SubmitCancel

Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

P03366

- POL_HV1B1

UniProt

P03366 - POL_HV1B1

(max 400 entries)x

Your basket is currently empty.

Select item(s) and click on "Add to basket" to create your own collection here
(400 entries max)

Protein
Gag-Pol polyprotein
Gene
gag-pol
Organism
Human immunodeficiency virus type 1 group M subtype B (isolate BH10) (HIV-1)
Status
Reviewed - Annotation score: 5 out of 5 - Experimental evidence at protein leveli

Functioni

Gag-Pol polyprotein and Gag polyprotein may regulate their own translation, by the binding genomic RNA in the 5'-UTR. At low concentration, Gag-Pol and Gag would promote translation, whereas at high concentration, the polyproteins encapsidate genomic RNA and then shutt off translation By similarity.1 Publication
Matrix protein p17 has two main functions: in infected cell, it targets Gag and Gag-pol polyproteins to the plasma membrane via a multipartite membrane-binding signal, that includes its myristoylated N-terminus. The second function is to play a role in nuclear localization of the viral genome at the very start of cell infection. Matrix protein is the part of the pre-integration complex. It binds in the cytoplasm the human BAF protein which prevent autointegration of the viral genome, and might be included in virions at the ration of zero to 3 BAF dimer per virion. The myristoylation signal and the NLS thus exert conflicting influences its subcellular localization. The key regulation of these motifs might be phosphorylation of a portion of MA molecules on the C-terminal tyrosine at the time of virus maturation, by virion-associated cellular tyrosine kinase. Implicated in the release from host cell mediated by Vpu By similarity.1 Publication
Capsid protein p24 forms the conical core that encapsulates the genomic RNA-nucleocapsid complex in the virion. Most core are conical, with only 7% tubular. The core is constituted by capsid protein hexamer subunits. The core is disassembled soon after virion entry. Interaction with human PPIA/CYPA protects the virus from restriction by human TRIM5-alpha and from an unknown antiviral activity in human cells. This capsid restriction by TRIM5 is one of the factors which restricts HIV-1 to the human species By similarity.1 Publication
Nucleocapsid protein p7 encapsulates and protects viral dimeric unspliced (genomic) RNA. Binds these RNAs through its zinc fingers. Facilitates rearangement of nucleic acid secondary structure during retrotranscription of genomic RNA. This capability is referred to as nucleic acid chaperone activity By similarity.1 Publication
The aspartyl protease mediates proteolytic cleavages of Gag and Gag-Pol polyproteins during or shortly after the release of the virion from the plasma membrane. Cleavages take place as an ordered, step-wise cascade to yield mature proteins. This process is called maturation. Displays maximal activity during the budding process just prior to particle release from the cell. Also cleaves Nef and Vif, probably concomitantly with viral structural proteins on maturation of virus particles. Hydrolyzes host EIF4GI and PABP1 in order to shut off the capped cellular mRNA translation. The resulting inhibition of cellular protein synthesis serves to ensure maximal viral gene expression and to evade host immune response By similarity.1 Publication
Reverse transcriptase/ribonuclease H (RT) is a multifunctional enzyme that converts the viral RNA genome into dsDNA in the cytoplasm, shortly after virus entry into the cell. This enzyme displays a DNA polymerase activity that can copy either DNA or RNA templates, and a ribonuclease H (RNase H) activity that cleaves the RNA strand of RNA-DNA heteroduplexes in a partially processive 3' to 5' endonucleasic mode. Conversion of viral genomic RNA into dsDNA requires many steps. A tRNA(3)-Lys binds to the primer-binding site (PBS) situated at the 5'-end of the viral RNA. RT uses the 3' end of the tRNA primer to perform a short round of RNA-dependent minus-strand DNA synthesis. The reading proceeds through the U5 region and ends after the repeated (R) region which is present at both ends of viral RNA. The portion of the RNA-DNA heteroduplex is digested by the RNase H, resulting in a ssDNA product attached to the tRNA primer. This ssDNA/tRNA hybridizes with the identical R region situated at the 3' end of viral RNA. This template exchange, known as minus-strand DNA strong stop transfer, can be either intra- or intermolecular. RT uses the 3' end of this newly synthesized short ssDNA to perform the RNA-dependent minus-strand DNA synthesis of the whole template. RNase H digests the RNA template except for two polypurine tracts (PPTs) situated at the 5'-end and near the center of the genome. It is not clear if both polymerase and RNase H activities are simultaneous. RNase H probably can proceed both in a polymerase-dependent (RNA cut into small fragments by the same RT performing DNA synthesis) and a polymerase-independent mode (cleavage of remaining RNA fragments by free RTs). Secondly, RT performs DNA-directed plus-strand DNA synthesis using the PPTs that have not been removed by RNase H as primers. PPTs and tRNA primers are then removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to form a circular dsDNA intermediate. Strand displacement synthesis by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA copy of the viral genome that includes long terminal repeats (LTRs) at both ends By similarity.1 Publication
Integrase catalyzes viral DNA integration into the host chromosome, by performing a series of DNA cutting and joining reactions. This enzyme activity takes place after virion entry into a cell and reverse transcription of the RNA genome in dsDNA. The first step in the integration process is 3' processing. This step requires a complex comprising the viral genome, matrix protein, Vpr and integrase. This complex is called the pre-integration complex (PIC). The integrase protein removes 2 nucleotides from each 3' end of the viral DNA, leaving recessed CA OH's at the 3' ends. In the second step, the PIC enters cell nucleus. This process is mediated through integrase and Vpr proteins, and allows the virus to infect a non dividing cell. This ability to enter the nucleus is specific of lentiviruses, other retroviruses cannot and rely on cell division to access cell chromosomes. In the third step, termed strand transfer, the integrase protein joins the previously processed 3' ends to the 5' ends of strands of target cellular DNA at the site of integration. The 5'-ends are produced by integrase-catalyzed staggered cuts, 5 bp apart. A Y-shaped, gapped, recombination intermediate results, with the 5'-ends of the viral DNA strands and the 3' ends of target DNA strands remaining unjoined, flanking a gap of 5 bp. The last step is viral DNA integration into host chromosome. This involves host DNA repair synthesis in which the 5 bp gaps between the unjoined strands are filled in and then ligated. Since this process occurs at both cuts flanking the HIV genome, a 5 bp duplication of host DNA is produced at the ends of HIV-1 integration. Alternatively, Integrase may catalyze the excision of viral DNA just after strand transfer, this is termed disintegration By similarity.1 Publication

