circles.
REACT_6903. Binding and entry of HIV virion.
REACT_6918. Integration of provirus.
REACT_6965. Uncoating of the HIV Virion.
REACT_7991. Vpr-mediated nuclear import of PICs.
REACT_8990. Integration of viral DNA into host genomic DNA.
REACT_9037. Plus-strand DNA synthesis.
REACT_9055. Minus-strand DNA synthesis.
REACT_9058. 2-LTR circle formation.
REACT_9406. APOBEC3G mediated resistance to HIV-1 infection.
SABIO-RKP04585.

Names & Taxonomyi

Protein namesi
Recommended name:
Gag-Pol polyprotein
Alternative name(s):
Pr160Gag-Pol
Cleaved into the following 11 chains:
Matrix protein p17
Short name:
MA
Capsid protein p24
Short name:
CA
Transframe peptide
Short name:
TF
p6-pol
Short name:
p6*
Alternative name(s):
PR
Retropepsin
Alternative name(s):
Exoribonuclease H (EC:3.1.13.2)
p66 RT
Integrase
Short name:
IN
Gene namesi
Name:gag-pol
OrganismiHuman immunodeficiency virus type 1 group M subtype B (isolate HXB2) (HIV-1)
Taxonomic identifieri11706 [NCBI]
Taxonomic lineageiVirusesRetro-transcribing virusesRetroviridaeOrthoretrovirinaeLentivirusPrimate lentivirus group
Virus hostiHomo sapiens (Human) [TaxID: 9606]
ProteomesiUP000002241: Genome

Subcellular locationi

Chain Matrix protein p17 : Virion Curated. Host nucleus By similarity. Host cytoplasm By similarity. Host cell membrane Curated; Lipid-anchor Curated
Note: Following virus entry, the nuclear localization signal (NLS) of the matrix protein participates with Vpr to the nuclear localization of the viral genome. During virus production, the nuclear export activity of the matrix protein counteracts the NLS to maintain the Gag and Gag-Pol polyproteins in the cytoplasm, thereby directing unspliced RNA to the plasma membrane (By similarity).By similarity
Chain Integrase : Virion Curated. Host nucleus Curated. Host cytoplasm Curated
Note: Nuclear at initial phase, cytoplasmic at assembly.Curated

GO - Cellular componenti

  1. host cell cytoplasm Source: UniProtKB-KW
  2. host cell nucleus Source: UniProtKB-KW
  3. host cell plasma membrane Source: UniProtKB-KW
  4. intracellular Source: GOC
  5. membrane Source: UniProtKB-KW
  6. viral nucleocapsid Source: UniProtKB-KW
Complete GO annotation...

Keywords - Cellular componenti

Capsid protein, Host cell membrane, Host cytoplasm, Host membrane, Host nucleus, Membrane, Virion

Pathology & Biotechi

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi217 – 2171P → A: 3-fold decrease of PPIA-binding affinity. 1 Publication
Mutagenesisi218 – 2181V → A: 2.7-fold decrease of PPIA-binding affinity. 1 Publication
Mutagenesisi219 – 2191H → A or Q: 8-fold decrease of PPIA-binding affinity. 1 Publication
Mutagenesisi220 – 2201A → G: 44-fold decrease of PPIA-binding affinity. 1 Publication
Mutagenesisi220 – 2201A → V: 3.4-fold decrease of PPIA-binding affinity. 1 Publication
Mutagenesisi221 – 2211G → A: 31-fold decrease of PPIA-binding affinity. 1 Publication
Mutagenesisi221 – 2211G → V: 154-fold decrease of PPIA-binding affinity. 1 Publication
Mutagenesisi222 – 2221P → A: 36-fold decrease of PPIA-binding affinity. 1 Publication
Mutagenesisi222 – 2221P → V: More than 150-fold decrease of PPIA-binding affinity. 1 Publication
Mutagenesisi223 – 2231I → A: 1.2-fold decrease of PPIA-binding affinity. 1 Publication
Mutagenesisi223 – 2231I → V: 1.0-fold decrease of PPIA-binding affinity. 1 Publication
Mutagenesisi224 – 2241A → G: 2.3-fold decrease of PPIA-binding affinity. 1 Publication
Mutagenesisi224 – 2241A → V: 1.7-fold decrease of PPIA-binding affinity. 1 Publication
Mutagenesisi225 – 2251P → A: 1.6-fold decrease of PPIA-binding affinity. 1 Publication
Mutagenesisi394 – 3941N → F or G: Decreases infectivity and replication. 1 Publication
Mutagenesisi400 – 4001H → C: Complete loss of infectivity and in vitro chaperone activity. 1 Publication
Mutagenesisi405 – 4051C → H: Complete loss of infectivity and DNA synthesis. 1 Publication
Mutagenesisi421 – 4211H → C: Partial loss of infectivity. Complete loss of in vitro chaperone activity. 1 Publication
Mutagenesisi426 – 4261C → H: Partial loss of infectivity. 1 Publication
Mutagenesisi1065 – 10651E → Q: Complete loss of RNase H activity. 1 Publication
Mutagenesisi1136 – 11361D → N: Complete loss of RNase H activity. 1 Publication
Mutagenesisi1159 – 11591H → C: No effect on integrase activity in vitro. 1 Publication
Mutagenesisi1163 – 11631H → C or V: 75% increase of integrase activity in vitro. 1 Publication
Mutagenesisi1187 – 11871C → A: Complete loss of integrase activity in vivo. 1 Publication
Mutagenesisi1190 – 11901C → A: Complete loss of integrase activity in vivo. 1 Publication
Mutagenesisi1200 – 12001Q → C: 75% increase of integrase activity in vitro. 1 Publication
Mutagenesisi1208 – 12081W → A: Complete loss of integrase activity in vivo. 1 Publication
Mutagenesisi1211 – 12111D → A or V: Complete loss of integrase activity in vivo and in vitro. 3 Publications
Mutagenesisi1213 – 12131T → A: No effect on infectivity. 1 Publication
Mutagenesisi1222 – 12221V → P: Complete loss of integrase activity. 1 Publication
Mutagenesisi1228 – 12281S → A: Complete loss of integrase activity in vivo. 2 Publications
Mutagenesisi1228 – 12281S → R: No effect on integrase activity in vitro. 2 Publications
Mutagenesisi1262 – 12621T → A: No effect infectivity. 1 Publication
Mutagenesisi1263 – 12631D → A or I: Complete loss of integrase activity in vivo and in vitro. 3 Publications
Mutagenesisi1270 – 12701G → A: No effect on infectivity. 1 Publication
Mutagenesisi1282 – 12821I → P: Complete loss of integrase activity in vivo. 1 Publication
Mutagenesisi1298 – 12981V → A: No effect on infectivity. 1 Publication
Mutagenesisi1299 – 12991E → G or P: Complete loss of integrase activity in vitro. 3 Publications
Mutagenesisi1306 – 13061K → P: Slow down virus replication. 1 Publication
Mutagenesisi1326 – 13261A → P: Complete loss of integrase activity in vivo. 1 Publication
Mutagenesisi1346 – 13461R → C: 75% increase of integrase activity in vitro. 1 Publication
Mutagenesisi1382 – 13821W → A: Complete loss of infectivity. No effect on integrase activity in vitro. 2 Publications
Mutagenesisi1382 – 13821W → E: 75% increase of integrase activity in vitro. 2 Publications

Keywords - Diseasei

AIDS

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Initiator methioninei1 – 11Removed; by hostBy similarity
Chaini2 – 14351434Gag-Pol polyproteinPRO_0000223620Add
BLAST
Chaini2 – 132131Matrix protein p17By similarityPRO_0000042439Add
BLAST
Chaini133 – 363231Capsid protein p24By similarityPRO_0000042440Add
BLAST
Peptidei364 – 37714Spacer peptide p2By similarityPRO_0000042441Add
BLAST
Chaini378 – 43255Nucleocapsid protein p7By similarityPRO_0000042442Add
BLAST
Peptidei433 – 4408Transframe peptideSequence AnalysisPRO_0000246716
Chaini441 – 48848p6-polSequence AnalysisPRO_0000042443Add
BLAST
Chaini489 – 58799ProteasePRO_0000038665Add
BLAST
Chaini588 – 1147560Reverse transcriptase/ribonuclease HPRO_0000042444Add
BLAST
Chaini588 – 1027440p51 RTPRO_0000042445Add
BLAST
Chaini1028 – 1147120p15PRO_0000042446Add
BLAST
Chaini1148 – 1435288IntegraseBy similarityPRO_0000042447Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Lipidationi2 – 21N-myristoyl glycine; by hostBy similarity
Modified residuei132 – 1321Phosphotyrosine; by hostBy similarity

Post-translational modificationi

Specific enzymatic cleavages by the viral protease yield mature proteins. The protease is released by autocatalytic cleavage. The polyprotein is cleaved during and after budding, this process is termed maturation. Proteolytic cleavage of p66 RT removes the RNase H domain to yield the p51 RT subunit. Nucleocapsid protein p7 might be further cleaved after virus entry.3 PublicationsPROSITE-ProRule annotation
Capsid protein p24 is phosphorylated.
Matrix protein p17 is tyrosine phosphorylated presumably in the virion by a host kinase. This modification targets the matrix protein to the nucleus.

Keywords - PTMi

Lipoprotein, Myristate, Phosphoprotein

Interactioni

Subunit structurei

Pre-integration complex interacts with human HMGA1. Matrix protein p17 is a trimer. Interacts with gp120 and human BAF. Capsid is a homodimer. Interacts with human PPIA/CYPA. The protease is a homodimer, whose active site consists of two apposed aspartic acid residues. The reverse transcriptase is a heterodimer of p66 RT and p51 RT (RT p66/p51). Heterodimerization of RT is essential for DNA polymerase activity. Despite the sequence identities, p66 RT and p51 RT have distinct folding. Integrase is a homodimer and possibly can form homotetramer. Integrase interacts with human SMARCB1/INI1 and human PSIP1/LEDGF isoform 1. Integrase interacts with human KPNA3; this interaction might play a role in nuclear import of the pre-integration complex. Integrase interacts with human NUP153; this interaction might play a role in nuclear import of the pre-integration complex (By similarity).By similarity

Binary interactionsi

WithEntry#Exp.IntActNotes
itself29EBI-3989067,EBI-3989067
PSIP1O7547521EBI-3989067,EBI-1801773From a different organism.
revP697188EBI-3989067,EBI-8540156From a different organism.

Protein-protein interaction databases

IntActiP04585. 2 interactions.
MINTiMINT-111862.