Catalytic activityi

Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
Endohydrolysis of RNA in RNA/DNA hybrids. Three different cleavage modes: 1. sequence-specific internal cleavage of RNA. Human immunodeficiency virus type 1 and Moloney murine leukemia virus enzymes prefer to cleave the RNA strand one nucleotide away from the RNA-DNA junction. 2. RNA 5'-end directed cleavage 13-19 nucleotides from the RNA end. 3. DNA 3'-end directed cleavage 15-20 nucleotides away from the primer terminus.
3'-end directed exonucleolytic cleavage of viral RNA-DNA hybrid.
Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).

Cofactori

Binds 2 magnesium ions for reverse transcriptase polymerase activity By similarity.
Binds 2 magnesium ions for ribonuclease H (RNase H) activity. Substrate-binding is a precondition for magnesium binding By similarity.
Magnesium ions for integrase activity. Binds at least 1, maybe 2 magnesium ions By similarity.

Enzyme regulationi

The viral protease is inhibited by many synthetic protease inhibitors (PIs), such as amprenavir, atazanavir, indinavir, loprinavir, nelfinavir, ritonavir and saquinavir. RT can be inhibited either by nucleoside RT inhibitors (NRTIs) or by non nucleoside RT inhibitors (NNRTIs). NRTIs act as chain terminators, whereas NNRTIs inhibit DNA polymerization by binding a small hydrophobic pocket near the RT active site and inducing an allosteric change in this region. Classical NRTIs are abacavir, adefovir (PMEA), didanosine (ddI), lamivudine (3TC), stavudine (d4T), tenofovir (PMPA), zalcitabine (ddC), and zidovudine (AZT). Classical NNRTIs are atevirdine (BHAP U-87201E), delavirdine, efavirenz (DMP-266), emivirine (I-EBU), and nevirapine (BI-RG-587). The tritherapies used as a basic effective treatment of AIDS associate two NRTIs and one NNRTI. Use of protease inhibitors in tritherapy regimens permit more ambitious therapeutic strategies By similarity.