Structurei

Secondary structure

1
1435
Legend: HelixTurnBeta strand
Show more details
Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Beta strandi7 – 104Combined sources
Helixi11 – 188Combined sources
Beta strandi19 – 213Combined sources
Beta strandi23 – 253Combined sources
Helixi31 – 4515Combined sources
Beta strandi46 – 483Combined sources
Turni50 – 523Combined sources
Helixi54 – 6714Combined sources
Turni68 – 703Combined sources
Helixi72 – 9019Combined sources
Helixi97 – 10812Combined sources
Helixi109 – 1124Combined sources
Beta strandi116 – 1183Combined sources
Helixi282 – 2843Combined sources
Helixi293 – 30412Combined sources
Helixi311 – 32414Combined sources
Helixi330 – 3378Combined sources
Helixi343 – 3497Combined sources
Turni350 – 3534Combined sources
Beta strandi357 – 3604Combined sources
Beta strandi393 – 3953Combined sources
Turni402 – 4043Combined sources
Beta strandi414 – 4163Combined sources
Turni423 – 4253Combined sources
Beta strandi485 – 4873Combined sources
Beta strandi491 – 4955Combined sources
Beta strandi498 – 5036Combined sources
Beta strandi506 – 5127Combined sources
Beta strandi516 – 5183Combined sources
Beta strandi520 – 5234Combined sources
Beta strandi531 – 5377Combined sources
Beta strandi540 – 55415Combined sources
Beta strandi557 – 56711Combined sources
Beta strandi569 – 5735Combined sources
Helixi575 – 5784Combined sources
Helixi579 – 5813Combined sources
Beta strandi584 – 5863Combined sources
Beta strandi599 – 6024Combined sources
Helixi615 – 63016Combined sources
Beta strandi633 – 6364Combined sources
Beta strandi639 – 6413Combined sources
Beta strandi647 – 6515Combined sources
Turni653 – 6564Combined sources
Beta strandi658 – 6625Combined sources
Helixi665 – 6706Combined sources
Helixi672 – 6765Combined sources
Turni677 – 6793Combined sources
Helixi684 – 6863Combined sources
Helixi687 – 6893Combined sources
Beta strandi691 – 6977Combined sources
Turni699 – 7013Combined sources
Helixi702 – 7043Combined sources
Beta strandi705 – 7073Combined sources
Helixi709 – 7157Combined sources
Beta strandi717 – 7193Combined sources
Helixi722 – 7243Combined sources
Beta strandi725 – 7273Combined sources
Beta strandi729 – 7357Combined sources
Helixi743 – 76119Combined sources
Beta strandi762 – 7654Combined sources
Beta strandi766 – 7705Combined sources
Beta strandi773 – 7786Combined sources
Helixi782 – 79817Combined sources
Helixi806 – 8083Combined sources
Beta strandi812 – 8165Combined sources
Beta strandi819 – 8213Combined sources
Helixi823 – 8253Combined sources
Beta strandi826 – 8283Combined sources
Beta strandi837 – 8404Combined sources
Helixi841 – 85414Combined sources
Turni855 – 8573Combined sources
Beta strandi858 – 8603Combined sources
Helixi864 – 8696Combined sources
Turni870 – 8723Combined sources
Beta strandi876 – 8794Combined sources
Helixi884 – 89613Combined sources
Beta strandi902 – 9043Combined sources
Beta strandi908 – 9103Combined sources
Beta strandi913 – 9186Combined sources
Beta strandi920 – 9223Combined sources
Beta strandi924 – 9318Combined sources
Beta strandi935 – 9417Combined sources
Beta strandi945 – 9495Combined sources
Helixi951 – 97020Combined sources
Beta strandi975 – 9806Combined sources
Helixi982 – 99110Combined sources
Beta strandi992 – 9954Combined sources
Beta strandi1000 – 10034Combined sources
Helixi1008 – 10136Combined sources
Beta strandi1024 – 103310Combined sources
Turni1035 – 10373Combined sources
Beta strandi1039 – 10468Combined sources
Beta strandi1047 – 10493Combined sources
Beta strandi1051 – 10588Combined sources
Helixi1061 – 107414Combined sources
Beta strandi1078 – 10847Combined sources
Helixi1087 – 10948Combined sources
Beta strandi1098 – 11025Combined sources
Helixi1103 – 111412Combined sources
Beta strandi1116 – 11227Combined sources
Beta strandi1125 – 11273Combined sources
Helixi1130 – 113910Combined sources
Turni1140 – 11423Combined sources
Helixi1204 – 12063Combined sources
Beta strandi1207 – 12159Combined sources
Beta strandi1218 – 12258Combined sources
Turni1226 – 12283Combined sources
Beta strandi1231 – 124010Combined sources
Helixi1241 – 125414Combined sources
Beta strandi1259 – 12613Combined sources
Helixi1266 – 12683Combined sources
Helixi1271 – 128010Combined sources
Helixi1302 – 131211Combined sources
Helixi1313 – 13153Combined sources
Helixi1319 – 133214Combined sources
Beta strandi1335 – 13395Combined sources
Helixi1343 – 135513Combined sources
Helixi1358 – 136811Combined sources
Beta strandi1370 – 13745Combined sources
Beta strandi1383 – 13919Combined sources
Beta strandi1393 – 13997Combined sources
Beta strandi1404 – 14085Combined sources
Helixi1409 – 14113Combined sources
Beta strandi1412 – 14143Combined sources

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
EntryMethodResolution (Å)ChainPositionsPDBsum
1A30X-ray2.00A/B489-587[»]
1BV7X-ray2.00A/B489-587[»]
1BV9X-ray2.00A/B489-587[»]
1BVENMR-A/B489-587[»]
1BVGNMR-A/B489-587[»]
1BWAX-ray1.90A/B489-587[»]
1BWBX-ray1.80A/B489-587[»]
1C0TX-ray2.70A588-1147[»]
B588-1027[»]
1C0UX-ray2.52A588-1147[»]
B588-1027[»]
1C1BX-ray2.50A588-1147[»]
B588-1428[»]
1C1CX-ray2.50A588-1147[»]
B588-1027[»]
1DMPX-ray2.00A/B489-587[»]
1DTQX-ray2.80A588-1147[»]
B588-1027[»]
1DTTX-ray3.00A588-1147[»]
B588-1027[»]
1E6JX-ray3.00P143-352[»]
1EP4X-ray2.50A588-1147[»]
B588-1027[»]
1ESKNMR-A390-430[»]
1EX4X-ray2.80A/B1199-1435[»]
1EXQX-ray1.60A/B1203-1356[»]
1FB7X-ray2.60A489-587[»]
1FK9X-ray2.50A588-1130[»]
B588-1027[»]
1FKOX-ray2.90A588-1130[»]
B588-1027[»]
1FKPX-ray2.90A588-1130[»]
B588-1027[»]
1G6LX-ray1.90A484-587[»]
1HIVX-ray2.00A/B489-587[»]
1HVHX-ray1.80A/B489-587[»]
1HVRX-ray1.80A/B489-587[»]
1HWRX-ray1.80A/B489-587[»]
1HXBX-ray2.30A/B489-587[»]
1JKHX-ray2.50A588-1147[»]
B588-1027[»]
1JLAX-ray2.50A588-1147[»]
B588-1027[»]
1JLBX-ray3.00A588-1147[»]
B588-1027[»]
1JLCX-ray3.00A588-1147[»]
B588-1027[»]
1JLEX-ray2.80A588-1147[»]
B588-1027[»]
1JLFX-ray2.60A588-1147[»]
B588-1027[»]
1JLGX-ray2.60A588-1147[»]
B588-1027[»]
1JLQX-ray3.00A588-1147[»]
B588-1027[»]
1KLMX-ray2.65A588-1147[»]
B588-1027[»]
1LV1X-ray2.10A484-587[»]
1LW0X-ray2.80A588-1147[»]
B588-1027[»]
1LW2X-ray3.00A588-1147[»]
B588-1027[»]
1LWCX-ray2.62A588-1147[»]
B588-1027[»]
1LWEX-ray2.81A588-1147[»]
B588-1027[»]
1LWFX-ray2.80A588-1147[»]
B588-1027[»]
1NCPNMR-N390-406[»]
1O1WNMR-A1014-1147[»]
1ODWX-ray2.10A/B489-587[»]
1ODYX-ray2.00A/B489-587[»]
1QBRX-ray1.80A/B489-587[»]
1QBSX-ray1.80A/B489-587[»]
1QBTX-ray2.10A/B489-587[»]
1QBUX-ray1.80A/B489-587[»]
1REVX-ray2.60A588-1147[»]
B588-1027[»]
1RT1X-ray2.55A588-1147[»]
B588-1027[»]
1RT2X-ray2.55A588-1147[»]
B588-1027[»]
1RT3X-ray3.00A588-1147[»]
B588-1027[»]
1RT4X-ray2.90A588-1147[»]
B588-1027[»]
1RT5X-ray2.90A588-1147[»]
B588-1027[»]
1RT6X-ray2.80A588-1147[»]
B588-1027[»]
1RT7X-ray3.00A588-1147[»]
B588-1027[»]
1RTDX-ray3.20B/D588-1027[»]
1RTHX-ray2.20A588-1147[»]
B588-1027[»]
1RTIX-ray3.00A588-1147[»]
B588-1027[»]
1RTJX-ray2.35A588-1147[»]
B588-1027[»]
1S1TX-ray2.40A588-1147[»]
B588-1027[»]
1S1UX-ray3.00A588-1147[»]
B588-1027[»]
1S1VX-ray2.60A588-1147[»]
B588-1027[»]
1S1WX-ray2.70A588-1147[»]
B588-1027[»]
1S1XX-ray2.80A588-1147[»]
B588-1027[»]
1T05X-ray3.00B588-1016[»]
1TAMNMR-A1-132[»]
1TKTX-ray2.60A588-1147[»]
B588-1027[»]
1TKXX-ray2.85A588-1147[»]
B588-1027[»]
1TKZX-ray2.81A588-1147[»]
B588-1027[»]
1TL1X-ray2.90A588-1147[»]
B588-1027[»]
1TL3X-ray2.80A588-1147[»]
B588-1027[»]
1VRTX-ray2.20A588-1147[»]
B588-1027[»]
1VRUX-ray2.40A588-1147[»]
B588-1027[»]
2HNDX-ray2.50A591-1124[»]
2HNYX-ray2.50A591-1124[»]
2HNZX-ray3.00A591-1124[»]
B594-1015[»]
2KODNMR-A/B276-363[»]
2NPHX-ray1.65A/B489-587[»]
2OPPX-ray2.55A591-1132[»]
B592-1018[»]
2OPQX-ray2.80A591-1124[»]
2OPRX-ray2.90A589-1135[»]
B593-1018[»]
2OPSX-ray2.30A589-1130[»]
B593-1027[»]
2RF2X-ray2.40A588-1147[»]
B588-1027[»]
2RKIX-ray2.30A588-1147[»]
B588-1027[»]
2WHHX-ray1.69A489-587[»]
2WOMX-ray3.20A588-1147[»]
B588-1027[»]
2WONX-ray2.80A588-1147[»]
B588-1027[»]
2YNFX-ray2.36A588-1147[»]
B588-1015[»]
2YNGX-ray2.12A588-1147[»]
B588-1015[»]
2YNHX-ray2.90A588-1147[»]
B588-1015[»]
2YNIX-ray2.49A588-1147[»]
B588-1015[»]
3AO2X-ray1.80A/B1197-1359[»]
3C6TX-ray2.70A588-1147[»]
B588-1027[»]
3C6UX-ray2.70A588-1147[»]
B588-1027[»]
3DI6X-ray2.65A588-1148[»]
B588-1027[»]
3DLEX-ray2.50A588-1147[»]
B588-1027[»]
3DLGX-ray2.20A588-1147[»]
B588-1027[»]
3DM2X-ray3.10A588-1147[»]
B588-1027[»]
3DMJX-ray2.60A588-1147[»]
B588-1027[»]
3DOKX-ray2.90A588-1147[»]
B588-1027[»]
3DOLX-ray2.50A588-1147[»]
B588-1027[»]
3DOXX-ray2.00A484-587[»]
3DRPX-ray2.60A588-1147[»]
B588-1027[»]
3DRRX-ray2.89A588-1147[»]
B588-1027[»]
3DRSX-ray3.15A588-1147[»]
B588-1027[»]
3DYAX-ray2.30A588-1148[»]
B588-1027[»]
3E01X-ray2.95A588-1148[»]
B588-1027[»]
3FFIX-ray2.60A588-1147[»]
B588-1027[»]
3I0RX-ray2.98A588-1147[»]
B588-1027[»]
3I0SX-ray2.70A588-1147[»]
B588-1027[»]
3KJVX-ray3.10A588-1147[»]
B588-1027[»]
3KK1X-ray2.70A588-1147[»]
B588-1027[»]
3KK2X-ray2.90A588-1147[»]
B588-1027[»]
3KK3X-ray2.90A588-1147[»]
B588-1027[»]
3KT2X-ray1.65A484-587[»]
3KT5X-ray1.80A484-587[»]
3LAKX-ray2.30A/B588-1147[»]
3LALX-ray2.51A/B588-1147[»]
3LAMX-ray2.76A/B588-1147[»]
3LANX-ray2.55A/B588-1147[»]
3LP0X-ray2.79A588-1147[»]
B588-1027[»]
3LP1X-ray2.23A588-1147[»]
B588-1027[»]
3LP2X-ray2.80A588-1147[»]
B588-1027[»]
3M8PX-ray2.67A588-1148[»]
B588-1027[»]
3M8QX-ray2.70A588-1148[»]
B588-1027[»]
3MECX-ray2.30A588-1147[»]
B588-1027[»]
3MEDX-ray2.50A588-1147[»]
B588-1027[»]
3MEEX-ray2.40A588-1147[»]
B588-1027[»]
3MEGX-ray2.80A588-1147[»]
B588-1027[»]
3MIMX-ray1.76A/B489-587[»]
3N3IX-ray2.50A484-587[»]
3NBPX-ray2.95A588-1148[»]
B588-1027[»]
3PHVX-ray2.70A489-587[»]
3QINX-ray1.70A1014-1103[»]
A1142-1148[»]
3QIOX-ray1.40A1014-1148[»]
3QIPX-ray2.09A588-1147[»]
B588-1027[»]
3T19X-ray2.60A/B588-1147[»]
3T1AX-ray2.40A/B588-1147[»]
3TAMX-ray2.51A590-1147[»]
B588-1027[»]
4B3OX-ray3.30A588-1145[»]
B588-1027[»]
4B3PX-ray4.84A588-1145[»]
B588-1027[»]
4B3QX-ray5.00A588-1145[»]
B588-1027[»]
4I7FX-ray2.50A588-1147[»]
B588-1027[»]
4KSEX-ray2.68B588-1017[»]
4KV8X-ray2.30A588-1147[»]
B588-1027[»]
4NCGX-ray2.58A588-1147[»]
B585-1027[»]
4QLHX-ray2.45A489-587[»]
ProteinModelPortaliP04585.
SMRiP04585. Positions 1-432, 489-1144, 1148-1417.
ModBaseiSearch...
MobiDBiSearch...

Miscellaneous databases

EvolutionaryTraceiP04585.

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Domaini508 – 57770Peptidase A2PROSITE-ProRule annotationAdd
BLAST
Domaini631 – 821191Reverse transcriptasePROSITE-ProRule annotationAdd
BLAST
Domaini1021 – 1144124RNase HPROSITE-ProRule annotationAdd
BLAST
Domaini1201 – 1351151Integrase catalyticPROSITE-ProRule annotationAdd
BLAST

Region

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Regioni217 – 2259PPIA/CYPA-binding loop
Regioni814 – 8229RT 'primer grip'By similarity

Motif

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Motifi16 – 227Nuclear export signalBy similarity
Motifi26 – 327Nuclear localization signalBy similarity
Motifi985 – 100117Tryptophan repeat motifBy similarityAdd
BLAST

Domaini

The reverse transcriptase/ribonuclease H (RT) is structured in five subdomains: finger, palm, thumb, connection and RNase H. Within the palm subdomain, the 'primer grip' region is thought to be involved in the positioning of the primer terminus for accommodating the incoming nucleotide. The RNase H domain stabilizes the association of RT with primer-template (By similarity).By similarity
The tryptophan repeat motif is involved in RT p66/p51 dimerization.
Integrase core domain contains the D-x(n)-D-x(35)-E motif, named for the phylogenetically conserved glutamic acid and aspartic acid residues and the invariant 35 amino acid spacing between the second and third acidic residues. Each acidic residue of the D,D(35)E motif is independently essential for the 3'-processing and strand transfer activities of purified integrase protein.

Sequence similaritiesi

Contains 2 CCHC-type zinc fingers.PROSITE-ProRule annotation
Contains 1 integrase catalytic domain.PROSITE-ProRule annotation
Contains 1 integrase-type DNA-binding domain.PROSITE-ProRule annotation
Contains 1 integrase-type zinc finger.PROSITE-ProRule annotation
Contains 1 peptidase A2 domain.PROSITE-ProRule annotation
Contains 1 reverse transcriptase domain.PROSITE-ProRule annotation
Contains 1 RNase H domain.PROSITE-ProRule annotation

Zinc finger

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Zinc fingeri390 – 40718CCHC-type 1PROSITE-ProRule annotationAdd
BLAST
Zinc fingeri411 – 42818CCHC-type 2PROSITE-ProRule annotationAdd
BLAST
Zinc fingeri1150 – 119142Integrase-typePROSITE-ProRule annotationAdd
BLAST

Keywords - Domaini

Repeat, Zinc-finger

Family and domain databases

Gene3Di1.10.10.200. 1 hit.
1.10.1200.30. 1 hit.
1.10.150.90. 1 hit.
1.10.375.10. 1 hit.
2.30.30.10. 1 hit.
2.40.70.10. 1 hit.
3.30.420.10. 2 hits.
4.10.60.10. 1 hit.
InterProiIPR001969. Aspartic_peptidase_AS.
IPR000721. Gag_p24.
IPR001037. Integrase_C_retrovir.
IPR001584. Integrase_cat-core.
IPR017856. Integrase_Zn-bd_dom-like_N.
IPR003308. Integrase_Zn-bd_dom_N.
IPR000071. Lentvrl_matrix_N.
IPR012344. Matrix_N_HIV/RSV.
IPR018061. Pept_A2A_retrovirus_sg.
IPR001995. Peptidase_A2_cat.
IPR021109. Peptidase_aspartic_dom.
IPR008916. Retrov_capsid_C.
IPR008919. Retrov_capsid_N.
IPR010999. Retrovr_matrix_N.
IPR012337. RNaseH-like_dom.
IPR002156. RNaseH_domain.
IPR000477. RT_dom.
IPR010659. RVT_connect.
IPR010661. RVT_thumb.
IPR001878. Znf_CCHC.
[Graphical view]
PfamiPF00540. Gag_p17. 1 hit.
PF00607. Gag_p24. 1 hit.
PF00552. IN_DBD_C. 1 hit.
PF02022. Integrase_Zn. 1 hit.
PF00075. RNase_H. 1 hit.
PF00665. rve. 1 hit.
PF00077. RVP. 1 hit.
PF00078. RVT_1. 1 hit.
PF06815. RVT_connect. 1 hit.
PF06817. RVT_thumb. 1 hit.
PF00098. zf-CCHC. 2 hits.
[Graphical view]
PRINTSiPR00234. HIV1MATRIX.
SMARTiSM00343. ZnF_C2HC. 2 hits.
[Graphical view]
SUPFAMiSSF46919. SSF46919. 1 hit.
SSF47353. SSF47353. 1 hit.
SSF47836. SSF47836. 1 hit.
SSF47943. SSF47943. 1 hit.
SSF50122. SSF50122. 1 hit.
SSF50630. SSF50630. 1 hit.
SSF53098. SSF53098. 2 hits.
SSF57756. SSF57756. 1 hit.
PROSITEiPS50175. ASP_PROT_RETROV. 1 hit.
PS00141. ASP_PROTEASE. 1 hit.
PS50994. INTEGRASE. 1 hit.
PS51027. INTEGRASE_DBD. 1 hit.
PS50879. RNASE_H. 1 hit.
PS50878. RT_POL. 1 hit.
PS50158. ZF_CCHC. 2 hits.
PS50876. ZF_INTEGRASE. 1 hit.
[Graphical view]

Sequences (2)i

Sequence statusi: Complete.

Sequence processingi: The displayed sequence is further processed into a mature form.

This entry describes 2 isoformsi produced by ribosomal frameshifting. Align

Note: Translation results in the formation of the Gag polyprotein most of the time. Ribosomal frameshifting at the gag-pol genes boundary occurs at low frequency and produces the Gag-Pol polyprotein. This strategy of translation probably allows the virus to modulate the quantity of each viral protein. Maintenance of a correct Gag to Gag-Pol ratio is essential for RNA dimerization and viral infectivity.

Isoform Gag-Pol polyprotein (identifier: P04585-1) [UniParc]FASTAAdd to Basket

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

« Hide

        10         20         30         40         50
MGARASVLSG GELDRWEKIR LRPGGKKKYK LKHIVWASRE LERFAVNPGL
60 70 80 90 100
LETSEGCRQI LGQLQPSLQT GSEELRSLYN TVATLYCVHQ RIEIKDTKEA
110 120 130 140 150
LDKIEEEQNK SKKKAQQAAA DTGHSNQVSQ NYPIVQNIQG QMVHQAISPR
160 170 180 190 200
TLNAWVKVVE EKAFSPEVIP MFSALSEGAT PQDLNTMLNT VGGHQAAMQM
210 220 230 240 250
LKETINEEAA EWDRVHPVHA GPIAPGQMRE PRGSDIAGTT STLQEQIGWM
260 270 280 290 300
TNNPPIPVGE IYKRWIILGL NKIVRMYSPT SILDIRQGPK EPFRDYVDRF
310 320 330 340 350
YKTLRAEQAS QEVKNWMTET LLVQNANPDC KTILKALGPA ATLEEMMTAC
360 370 380 390 400
QGVGGPGHKA RVLAEAMSQV TNSATIMMQR GNFRNQRKIV KCFNCGKEGH
410 420 430 440 450
TARNCRAPRK KGCWKCGKEG HQMKDCTERQ ANFLREDLAF LQGKAREFSS
460 470 480 490 500
EQTRANSPTR RELQVWGRDN NSPSEAGADR QGTVSFNFPQ VTLWQRPLVT
510 520 530 540 550
IKIGGQLKEA LLDTGADDTV LEEMSLPGRW KPKMIGGIGG FIKVRQYDQI
560 570 580 590 600
LIEICGHKAI GTVLVGPTPV NIIGRNLLTQ IGCTLNFPIS PIETVPVKLK
610 620 630 640 650
PGMDGPKVKQ WPLTEEKIKA LVEICTEMEK EGKISKIGPE NPYNTPVFAI
660 670 680 690 700
KKKDSTKWRK LVDFRELNKR TQDFWEVQLG IPHPAGLKKK KSVTVLDVGD
710 720 730 740 750
AYFSVPLDED FRKYTAFTIP SINNETPGIR YQYNVLPQGW KGSPAIFQSS
760 770 780 790 800
MTKILEPFRK QNPDIVIYQY MDDLYVGSDL EIGQHRTKIE ELRQHLLRWG
810 820 830 840 850
LTTPDKKHQK EPPFLWMGYE LHPDKWTVQP IVLPEKDSWT VNDIQKLVGK
860 870 880 890 900
LNWASQIYPG IKVRQLCKLL RGTKALTEVI PLTEEAELEL AENREILKEP
910 920 930 940 950
VHGVYYDPSK DLIAEIQKQG QGQWTYQIYQ EPFKNLKTGK YARMRGAHTN
960 970 980 990 1000
DVKQLTEAVQ KITTESIVIW GKTPKFKLPI QKETWETWWT EYWQATWIPE
1010 1020 1030 1040 1050
WEFVNTPPLV KLWYQLEKEP IVGAETFYVD GAANRETKLG KAGYVTNRGR
1060 1070 1080 1090 1100
QKVVTLTDTT NQKTELQAIY LALQDSGLEV NIVTDSQYAL GIIQAQPDQS
1110 1120 1130 1140 1150
ESELVNQIIE QLIKKEKVYL AWVPAHKGIG GNEQVDKLVS AGIRKVLFLD
1160 1170 1180 1190 1200
GIDKAQDEHE KYHSNWRAMA SDFNLPPVVA KEIVASCDKC QLKGEAMHGQ
1210 1220 1230 1240 1250
VDCSPGIWQL DCTHLEGKVI LVAVHVASGY IEAEVIPAET GQETAYFLLK
1260 1270 1280 1290 1300
LAGRWPVKTI HTDNGSNFTG ATVRAACWWA GIKQEFGIPY NPQSQGVVES
1310 1320 1330 1340 1350
MNKELKKIIG QVRDQAEHLK TAVQMAVFIH NFKRKGGIGG YSAGERIVDI
1360 1370 1380 1390 1400
IATDIQTKEL QKQITKIQNF RVYYRDSRNP LWKGPAKLLW KGEGAVVIQD
1410 1420 1430
NSDIKVVPRR KAKIIRDYGK QMAGDDCVAS RQDED