Sites

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sitei132 – 1332Cleavage; by viral protease By similarity
Sitei221 – 2222Cis/trans isomerization of proline peptide bond; by human PPIA/CYPA By similarity
Sitei363 – 3642Cleavage; by viral protease By similarity
Sitei377 – 3782Cleavage; by viral protease By similarity
Sitei432 – 4332Cleavage; by viral protease Reviewed prediction
Sitei440 – 4412Cleavage; by viral protease
Sitei500 – 5012Cleavage; by viral protease
Active sitei525 – 5251For protease activity; shared with dimeric partner3 Publications
Sitei599 – 6002Cleavage; by viral protease By similarity
Metal bindingi709 – 7091Magnesium; catalytic; for reverse transcriptase activity
Metal bindingi784 – 7841Magnesium; catalytic; for reverse transcriptase activity
Metal bindingi785 – 7851Magnesium; catalytic; for reverse transcriptase activity
Sitei1000 – 10001Essential for RT p66/p51 heterodimerization
Sitei1013 – 10131Essential for RT p66/p51 heterodimerization
Sitei1039 – 10402Cleavage; by viral protease; partial
Metal bindingi1042 – 10421Magnesium; catalytic; for RNase H activity Inferred
Metal bindingi1077 – 10771Magnesium; catalytic; for RNase H activity Inferred
Metal bindingi1097 – 10971Magnesium; catalytic; for RNase H activity Inferred
Metal bindingi1148 – 11481Magnesium; catalytic; for RNase H activity Inferred
Sitei1159 – 11602Cleavage; by viral protease By similarity
Metal bindingi1223 – 12231Magnesium; catalytic; for integrase activity By similarity
Metal bindingi1275 – 12751Magnesium; catalytic; for integrase activity By similarity

Regions

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Zinc fingeri390 – 40718CCHC-type 1
Add
BLAST
Zinc fingeri411 – 42818CCHC-type 2
Add
BLAST
Zinc fingeri1162 – 120342Integrase-type
Add
BLAST
DNA bindingi1382 – 142948Integrase-type
Add
BLAST

GO - Molecular functioni

  1. DNA binding Source: UniProtKB-KW
  2. DNA-directed DNA polymerase activity Source: UniProtKB-KW
  3. RNA binding Source: UniProtKB-KW
  4. RNA-DNA hybrid ribonuclease activity Source: InterPro
  5. RNA-directed DNA polymerase activity Source: CACAO
  6. aspartic-type endopeptidase activity Source: UniProtKB-KW
  7. exoribonuclease H activity Source: UniProtKB-EC
  8. structural molecule activity Source: InterPro
  9. zinc ion binding Source: InterPro
Complete GO annotation...

GO - Biological processi

  1. DNA integration Source: UniProtKB-KW
  2. DNA recombination Source: UniProtKB-KW
  3. establishment of integrated proviral latency Source: UniProtKB-KW
  4. induction by virus of host cysteine-type endopeptidase activity involved in apoptotic process Source: UniProtKB-KW
  5. suppression by virus of host translation Source: UniProtKB-KW
  6. viral entry into host cell Source: UniProtKB-KW
  7. viral penetration into host nucleus Source: UniProtKB-KW
  8. viral release from host cell Source: UniProtKB-KW
Complete GO annotation...

Keywords - Molecular functioni

Aspartyl protease, DNA-directed DNA polymerase, Endonuclease, Hydrolase, Nuclease, Nucleotidyltransferase, Protease, RNA-directed DNA polymerase, Transferase

Keywords - Biological processi

Activation of host caspases by virus, DNA integration, DNA recombination, Eukaryotic host gene expression shutoff by virus, Eukaryotic host translation shutoff by virus, Host gene expression shutoff by virus, Host-virus interaction, Modulation of host cell apoptosis by virus, Viral genome integration, Viral penetration into host nucleus, Virion maturation, Virus entry into host cell, Virus exit from host cell

Keywords - Ligandi

DNA-binding, Magnesium, Metal-binding, RNA-binding, Viral nucleoprotein, Zinc

Enzyme and pathway databases

SABIO-RKP03366.