Note: Produced by -1 ribosomal frameshifting.

Length:1,435
Mass (Da):162,042
Last modified:January 23, 2007 - v4
Checksum:i8487B36BDEAC5FE4
GO
Isoform Gag polyprotein (identifier: P04591-1) [UniParc]FASTAAdd to Basket

The sequence of this isoform can be found in the external entry P04591.
Isoforms of the same protein are often annotated in two different entries if their sequences differ significantly.

Note: Produced by conventional translation.

Length:500
Mass (Da):55,930
GO

Natural variant

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Natural varianti496 – 4961R → K Confers to resistance to A-77003; when associated with other amino acid changes.
Natural varianti496 – 4961R → Q Confers to resistance to A-77003.
Natural varianti498 – 4981L → F Confers resistance to amprenavir, atazanavir, lopinavir; when associated with other amino acid changes.
Natural varianti498 – 4981L → I Confers resistance to indinavir, lopinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti498 – 4981L → R Confers resistance to indinavir and lopinavir; when associated with other amino acid changes.
Natural varianti498 – 4981L → V Confers resistance to indinavir and lopinavir; when associated with other amino acid changes.
Natural varianti498 – 4981L → Y Confers resistance to atazanavir; when associated with other amino acid changes.
Natural varianti503 – 5031I → V Confers resistance to tipranavir.
Natural varianti504 – 5041G → E Confers resistance to lopinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti508 – 5081K → I Confers resistance to lopinavir.
Natural varianti508 – 5081K → M Confers resistance to indinavir, lopinavir and nelfinavir; when associated with other amino acid changes.
Natural varianti508 – 5081K → R Confers resistance to indinavir, lopinavir and ritonavir; when associated with other amino acid changes.
Natural varianti511 – 5111L → I Confers resistance to BILA 2185 BS.
Natural varianti512 – 5121L → I Confers resistance to amprenavir, indinavir, lopinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti518 – 5181D → N Confers resistance to nelfinavir; when associated with other amino acid changes.
Natural varianti520 – 5201V → I Confers resistance to A-77003, amprenavir, atazanavir, indinavir, kynostatin, lopinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti521 – 5211L → F Confers resistance to atazanavir nelfinavir and ritonavir; when associated with other amino acid changes.
Natural varianti522 – 5221E → Q Confers resistance to lopinavir; when associated with other amino acid changes.
Natural varianti523 – 5231E → D Confers resistance to tipranavir.
Natural varianti524 – 5241M → I Confers resistance to nelfinavir and ritonavir; when associated with other amino acid changes.
Natural varianti524 – 5241M → L Confers resistance to ritonavir; when associated with other amino acid changes.
Natural varianti525 – 5251S → D Confers resistance to indinavir and tipranavir; when associated with other amino acid changes.
Natural varianti529 – 5291R → K Confers resistance to tipranavir.
Natural varianti533 – 5331K → I Confers resistance to DMD-323; when associated with other amino acid changes.
Natural varianti534 – 5341M → F Confers resistance to A-77003.
Natural varianti534 – 5341M → I Confers resistance to A-77003, amprenavir, atazanavir, indinavir, kynostatin, lopinavir, ritonavir, saquinavir and telinavir; when associated with other amino acid changes.
Natural varianti534 – 5341M → L Confers resistance to A-77003, amprenavir, indinavir, lopinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti535 – 5351I → V Confers resistance to amprenavir, lopinavir, kynostatin, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti536 – 5361G → V Confers resistance to A-77003, amprenavir, indinavir, ritonavir, saquinavir and telinavir; when associated with other amino acid changes.
Natural varianti538 – 5381I → L Confers resistance to atazanavir; when associated with other amino acid changes.
Natural varianti538 – 5381I → V Confers resistance to amprenavir, lopinavir and ritonavir; when associated with other amino acid changes.
Natural varianti541 – 5411F → L Confers resistance to lopinavir and telinavir; when associated with other amino acid changes.
Natural varianti541 – 5411F → Y Confers resistance to indinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti542 – 5421I → A Confers resistance to lopinavir.
Natural varianti542 – 5421I → L Confers resistance to amprenavir and lopinavir; when associated with other amino acid changes.
Natural varianti542 – 5421I → M Confers resistance to amprenavir and lopinavir.
Natural varianti542 – 5421I → S Confers resistance to lopinavir.
Natural varianti542 – 5421I → T Confers resistance to lopinavir; when associated with other amino acid changes.
Natural varianti542 – 5421I → V Confers resistance to indinavir, lopinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti543 – 5431K → R Confers resistance to nelfinavir.
Natural varianti545 – 5451R → K Confers resistance to nelfinavir.
Natural varianti546 – 5461Q → E Confers resistance to lopinavir and ritonavir; when associated with other amino acid changes.
Natural varianti548 – 5481D → E Confers resistance to tripanavir.
Natural varianti549 – 5491Q → H Confers resistance to lopinavir; when associated with other amino acid changes.
Natural varianti551 – 5511L → P Confers resistance to atazanavir, indinavir, lopinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti551 – 5511L → T Confers resistance to lopinavir.
Natural varianti553 – 5531E → Q Confers resistance to lopinavir; when associated with other amino acid changes.
Natural varianti554 – 5541I → F Confers resistance to indinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti557 – 5571H → Y Confers resistance to lopinavir; when associated with other amino acid changes.
Natural varianti559 – 5591A → I Confers resistance to lopinavir; when associated with other amino acid changes.
Natural varianti559 – 5591A → L Confers resistance to lopinavir; when associated with other amino acid changes.
Natural varianti559 – 5591A → T Confers resistance to A-77003, indinavir, lopinavir, nelfinavir and tripanavir; when associated with other amino acid changes.
Natural varianti559 – 5591A → V Confers resistance to amprenavir, atazanavir, indinavir, kynostatin, lopinavir, nelfinavir, ritonavir, saquinavir and telinavir; when associated with other amino acid changes.
Natural varianti561 – 5611G → S Confers resistance to indinavir, nelfinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti565 – 5651V → I Confers resistance to indinavir, nelfinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti570 – 5701V → A Confers resistance to A-77003, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti570 – 5701V → F Confers resistance to lopinavir and ritonavir; when associated with other amino acid changes.
Natural varianti570 – 5701V → I Confers resistance to A-77003 and kynostatin; when associated with other amino acid changes.
Natural varianti570 – 5701V → S Confers resistance to lopinavir and ritonavir.
Natural varianti570 – 5701V → T Confers resistance to indinavir, lopinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti572 – 5721I → A Confers resistance to atazanavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti572 – 5721I → V Confers resistance to amprenavir, atazanavir, indinavir, kynostatin, lopinavir, nelfinavir, ritonavir, saquinavir and telinavir; when associated with other amino acid changes.
Natural varianti576 – 5761N → D Confers resistance to nelfinavir; when associated with other amino acid changes.
Natural varianti576 – 5761N → S Confers resistance to atazanavir, indinavir and nelfinavir; when associated with other amino acid changes.
Natural varianti577 – 5771L → M Confers resistance to atazanavir; when associated with other amino acid changes.
Natural varianti578 – 5781L → M Confers resistance to indinavir, lopinavir, nelfinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti579 – 5791T → S Confers resistance to lopinavir, ritonavir and saquinavir; when associated with other amino acid changes.
Natural varianti581 – 5811I → L Confers resistance to indinavir.
Natural varianti628 – 6281M → L Confers resistance to zidovudine; when associated with other amino acid changes.
Natural varianti631 – 6311E → A Confers resistance to lamivudine.
Natural varianti631 – 6311E → D Confers resistance to zidovudine; when associated with other amino acid changes.
Natural varianti639 – 6391P → R Confers resistance to stavudine.
Natural varianti641 – 6411N → D Confers resistance to stavudine.
Natural varianti649 – 6491A → V Confers multi-NRTI resistance; when associated with other amino acid changes.
Natural varianti652 – 6521K → R Confers resistance to abacavir, adefovir, didenosine, lamivudine, stavudine, tenofir and zidovuline; when associated with other amino acid changes.
Natural varianti654 – 6541D → A Confers resistance to zidovudine.
Natural varianti654 – 6541D → E Confers multi-NRTI resistance.
Natural varianti654 – 6541D → G Confers multi-NRTI resistance.
Natural varianti654 – 6541D → N Confers resistance to zidovudine.
Natural varianti654 – 6541D → S Confers multi-NRTI resistance.
Natural varianti655 – 6551S → G Confers multi-NRTI resistance; when associated with other amino acid changes.
Natural varianti655 – 6551S → N Confers multi-NRTI resistance.
Natural varianti655 – 6551S → Y Confers multi-NRTI resistance.
Natural varianti656 – 6561T → A Confers resistance to lamivudine and stavudine.
Natural varianti656 – 6561T → D Confers resistance to lamivudine, stavudine and rarely to zalcitabine.
Natural varianti656 – 6561T → G Confers resistance to didanosine, zalcitabine and zidovudine.
Natural varianti656 – 6561T → N Confers resistance to lamivudine and stavudine.
Natural varianti657 – 6571K → E Confers resistance to adefovir and lamivudine.
Natural varianti657 – 6571K → R Confers resistance to zidovudine; when associated with other amino acid changes.
Natural varianti657 – 6571K → S Confers resistance to didanosine and stavudine.
Natural varianti661 – 6611L → I Confers resistance to HBY 097.
Natural varianti661 – 6611L → V Confers resistance to abacavir, didanosine, HBY 097 and zalcitabine; when associated with other amino acid changes.
Natural varianti662 – 6621V → I Confers multi-NRTI resistance; when associated with other amino acid changes.
Natural varianti662 – 6621V → L Confers resistance to HBY 097.
Natural varianti662 – 6621V → M Confers resistance to stavudine and zalcitabine.
Natural varianti662 – 6621V → T Confers resistance to d4C, didanosine, stavudine and zalcitabine.
Natural varianti664 – 6641F → L Confers multi-NRTI resistance; when associated with other amino acid changes.
Natural varianti675 – 6751W → G Confers resistance to pyrophosphate analog PFA.
Natural varianti675 – 6751W → S Confers resistance to pyrophosphate analog PFA.
Natural varianti676 – 6761E → G Confers resistance to pyrophosphate analog PFA.
Natural varianti676 – 6761E → K Confers resistance to pyrophosphate analog PFA.
Natural varianti679 – 6791L → I Confers resistance to pyrophosphate analog PFA.
Natural varianti687 – 6871L → I Confers resistance to nevirapine and efavirenz.
Natural varianti688 – 6881K → E Confers resistance to atevirdine, efavirenz, nevirapine and zidovudine.
Natural varianti688 – 6881K → P Confers resistance to TMC125; when associated with E-142.
Natural varianti688 – 6881K → Q Confers resistance to efavirenz; when associated with I-19.
Natural varianti690 – 6901K → E Confers resistance to atevirdine; when associated with other amino acid changes.
Natural varianti690 – 6901K → N Confers resistance to atevirdine, efavirenz, emivirine and nevirapine; when associated with other amino acid changes.
Natural varianti690 – 6901K → R Confers resistance to emivirine and trovirdine; when associated with other D-179 and C-181.
Natural varianti693 – 6931V → A Confers resistance to nevirapine.
Natural varianti693 – 6931V → I Confers resistance to HBY 097.
Natural varianti693 – 6931V → M Confers resistance to delavirdine, efavirenz and nevirapine.
Natural varianti695 – 6951V → I Confers resistance to efavirenz, emivirine, nevirapine and trovirdine; when associated with other amino acid changes.
Natural varianti702 – 7021Y → F Confers resistance to abacavir; when associated with other amino acid changes.
Natural varianti703 – 7031F → Y Confers multi-NRTI resistance; when associated with other amino acid changes.
Natural varianti705 – 7051V → I Confers resistance to zidovudine; when associated with other amino acid changes.
Natural varianti706 – 7061P → S Confers resistance to lodenosine.
Natural varianti722 – 7221I → L Confers resistance to delavirdine, efavirenz and nevirapine; when associated with I-239.
Natural varianti722 – 7221I → M Confers resistance to delavirdine, efavirenz and nevirapine; when associated with I-239.
Natural varianti722 – 7221I → T Confers resistance to delavirdine, efavirenz and nevirapine; when associated with I-239.
Natural varianti725 – 7251E → K Confers resistance to emivirine.
Natural varianti732 – 7321Q → M Confers both multi-NRTI and multi-NNRTI resistance.
Natural varianti738 – 7381Q → M Confers multi-NRTI resistance; when associated with other amino acid changes.
Natural varianti743 – 7431S → A Confers resistance to pyrophosphate analog PFA.
Natural varianti744 – 7441P → S Confers resistance to lamivudine.
Natural varianti748 – 7481Q → L Confers resistance to pyrophosphate analog PFA.
Natural varianti766 – 7661V → D Confers resistance to efavirenz, tivirapine and trovirdine; when associated with other amino acid changes.
Natural varianti768 – 7681Y → C Confers multi-NNRTI resistance.
Natural varianti771 – 7711M → I Confers resistance to lamivudine and emtricitabine.
Natural varianti771 – 7711M → T Confers resistance to abacavir, didanosine, emtricitabine, lamivudine and zalcitabine.
Natural varianti771 – 7711M → V Confers resistance to lamivudine.
Natural varianti775 – 7751Y → C Confers resistance to nevirapine.
Natural varianti775 – 7751Y → H Confers resistance to atevirdine, efavirenz, loviride and zidovudine.
Natural varianti775 – 7751Y → L Confers resistance to efavirenz.
Natural varianti776 – 7761V → I Confers resistance to HBY 097.
Natural varianti777 – 7771G → A Confers resistance to efavirenz and nevirapine.
Natural varianti777 – 7771G → C Confers resistance to efavirenz and nevirapine.
Natural varianti777 – 7771G → E Confers resistance to efavirenz, nevirapine and quinoxaline.
Natural varianti777 – 7771G → Q Confers resistance to efavirenz, HBY 097 and nevirapine.
Natural varianti777 – 7771G → S Confers resistance to efavirenz and nevirapine.
Natural varianti777 – 7771G → T Confers resistance to efavirenz, HBY 097 and nevirapine.
Natural varianti777 – 7771G → V Confers resistance to efavirenz and nevirapine.
Natural varianti795 – 7951H → Y Confers resistance to lamivudine, pyrophosphate analog PFA and zidovudine.
Natural varianti797 – 7971L → W Confers resistance to zidovudine.
Natural varianti798 – 7981R → K Confers resistance to lamivudine and zidovudine.
Natural varianti801 – 8011L → F Confers resistance to ph-AZT and zidovudine.
Natural varianti802 – 8021T → F Confers resistance to zidovudine; when associated with other amino acid changes.
Natural varianti802 – 8021T → Y Confers resistance to zidovudine; when associated with other amino acid changes.
Natural varianti806 – 8061K → E Confers resistance to zidovudine.
Natural varianti806 – 8061K → Q Confers resistance to zidovudine; when associated with other amino acid changes.
Natural varianti806 – 8061K → R Confers resistance to lamivudine, stavudine, zalcicabine and zidovudine.
Natural varianti812 – 8121P → H Confers resistance to efavirenz, emivirine, HBY 097 and quinoxaline; when associated with A-17.
Natural varianti823 – 8231P → L Confers resistance to atevirdine and delavirdine.
Natural varianti825 – 8251K → T Confers resistance to atevirdine and zidovudine; when associated with other amino acid changes.
Natural varianti870 – 8701L → I Confers resistance to delavirdine, efavirenz and nevirapine.
Natural varianti905 – 9051Y → F Confers resistance to delavirdine and nevirapine.
Natural varianti920 – 9201G → D Confers resistance to abacavir, lamivudine and zidovudine.
Natural varianti920 – 9201G → E Confers resistance to abacavir, lamivudine and zidovudine.
Natural varianti973 – 9731T → I Confers resistance to abacavir, lamivudine and zidovudine.

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
K03455 Genomic RNA. Translation: AAB50259.1. Sequence problems.
AF033819 Genomic RNA. Translation: AAC82598.2. Sequence problems.
RefSeqiNP_057849.4. NC_001802.1.

Genome annotation databases

GeneIDi155348.

Keywords - Coding sequence diversityi

Ribosomal frameshifting

Cross-referencesi

Web resourcesi

HIV drug resistance mutations
hivdb

HIV drug resistance database

BioAfrica HIV proteomics resource

Pol entry

BioAfrica HIV proteomics resource

RT (p51) entry

BioAfrica HIV proteomics resource

RNase H (p15) entry

BioAfrica HIV proteomics resource

PR (p15) entry

BioAfrica HIV proteomics resource

IN (p31) entry

BioAfrica: HIV bioinformatics in Africa

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
K03455 Genomic RNA. Translation: AAB50259.1 . Sequence problems.
AF033819 Genomic RNA. Translation: AAC82598.2 . Sequence problems.
RefSeqi NP_057849.4. NC_001802.1.

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
Entry Method Resolution (Å) Chain Positions PDBsum
1A30 X-ray 2.00 A/B 489-587 [» ]
1BV7 X-ray 2.00 A/B 489-587 [» ]
1BV9 X-ray 2.00 A/B 489-587 [» ]
1BVE NMR - A/B 489-587 [» ]
1BVG NMR - A/B 489-587 [» ]
1BWA X-ray 1.90 A/B 489-587 [» ]
1BWB X-ray 1.80 A/B 489-587 [» ]
1C0T X-ray 2.70 A 588-1147 [» ]
B 588-1027 [» ]
1C0U X-ray 2.52 A 588-1147 [» ]
B 588-1027 [» ]
1C1B X-ray 2.50 A 588-1147 [» ]
B 588-1428 [» ]
1C1C X-ray 2.50 A 588-1147 [» ]
B 588-1027 [» ]
1DMP X-ray 2.00 A/B 489-587 [» ]
1DTQ X-ray 2.80 A 588-1147 [» ]
B 588-1027 [» ]
1DTT X-ray 3.00 A 588-1147 [» ]
B 588-1027 [» ]
1E6J X-ray 3.00 P 143-352 [» ]
1EP4 X-ray 2.50 A 588-1147 [» ]
B 588-1027 [» ]
1ESK NMR - A 390-430 [» ]
1EX4 X-ray 2.80 A/B 1199-1435 [» ]
1EXQ X-ray 1.60 A/B 1203-1356 [» ]
1FB7 X-ray 2.60 A 489-587 [» ]
1FK9 X-ray 2.50 A 588-1130 [» ]
B 588-1027 [» ]
1FKO X-ray 2.90 A 588-1130 [» ]
B 588-1027 [» ]
1FKP X-ray 2.90 A 588-1130 [» ]
B 588-1027 [» ]
1G6L X-ray 1.90 A 484-587 [» ]
1HIV X-ray 2.00 A/B 489-587 [» ]
1HVH X-ray 1.80 A/B 489-587 [» ]
1HVR X-ray 1.80 A/B 489-587 [» ]
1HWR X-ray 1.80 A/B 489-587 [» ]
1HXB X-ray 2.30 A/B 489-587 [» ]
1JKH X-ray 2.50 A 588-1147 [» ]
B 588-1027 [» ]
1JLA X-ray 2.50 A 588-1147 [» ]
B 588-1027 [» ]
1JLB X-ray 3.00 A 588-1147 [» ]
B 588-1027 [» ]
1JLC X-ray 3.00 A 588-1147 [» ]
B 588-1027 [» ]
1JLE X-ray 2.80 A 588-1147 [» ]
B 588-1027 [» ]
1JLF X-ray 2.60 A 588-1147 [» ]
B 588-1027 [» ]
1JLG X-ray 2.60 A 588-1147 [» ]
B 588-1027 [» ]
1JLQ X-ray 3.00 A 588-1147 [» ]
B 588-1027 [» ]
1KLM X-ray 2.65 A 588-1147 [» ]
B 588-1027 [» ]
1LV1 X-ray 2.10 A 484-587 [» ]
1LW0 X-ray 2.80 A 588-1147 [» ]
B 588-1027 [» ]
1LW2 X-ray 3.00 A 588-1147 [» ]
B 588-1027 [» ]
1LWC X-ray 2.62 A 588-1147 [» ]
B 588-1027 [» ]
1LWE X-ray 2.81 A 588-1147 [» ]
B 588-1027 [» ]
1LWF X-ray 2.80 A 588-1147 [» ]
B 588-1027 [» ]
1NCP NMR - N 390-406 [» ]
1O1W NMR - A 1014-1147 [» ]
1ODW X-ray 2.10 A/B 489-587 [» ]
1ODY X-ray 2.00 A/B 489-587 [» ]
1QBR X-ray 1.80 A/B 489-587 [» ]
1QBS X-ray 1.80 A/B 489-587 [» ]
1QBT X-ray 2.10 A/B 489-587 [» ]
1QBU X-ray 1.80 A/B 489-587 [» ]
1REV X-ray 2.60 A 588-1147 [» ]
B 588-1027 [» ]
1RT1 X-ray 2.55 A 588-1147 [» ]
B 588-1027 [» ]
1RT2 X-ray 2.55 A 588-1147 [» ]
B 588-1027 [» ]
1RT3 X-ray 3.00 A 588-1147 [» ]
B 588-1027 [» ]
1RT4 X-ray 2.90 A 588-1147 [» ]
B 588-1027 [» ]
1RT5 X-ray 2.90 A 588-1147 [» ]
B 588-1027 [» ]
1RT6 X-ray 2.80 A 588-1147 [» ]
B 588-1027 [» ]
1RT7 X-ray 3.00 A 588-1147 [» ]
B 588-1027 [» ]
1RTD X-ray 3.20 B/D 588-1027 [» ]
1RTH X-ray 2.20 A 588-1147 [» ]
B 588-1027 [» ]
1RTI X-ray 3.00 A 588-1147 [» ]
B 588-1027 [» ]
1RTJ X-ray 2.35 A 588-1147 [» ]
B 588-1027 [» ]
1S1T X-ray 2.40 A 588-1147 [» ]
B 588-1027 [» ]
1S1U X-ray 3.00 A 588-1147 [» ]
B 588-1027 [» ]
1S1V X-ray 2.60 A 588-1147 [» ]
B 588-1027 [» ]
1S1W X-ray 2.70 A 588-1147 [» ]
B 588-1027 [» ]
1S1X X-ray 2.80 A 588-1147 [» ]
B 588-1027 [» ]
1T05 X-ray 3.00 B 588-1016 [» ]
1TAM NMR - A 1-132 [» ]
1TKT X-ray 2.60 A 588-1147 [» ]
B 588-1027 [» ]
1TKX X-ray 2.85 A 588-1147 [» ]
B 588-1027 [» ]
1TKZ X-ray 2.81 A 588-1147 [» ]
B 588-1027 [» ]
1TL1 X-ray 2.90 A 588-1147 [» ]
B 588-1027 [» ]
1TL3 X-ray 2.80 A 588-1147 [» ]
B 588-1027 [» ]
1VRT X-ray 2.20 A 588-1147 [» ]
B 588-1027 [» ]
1VRU X-ray 2.40 A 588-1147 [» ]
B 588-1027 [» ]
2HND X-ray 2.50 A 591-1124 [» ]
2HNY X-ray 2.50 A 591-1124 [» ]
2HNZ X-ray 3.00 A 591-1124 [» ]
B 594-1015 [» ]
2KOD NMR - A/B 276-363 [» ]
2NPH X-ray 1.65 A/B 489-587 [» ]
2OPP X-ray 2.55 A 591-1132 [» ]
B 592-1018 [» ]
2OPQ X-ray 2.80 A 591-1124 [» ]
2OPR X-ray 2.90 A 589-1135 [» ]
B 593-1018 [» ]
2OPS X-ray 2.30 A 589-1130 [» ]
B 593-1027 [» ]
2RF2 X-ray 2.40 A 588-1147 [» ]
B 588-1027 [» ]
2RKI X-ray 2.30 A 588-1147 [» ]
B 588-1027 [» ]
2WHH X-ray 1.69 A 489-587 [» ]
2WOM X-ray 3.20 A 588-1147 [» ]
B 588-1027 [» ]
2WON X-ray 2.80 A 588-1147 [» ]
B 588-1027 [» ]
2YNF X-ray 2.36 A 588-1147 [» ]
B 588-1015 [» ]
2YNG X-ray 2.12 A 588-1147 [» ]
B 588-1015 [» ]
2YNH X-ray 2.90 A 588-1147 [» ]
B 588-1015 [» ]
2YNI X-ray 2.49 A 588-1147 [» ]
B 588-1015 [» ]
3AO2 X-ray 1.80 A/B 1197-1359 [» ]
3C6T X-ray 2.70 A 588-1147 [» ]
B 588-1027 [» ]
3C6U X-ray 2.70 A 588-1147 [» ]
B 588-1027 [» ]
3DI6 X-ray 2.65 A 588-1148 [» ]
B 588-1027 [» ]
3DLE X-ray 2.50 A 588-1147 [» ]
B 588-1027 [» ]
3DLG X-ray 2.20 A 588-1147 [» ]
B 588-1027 [» ]
3DM2 X-ray 3.10 A 588-1147 [» ]
B 588-1027 [» ]
3DMJ X-ray 2.60 A 588-1147 [» ]
B 588-1027 [» ]
3DOK X-ray 2.90 A 588-1147 [» ]
B 588-1027 [» ]
3DOL X-ray 2.50 A 588-1147 [» ]
B 588-1027 [» ]
3DOX X-ray 2.00 A 484-587 [» ]
3DRP X-ray 2.60 A 588-1147 [» ]
B 588-1027 [» ]
3DRR X-ray 2.89 A 588-1147 [» ]
B 588-1027 [» ]
3DRS X-ray 3.15 A 588-1147 [» ]
B 588-1027 [» ]
3DYA X-ray 2.30 A 588-1148 [» ]
B 588-1027 [» ]
3E01 X-ray 2.95 A 588-1148 [» ]
B 588-1027 [» ]
3FFI X-ray 2.60 A 588-1147 [» ]
B 588-1027 [» ]
3I0R X-ray 2.98 A 588-1147 [» ]
B 588-1027 [» ]
3I0S X-ray 2.70 A 588-1147 [» ]
B 588-1027 [» ]
3KJV X-ray 3.10 A 588-1147 [» ]
B 588-1027 [» ]
3KK1 X-ray 2.70 A 588-1147 [» ]
B 588-1027 [» ]
3KK2 X-ray 2.90 A 588-1147 [» ]
B 588-1027 [» ]
3KK3 X-ray 2.90 A 588-1147 [» ]
B 588-1027 [» ]
3KT2 X-ray 1.65 A 484-587 [» ]
3KT5 X-ray 1.80 A 484-587 [» ]
3LAK X-ray 2.30 A/B 588-1147 [» ]
3LAL X-ray 2.51 A/B 588-1147 [» ]
3LAM X-ray 2.76 A/B 588-1147 [» ]
3LAN X-ray 2.55 A/B 588-1147 [» ]
3LP0 X-ray 2.79 A 588-1147 [» ]
B 588-1027 [» ]
3LP1 X-ray 2.23 A 588-1147 [» ]
B 588-1027 [» ]
3LP2 X-ray 2.80 A 588-1147 [» ]
B 588-1027 [» ]
3M8P X-ray 2.67 A 588-1148 [» ]
B 588-1027 [» ]
3M8Q X-ray 2.70 A 588-1148 [» ]
B 588-1027 [» ]
3MEC X-ray 2.30 A 588-1147 [» ]
B 588-1027 [» ]
3MED X-ray 2.50 A 588-1147 [» ]
B 588-1027 [» ]
3MEE X-ray 2.40 A 588-1147 [» ]
B 588-1027 [» ]
3MEG X-ray 2.80 A 588-1147 [» ]
B 588-1027 [» ]
3MIM X-ray 1.76 A/B 489-587 [» ]
3N3I X-ray 2.50 A 484-587 [» ]
3NBP X-ray 2.95 A 588-1148 [» ]
B 588-1027 [» ]
3PHV X-ray 2.70 A 489-587 [» ]
3QIN X-ray 1.70 A 1014-1103 [» ]
A 1142-1148 [» ]
3QIO X-ray 1.40 A 1014-1148 [» ]
3QIP X-ray 2.09 A 588-1147 [» ]
B 588-1027 [» ]
3T19 X-ray 2.60 A/B 588-1147 [» ]
3T1A X-ray 2.40 A/B 588-1147 [» ]
3TAM X-ray 2.51 A 590-1147 [» ]
B 588-1027 [» ]
4B3O X-ray 3.30 A 588-1145 [» ]
B 588-1027 [» ]
4B3P X-ray 4.84 A 588-1145 [» ]
B 588-1027 [» ]
4B3Q X-ray 5.00 A 588-1145 [» ]
B 588-1027 [» ]
4I7F X-ray 2.50 A 588-1147 [» ]
B 588-1027 [» ]
4KSE X-ray 2.68 B 588-1017 [» ]
4KV8 X-ray 2.30 A 588-1147 [» ]
B 588-1027 [» ]
4NCG X-ray 2.58 A 588-1147 [» ]
B 585-1027 [» ]
4QLH X-ray 2.45 A 489-587 [» ]
ProteinModelPortali P04585.
SMRi P04585. Positions 1-432, 489-1144, 1148-1417.
ModBasei Search...
MobiDBi Search...

Protein-protein interaction databases

IntActi P04585. 2 interactions.
MINTi MINT-111862.

Chemistry

BindingDBi P04585.

Protocols and materials databases

Structural Biology Knowledgebase Search...

Genome annotation databases

GeneIDi 155348.

Enzyme and pathway databases

Reactomei REACT_6266. Early Phase of HIV Life Cycle.
REACT_6359. Budding and maturation of HIV virion.
REACT_6818. Assembly Of The HIV Virion.
REACT_6866. Autointegration results in viral DNA circles.
REACT_6903. Binding and entry of HIV virion.
REACT_6918. Integration of provirus.
REACT_6965. Uncoating of the HIV Virion.
REACT_7991. Vpr-mediated nuclear import of PICs.
REACT_8990. Integration of viral DNA into host genomic DNA.
REACT_9037. Plus-strand DNA synthesis.
REACT_9055. Minus-strand DNA synthesis.
REACT_9058. 2-LTR circle formation.
REACT_9406. APOBEC3G mediated resistance to HIV-1 infection.
SABIO-RK P04585.

Miscellaneous databases

EvolutionaryTracei P04585.