Names & Taxonomyi

Protein namesi
Recommended name:
Gag-Pol polyprotein
Alternative name(s):
Pr160Gag-Pol
Cleaved into the following 11 chains:
Matrix protein p17
Short name:
MA
Capsid protein p24
Short name:
CA
Transframe peptide
Short name:
TF
p6-pol
Short name:
p6*
Alternative name(s):
PR
Retropepsin
Alternative name(s):
Exoribonuclease H (EC:3.1.13.2)
p66 RT
Integrase
Short name:
IN
Gene namesi
Name:gag-pol
OrganismiHuman immunodeficiency virus type 1 group M subtype B (isolate BH10) (HIV-1)
Taxonomic identifieri11678 [NCBI]
Taxonomic lineageiVirusesRetro-transcribing virusesRetroviridaeOrthoretrovirinaeLentivirusPrimate lentivirus group
Virus hostiHomo sapiens (Human) [TaxID: 9606]
ProteomesiUP000007690: Genome

Subcellular locationi

Chain Matrix protein p17 : Virion Reviewed prediction. Host nucleus By similarity. Host cytoplasm By similarity. Host cell membrane; Lipid-anchor Reviewed prediction
Note: Following virus entry, the nuclear localization signal (NLS) of the matrix protein participates with Vpr to the nuclear localization of the viral genome. During virus production, the nuclear export activity of the matrix protein counteracts the NLS to maintain the Gag and Gag-Pol polyproteins in the cytoplasm, thereby directing unspliced RNA to the plasma membrane By similarity.
Chain Capsid protein p24 : Virion Reviewed prediction
Chain Integrase : Virion Reviewed prediction. Host nucleus Reviewed prediction. Host cytoplasm Reviewed prediction
Note: Nuclear at initial phase, cytoplasmic at assembly Reviewed prediction.

GO - Cellular componenti

  1. host cell cytoplasm Source: UniProtKB-SubCell
  2. host cell nucleus Source: UniProtKB-SubCell
  3. host cell plasma membrane Source: UniProtKB-SubCell
  4. intracellular Source: GOC
  5. membrane Source: UniProtKB-KW
  6. viral nucleocapsid Source: UniProtKB-KW
Complete GO annotation...

Keywords - Cellular componenti

Capsid protein, Host cell membrane, Host cytoplasm, Host membrane, Host nucleus, Membrane, Virion