Family and domain databases

Gene3Di 1.10.10.200. 1 hit.
1.10.1200.30. 1 hit.
1.10.150.90. 1 hit.
1.10.375.10. 1 hit.
2.30.30.10. 1 hit.
2.40.70.10. 1 hit.
3.30.420.10. 2 hits.
4.10.60.10. 1 hit.
InterProi IPR001969. Aspartic_peptidase_AS.
IPR000721. Gag_p24.
IPR001037. Integrase_C_retrovir.
IPR001584. Integrase_cat-core.
IPR017856. Integrase_Zn-bd_dom-like_N.
IPR003308. Integrase_Zn-bd_dom_N.
IPR000071. Lentvrl_matrix_N.
IPR012344. Matrix_N_HIV/RSV.
IPR018061. Pept_A2A_retrovirus_sg.
IPR001995. Peptidase_A2_cat.
IPR021109. Peptidase_aspartic_dom.
IPR008916. Retrov_capsid_C.
IPR008919. Retrov_capsid_N.
IPR010999. Retrovr_matrix_N.
IPR012337. RNaseH-like_dom.
IPR002156. RNaseH_domain.
IPR000477. RT_dom.
IPR010659. RVT_connect.
IPR010661. RVT_thumb.
IPR001878. Znf_CCHC.
[Graphical view ]
Pfami PF00540. Gag_p17. 1 hit.
PF00607. Gag_p24. 1 hit.
PF00552. IN_DBD_C. 1 hit.
PF02022. Integrase_Zn. 1 hit.
PF00075. RNase_H. 1 hit.
PF00665. rve. 1 hit.
PF00077. RVP. 1 hit.
PF00078. RVT_1. 1 hit.
PF06815. RVT_connect. 1 hit.
PF06817. RVT_thumb. 1 hit.
PF00098. zf-CCHC. 2 hits.
[Graphical view ]
PRINTSi PR00234. HIV1MATRIX.
SMARTi SM00343. ZnF_C2HC. 2 hits.
[Graphical view ]
SUPFAMi SSF46919. SSF46919. 1 hit.
SSF47353. SSF47353. 1 hit.
SSF47836. SSF47836. 1 hit.
SSF47943. SSF47943. 1 hit.
SSF50122. SSF50122. 1 hit.
SSF50630. SSF50630. 1 hit.
SSF53098. SSF53098. 2 hits.
SSF57756. SSF57756. 1 hit.
PROSITEi PS50175. ASP_PROT_RETROV. 1 hit.
PS00141. ASP_PROTEASE. 1 hit.
PS50994. INTEGRASE. 1 hit.
PS51027. INTEGRASE_DBD. 1 hit.
PS50879. RNASE_H. 1 hit.
PS50878. RT_POL. 1 hit.
PS50158. ZF_CCHC. 2 hits.
PS50876. ZF_INTEGRASE. 1 hit.
[Graphical view ]
ProtoNeti Search...

Publicationsi

  1. Cited for: NUCLEOTIDE SEQUENCE [GENOMIC RNA].
  2. Ogata N., Alter H.J., Miller R.H., Purcell R.H.
    Submitted (JUN-1996) to the EMBL/GenBank/DDBJ databases
    Cited for: SEQUENCE REVISION.
  3. Chappey C.
    Submitted (MAR-1999) to the EMBL/GenBank/DDBJ databases
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC RNA].
  4. "Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro."
    Leavitt A.D., Shiue L., Varmus H.E.
    J. Biol. Chem. 268:2113-2119(1993) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF HIS-1159; HIS-1163; GLN-1200; ASP-1211; SER-1228; ASP-1263; GLU-1299; ARG-1346 AND TRP-1382.
  5. "Human immunodeficiency virus type 1 integrase: effect on viral replication of mutations at highly conserved residues."
    Cannon P.M., Wilson W., Byles E., Kingsman S.M., Kingsman A.J.
    J. Virol. 68:4768-4775(1994) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF CYS-1187; CYS-1190; TRP-1208; ASP-1211; THR-1213; VAL-1222; SER-1228; THR-1262; ASP-1263; GLY-1270; ILE-1282; VAL-1298; GLU-1299; LYS-1306; ALA-1326 AND TRP-1382.
    Strain: Isolate WI3.
  6. "Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B."
    Luban J., Bossolt K.L., Franke E.K., Kalpana G.V., Goff S.P.
    Cell 73:1067-1078(1993) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION OF CAPSID WITH HUMAN PPIA/CYPA.
  7. "Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5."
    Kalpana G.V., Marmon S., Wang W., Crabtree G.R., Goff S.P.
    Science 266:2002-2006(1994) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION OF INTEGRASE WITH HUMAN SMARCB1/INI1.
  8. "Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription."
    Braaten D., Franke E.K., Luban J.
    J. Virol. 70:3551-3560(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION OF CAPSID.
  9. "Molecular recognition in the HIV-1 capsid/cyclophilin A complex."
    Yoo S., Myszka D.G., Yeh C., McMurray M., Hill C.P., Sundquist W.I.
    J. Mol. Biol. 269:780-795(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF PRO-217; VAL-218; HIS-219; ALA-220; GLY-221; PRO-222; ILE-223; ALA-224 AND PRO-225.
  10. "Mutations in the human immunodeficiency virus type 1 integrase D,D(35)E motif do not eliminate provirus formation."
    Gaur M., Leavitt A.D.
    J. Virol. 72:4678-4685(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF ASP-1211; ASP-1263 AND GLU-1299.
  11. "Organization of HIV-1 pol is critical for Pol polyprotein processing."
    Chang Y.Y., Yu S.L., Syu W.J.
    J. Biomed. Sci. 6:333-341(1999) [PubMed] [Europe PMC] [Abstract]
    Cited for: PROTEOLYTIC PROCESSING OF POLYPROTEIN.
  12. "Maintenance of the Gag/Gag-Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity."
    Shehu-Xhilaga M., Crowe S.M., Mak J.
    J. Virol. 75:1834-1841(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: GAG/GAG-POL RATIO.
  13. "Mutations in the ribonuclease H active site of HIV-RT reveal a role for this site in stabilizing enzyme-primer-template binding."
    Cristofaro J.V., Rausch J.W., Le Grice S.F., DeStefano J.J.
    Biochemistry 41:10968-10975(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: ACTIVE SITES OF RNASE H, MUTAGENESIS OF GLU-1065 AND ASP-1136.
  14. "Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A."
    Bosco D.A., Eisenmesser E.Z., Pochapsky S., Sundquist W.I., Kern D.
    Proc. Natl. Acad. Sci. U.S.A. 99:5247-5252(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: CIS/TRANS ISOMERIZATION OF CAPSID.
  15. "Subtle alterations of the native zinc finger structures have dramatic effects on the nucleic acid chaperone activity of human immunodeficiency virus type 1 nucleocapsid protein."
    Guo J., Wu T., Kane B.F., Johnson D.G., Henderson L.E., Gorelick R.J., Levin J.G.
    J. Virol. 76:4370-4378(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF HIS-400; CYS-405; HIS-421 AND CYS-426.
  16. "The dimer interfaces of protease and extra-protease domains influence the activation of protease and the specificity of GagPol cleavage."
    Pettit S.C., Gulnik S., Everitt L., Kaplan A.H.
    J. Virol. 77:366-374(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: PROTEOLYTIC PROCESSING OF POLYPROTEIN.
  17. "The barrier-to-autointegration factor is a component of functional human immunodeficiency virus type 1 preintegration complexes."
    Lin C.W., Engelman A.
    J. Virol. 77:5030-5036(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION OF MATRIX PROTEIN P17 WITH HUMAN BAF.
  18. "Structural organization of authentic, mature HIV-1 virions and cores."
    Briggs J.A., Wilk T., Welker R., Krausslich H.G., Fuller S.D.
    EMBO J. 22:1707-1715(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: QUARTERNARY STRUCTURE OF CAPSID.
  19. "Cleavage of eIF4G by HIV-1 protease: effects on translation."
    Perales C., Carrasco L., Ventoso I.
    FEBS Lett. 533:89-94(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION OF PROTEASE.
  20. "In vitro processing of HIV-1 nucleocapsid protein by the viral proteinase: effects of amino acid substitutions at the scissile bond in the proximal zinc finger sequence."
    Tozser J., Shulenin S., Louis J.M., Copeland T.D., Oroszlan S.
    Biochemistry 43:4304-4312(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: CLEAVAGE OF NUCLEOCAPSID PROTEIN P7.
  21. "Human immunodeficiency virus type 1 Gag polyprotein modulates its own translation."
    Anderson E.C., Lever A.M.
    J. Virol. 80:10478-10486(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  22. "Characterization of human immunodeficiency virus type 1 (HIV-1) containing mutations in the nucleocapsid protein at a putative HIV-1 protease cleavage site."
    Thomas J.A., Shulenin S., Coren L.V., Bosche W.J., Gagliardi T.D., Gorelick R.J., Oroszlan S.
    Virology 354:261-270(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF ASN-394.
  23. "Dissecting the protein-RNA and RNA-RNA interactions in the nucleocapsid-mediated dimerization and isomerization of HIV-1 stemloop 1."
    Hagan N.A., Fabris D.
    J. Mol. Biol. 365:396-410(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION OF NUCLEOCAPSID PROTEIN P7.
  24. "Importin alpha3 interacts with HIV-1 integrase and contributes to HIV-1 nuclear import and replication."
    Ao Z., Danappa Jayappa K., Wang B., Zheng Y., Kung S., Rassart E., Depping R., Kohler M., Cohen E.A., Yao X.
    J. Virol. 84:8650-8663(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION OF INTEGRASE, INTERACTION OF INTEGRASE WITH HUMAN KPNA3.
  25. "HIV- 1 protease inhibits Cap- and poly(A)-dependent translation upon eIF4GI and PABP cleavage."
    Castello A., Franco D., Moral-Lopez P., Berlanga J.J., Alvarez E., Wimmer E., Carrasco L.
    PLoS ONE 4:E7997-E7997(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION OF PROTEASE.
  26. "Evidence that HIV-1 reverse transcriptase employs the DNA 3' end directed primary/secondary RNase H cleavage mechanism during synthesis and strand transfer."
    Purohit V., Balakrishnan M., Kim B., Bambara R.A.
    J. Biol. Chem. 280:40534-40543(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: CHARACTERIZATION OF REVERSE TRANSCRIPTASE AND RNASE H.
  27. "Proteolytic processing and particle maturation."
    Vogt V.M.
    Curr. Top. Microbiol. Immunol. 214:95-131(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  28. Cited for: REVIEW.
  29. "Mechanisms of retroviral recombination."
    Negroni M., Buc H.
    Annu. Rev. Genet. 35:275-302(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  30. Cited for: REVIEW.
  31. "Role of HIV-1 Gag domains in viral assembly."
    Scarlata S., Carter C.
    Biochim. Biophys. Acta 1614:62-72(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  32. "Human cell proteins and human immunodeficiency virus DNA integration."
    Turlure F., Devroe E., Silver P.A., Engelman A.
    Front. Biosci. 9:3187-3208(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  33. "Cyclophilin, TRIM5, and innate immunity to HIV-1."
    Sokolskaja E., Luban J.
    Curr. Opin. Microbiol. 9:404-408(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  34. "X-ray analysis of HIV-1 proteinase at 2.7-A resolution confirms structural homology among retroviral enzymes."
    Lapatto R., Blundell T., Hemmings A., Overington J., Wilderspin A., Wood S., Merson J.R., Whittle P.J., Danley D.E., Geoghegan K.F., Hawrylik S.J., Lee S.E., Scheld K.G., Hobart P.M.
    Nature 342:299-302(1989) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.7 ANGSTROMS) OF 489-587.
  35. "Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isostere."
    Krohn A., Redshaw S., Ritchie J.C., Graves B.J., Hatada M.H.
    J. Med. Chem. 34:3340-3342(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 489-587 IN COMPLEX WITH THE INHIBITOR RO 32-8959.
  36. "Structural characterization of a 39-residue synthetic peptide containing the two zinc binding domains from the HIV-1 p7 nucleocapsid protein by CD and NMR spectroscopy."
    Omichinski J.G., Clore G.M., Sakaguchi K., Appella E., Gronenborn A.M.
    FEBS Lett. 292:25-30(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: STRUCTURE BY NMR OF 390-406.
  37. "Crystal structure of a complex of HIV-1 protease with a dihydroxyethylene-containing inhibitor: comparisons with molecular modeling."
    Thanki N., Rao J.K., Foundling S.I., Howe W.J., Moon J.B., Hui J.O., Tomasselli A.G., Heinrikson R.L., Thaisrivongs S., Wlodawer A.
    Protein Sci. 1:1061-1072(1992) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 489-587 IN COMPLEX WITH A DIHYDROXYETHYLENE-CONTAINING INHIBITOR.
  38. "Conformational behaviour of the active and inactive forms of the nucleocapsid NCp7 of HIV-1 studied by 1H NMR."
    Morellet N., de Rocquigny H., Mely Y., Jullian N., Demene H., Ottmann M., Gerard D., Darlix J.L., Fournie-Zaluski M.-C., Roques B.P.
    J. Mol. Biol. 235:287-301(1994) [PubMed] [Europe PMC] [Abstract]
    Cited for: STRUCTURE BY NMR OF 390-430.
  39. Cited for: X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) OF 489-587 IN COMPLEX WITH THE INHIBITOR XK263.
  40. Cited for: X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 588-1147.
  41. "Refined solution structure of p17, the HIV matrix protein."
    Matthews S., Barlow P., Clark N., Kingsman S., Kingsman A., Campbell I.
    Biochem. Soc. Trans. 23:725-729(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: STRUCTURE BY NMR OF 1-132.
  42. "The structure of HIV-1 reverse transcriptase complexed with 9-chloro-TIBO: lessons for inhibitor design."
    Ren J.S., Esnouf R.M., Hopkins A.L., Ross C.K., Jones E.Y., Stammers D.K., Stuart D.I.
    Structure 3:915-926(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.6 ANGSTROMS) OF 588-1027.
  43. "Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors."
    Esnouf R.M., Ren J.S., Ross C.K., Jones E.Y., Stammers D.K., Stuart D.I.
    Nat. Struct. Biol. 2:303-308(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.35 ANGSTROMS) OF 588-1147.
  44. "Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors."
    Hopkins A.L., Ren J.S., Esnouf R.M., Willcox B.E., Jones E.Y., Ross C.K., Miyasaka T., Walker R.T., Tanaka H., Stammers D.K., Stuart D.I.
    J. Med. Chem. 39:1589-1600(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.55 ANGSTROMS) OF 588-1027.
  45. "Improved cyclic urea inhibitors of the HIV-1 protease: synthesis, potency, resistance profile, human pharmacokinetics and X-ray crystal structure of DMP 450."
    Hodge C.N., Aldrich P.E., Bacheler L.T., Chang C.-H., Eyermann C.J., Garber S.S., Grubb M., Jackson D.A., Jadhav P.K., Korant B.D., Lam P.Y.S., Maurin M.B., Meek J.L., Otto M.J., Rayner M.M., Reid C., Sharpe T.R., Shum L., Winslow D.L., Erickson-Viitanen S.
    Chem. Biol. 3:301-314(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 489-587 IN COMPLEX WITH COMPLEX WITH DMP450.
  46. "Three-dimensional solution structure of the HIV-1 protease complexed with DMP323, a novel cyclic urea-type inhibitor, determined by nuclear magnetic resonance spectroscopy."
    Yamazaki T., Hinck A.P., Wang Y.X., Nicholson L.K., Torchia D.A., Wingfield P., Stahl S.J., Kaufman J.D., Chang C.-H., Domaille P.J., Lam P.Y.S.
    Protein Sci. 5:495-506(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: STRUCTURE BY NMR OF 489-587 IN COMPLEX WITH THE INHIBITOR DMP323.
  47. "Unique features in the structure of the complex between HIV-1 reverse transcriptase and the bis(heteroaryl)piperazine (BHAP) U-90152 explain resistance mutations for this nonnucleoside inhibitor."
    Esnouf R.M., Ren J.S., Hopkins A.L., Ross C.K., Jones E.Y., Stammers D.K., Stuart D.I.
    Proc. Natl. Acad. Sci. U.S.A. 94:3984-3989(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.65 ANGSTROMS) OF 588-1130.
  48. "Cyclic urea amides: HIV-1 protease inhibitors with low nanomolar potency against both wild type and protease inhibitor resistant mutants of HIV."
    Jadhav P.K., Ala P.J., Woerner F.J., Chang C.-H., Garber S.S., Anton E.D., Bacheler L.T.
    J. Med. Chem. 40:181-191(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) OF 489-587.
  49. "Toward a universal inhibitor of retroviral proteases: comparative analysis of the interactions of LP-130 complexed with proteases from HIV-1, FIV, and EIAV."
    Kervinen J., Lubkowski J., Zdanov A., Bhatt D., Dunn B.M., Hui K.Y., Powell D.J., Kay J., Wlodawer A., Gustchina A.
    Protein Sci. 7:2314-2323(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 489-587 IN COMPLEX WITH THE INHIBITOR LP-130.
  50. "Nonpeptide cyclic cyanoguanidines as HIV-1 protease inhibitors: synthesis, structure-activity relationships, and X-ray crystal structure studies."
    Jadhav P.K., Woerner F.J., Lam P.Y., Hodge C.N., Eyermann C.J., Man H.W., Daneker W.F., Bacheler L.T., Rayner M.M., Meek J.L., Erickson-Viitanen S., Jackson D.A., Calabrese J.C., Schadt M.C., Chang C.-H.
    J. Med. Chem. 41:1446-1455(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) OF 489-587.
  51. "Counteracting HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with XV638 and SD146, cyclic urea amides with broad specificities."
    Ala P.J., Huston E.E., Klabe R.M., Jadhav P.K., Lam P.Y.S., Chang C.-H.
    Biochemistry 37:15042-15049(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) OF 489-587.
  52. Cited for: X-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS) OF 489-587.
  53. "Hydrophilic peptides derived from the transframe region of Gag-Pol inhibit the HIV-1 protease."
    Louis J.M., Dyda F., Nashed N.T., Kimmel A.R., Davies D.R.
    Biochemistry 37:2105-2110(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 490-587 IN COMPLEX WITH A TRIPEPTIDE INHIBITOR.
  54. "3'-azido-3'-deoxythymidine drug resistance mutations in HIV-1 reverse transcriptase can induce long range conformational changes."
    Ren J.S., Esnouf R.M., Hopkins A.L., Jones E.Y., Kirby I., Keeling J., Ross C.K., Larder B.A., Stuart D.I., Stammers D.K.
    Proc. Natl. Acad. Sci. U.S.A. 95:9518-9523(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 588-1130.
  55. "Crystal structures of HIV-1 reverse transcriptase in complex with carboxanilide derivatives."
    Ren J.S., Esnouf R.M., Hopkins A.L., Warren J., Balzarini J., Stuart D.I., Stammers D.K.
    Biochemistry 37:14394-14403(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.5 ANGSTROMS) OF 588-1147 IN COMPLEX WITH CARBOXANILIDE DERIVATIVES.
  56. "Structural and kinetic analysis of drug resistant mutants of HIV-1 protease."
    Mahalingam B., Louis J.M., Reed C.C., Adomat J.M., Krouse J., Wang Y.-F., Harrison R.W., Weber I.T.
    Eur. J. Biochem. 263:238-245(1999) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (1.88 ANGSTROMS) OF 501-599.
  57. "Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding."
    Chen J.C., Krucinski J., Miercke L.J., Finer-Moore J.S., Tang A.H., Leavitt A.D., Stroud R.M.
    Proc. Natl. Acad. Sci. U.S.A. 97:8233-8238(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 1199-1435.
  58. "1.9 A X-ray study shows closed flap conformation in crystals of tethered HIV-1 PR."
    Pillai B., Kannan K.K., Hosur M.V.
    Proteins 43:57-64(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (1.9 ANGSTROMS) OF 489-587.
  59. "Structural mechanisms of drug resistance for mutations at codons 181 and 188 in HIV-1 reverse transcriptase and the improved resilience of second generation non-nucleoside inhibitors."
    Ren J.S., Nichols C.E., Bird L.E., Chamberlain P.P., Weaver K.L., Short S.A., Stuart D.I., Stammers D.K.
    J. Mol. Biol. 312:795-805(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS) OF 588-1147 IN COMPLEX WITH INHIBITORS.
  60. "Effects of remote mutation on the autolysis of HIV-1 PR: X-ray and NMR investigations."
    Kumar M., Kannan K.K., Hosur M.V., Bhavesh N.S., Chatterjee A., Mittal R., Hosur R.V.
    Biochem. Biophys. Res. Commun. 294:395-401(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.1 ANGSTROMS) OF 489-587.
  61. "Solution structure of the RNase H domain of the HIV-1 reverse transcriptase in the presence of magnesium."
    Pari K., Mueller G.A., DeRose E.F., Kirby T.W., London R.E.
    Biochemistry 42:639-650(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: STRUCTURE BY NMR OF 1014-1147.
  62. "Crystal structures of HIV-1 reverse transcriptases mutated at codons 100, 106 and 108 and mechanisms of resistance to non-nucleoside inhibitors."
    Ren J.S., Nichols C.E., Chamberlain P.P., Weaver K.L., Short S.A., Stammers D.K.
    J. Mol. Biol. 336:569-578(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 588-1147 IN COMPLEX WITH INHIBITORS.
  63. Cited for: X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 588-1147 IN COMPLEX WITH INHIBITORS.

Entry informationi

Entry nameiPOL_HV1H2
AccessioniPrimary (citable) accession number: P04585
Secondary accession number(s): O09777, Q9WJC5
Entry historyi
Integrated into UniProtKB/Swiss-Prot: August 13, 1987
Last sequence update: January 23, 2007
Last modified: November 26, 2014
This is version 185 of the entry and version 4 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programViral Protein Annotation Program

Miscellaneousi

Miscellaneous

Capsid protein p24 is able to bind macaque TRIM5-alpha or owl monkey TRIMCyp, preventing reverse transcription of the viral genome and succesfull infection of macaque or owl monkey by HIV-1.
The reverse transcriptase is an error-prone enzyme that lacks a proof-reading function. High mutations rate is a direct consequence of this characteristic. RT also displays frequent template switching leading to high recombination rate. Recombination mostly occurs between homologous regions of the two copackaged RNA genomes. If these two RNA molecules derive from different viral strains, reverse transcription will give rise to highly recombinated proviral DNAs.
HIV-1 lineages are divided in three main groups, M (for Major), O (for Outlier), and N (for New, or Non-M, Non-O). The vast majority of strains found worldwide belong to the group M. Group O seems to be endemic to and largely confined to Cameroon and neighboring countries in West Central Africa, where these viruses represent a small minority of HIV-1 strains. The group N is represented by a limited number of isolates from Cameroonian persons. The group M is further subdivided in 9 clades or subtypes (A to D, F to H, J and K).
Resistance to inhibitors associated with mutations are observed both in viral protease and in reverse transcriptase. Most of the time, single mutations confer only a modest reduction in drug susceptibility. Combination of several mutations is usually required to develop a high-level drug resistance. These mutations are predominantly found in clade B viruses and not in other genotypes. They are listed in this entry which is a representative of clade B.

Keywords - Technical termi

3D-structure, Complete proteome, Multifunctional enzyme, Reference proteome

Documents

  1. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  2. Peptidase families
    Classification of peptidase families and list of entries
  3. SIMILARITY comments
    Index of protein domains and families

External Data

Dasty 3