Pathology & Biotechi

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi440 – 4401F → I: Complete loss of cleavage between NC and TF. 1 Publication
Mutagenesisi500 – 5001F → I: Complete loss of cleavage between TF and p15. 1 Publication
Mutagenesisi651 – 6511P → G: 74% loss of polymerase activity. 86% loss of RNase H activity. 1 Publication
Mutagenesisi654 – 6541P → G: 64% loss of polymerase activity. 57% loss of RNase H activity. 1 Publication
Mutagenesisi664 – 6641K → A: Strong decrease in RT binding affinity for all dNTP substrates and in catalytic efficiency. 100-fold decreased sensitivity to ddNTP inhibitors. 1 Publication
Mutagenesisi664 – 6641K → E: Strong decrease in RT binding affinity for all dNTP substrates and in catalytic efficiency. 100-fold decreased sensitivity to ddNTP inhibitors. 1 Publication
Mutagenesisi664 – 6641K → Q: Strong decrease in RT binding affinity for all dNTP substrates and in catalytic efficiency. 100-fold decreased sensitivity to ddNTP inhibitors. 1 Publication
Mutagenesisi664 – 6641K → R: 10-fold decreased sensitivity to ddATP and ddCTP inhibitors. 1 Publication
Mutagenesisi673 – 6731L → V: No loss of polymerase activity. No loss of RNase H activity. 1 Publication
Mutagenesisi709 – 7091D → A: 5- to 12-fold decrease in affinity for dTTP substrates. Strongly decreased RNA-directed and DNA-directed DNA polymerase activities. No effect on RNase H activity. Loss of pyrophosphorolysis (reverse of the polymerase reaction). 1 Publication
Mutagenesisi709 – 7091D → S: 5- to 12-fold decrease in affinity for dTTP substrates. Strongly decreased RNA-directed DNA polymerase activity. Slightly decreased DNA-directed DNA polymerase activity. No effect on RNase H activity. Loss of pyrophosphorolysis (reverse of the polymerase reaction). 1 Publication
Mutagenesisi752 – 7521W → A: 73% loss of DNA-directed DNA polymerase activity. 70% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi752 – 7521W → F: 10% loss of DNA-directed DNA polymerase activity. 22% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi752 – 7521W → Y: 58% loss of DNA-directed DNA polymerase activity. 42% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi755 – 7551S → A: 74% loss of polymerase activity. 56% loss of RNase H activity. 1 Publication
Mutagenesisi755 – 7551S → G: Complete loss of polymerase activity. No loss of RNase H activity. 1 Publication
Mutagenesisi755 – 7551S → T: Complete loss of polymerase activity. No loss of RNase H activity. 1 Publication
Mutagenesisi756 – 7561P → G: 34% loss of polymerase activity. No loss of RNase H activity. 1 Publication
Mutagenesisi766 – 7661I → A: 71% loss of DNA-directed DNA polymerase activity. 61% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi766 – 7661I → D: 16% loss of DNA-directed DNA polymerase activity. 24% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi766 – 7661I → L: 80% loss of DNA-directed DNA polymerase activity. 23% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi766 – 7661I → T: 34% increase of DNA-directed DNA polymerase activity. 18% increase of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi766 – 7661I → V: 70% loss of DNA-directed DNA polymerase activity. 64% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi782 – 7821Y → A: Almost complete loss of polymerase activity. 1 Publication
Mutagenesisi782 – 7821Y → F: 70% loss of polymerase activity. No loss of polymerase activity; when associated with V-783. 1 Publication
Mutagenesisi783 – 7831M → I: 54% loss of polymerase activity according to PubMed:9533880; increases polymerase activity according to PubMed:9657675. No loss of RNase H activity. 2 Publications
Mutagenesisi783 – 7831M → L: 90% loss of polymerase activity. No loss of RNase H activity. 2 Publications
Mutagenesisi783 – 7831M → V: 58% loss of polymerase activity. No loss of RNase H activity. 2 Publications
Mutagenesisi784 – 7841D → A: Strongly decreased RNA-directed and DNA-directed DNA polymerase activities. No effect on RNase H activity. 2 Publications
Mutagenesisi784 – 7841D → E: Strongly decreased RNA-directed and DNA-directed DNA polymerase activities. No effect on RNase H activity. 2 Publications
Mutagenesisi784 – 7841D → N: Strongly decreased RNA-directed and DNA-directed DNA polymerase activities. No effect on RNase H activity. 2 Publications
Mutagenesisi785 – 7851D → A: Strongly decreased RNA-directed and DNA-directed DNA polymerase activities. Loss of pyrophosphorolysis (reverse of the polymerase reaction). No effect on RNase H activity. 2 Publications
Mutagenesisi785 – 7851D → E: Drastically reduced incorporation of phosphorothioate nucleotide. Loss of pyrophosphorolysis (reverse of the polymerase reaction). No effect on RNase H activity. 2 Publications
Mutagenesisi785 – 7851D → N: Loss of pyrophosphorolysis (reverse of the polymerase reaction). No effect on RNase H activity. 2 Publications
Mutagenesisi786 – 7861L → A: 76% loss of DNA-directed DNA polymerase activity. 60% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi786 – 7861L → I: 29% loss of DNA-directed DNA polymerase activity. 46% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi786 – 7861L → R: 20% loss of DNA-directed DNA polymerase activity. 21% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi786 – 7861L → V: 22% loss of DNA-directed DNA polymerase activity. No loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi788 – 7881V → A: 37% increase of DNA-directed DNA polymerase activity. No loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi788 – 7881V → I: 25% increase of DNA-directed DNA polymerase activity. No loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi788 – 7881V → M: 27% increase of DNA-directed DNA polymerase activity. 10% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi823 – 8231E → A: No effect on RNA-dependent DNA polymerase activity. No effect on RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi824 – 8241P → A: No effect on RNA-dependent DNA polymerase activity. No effect on RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi825 – 8251P → A: No effect on RNA-dependent DNA polymerase activity. Complete loss of RNA 5'-end cleavage. No effect on RNA 3'-end cleavage. 1 Publication
Mutagenesisi826 – 8261F → A: No effect on RNA-dependent DNA polymerase activity. Complete loss of RNA 5'-end cleavage. No effect on RNA 3'-end cleavage. 1 Publication
Mutagenesisi827 – 8271L → A: No effect on RNA-dependent DNA polymerase activity. No effect on RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi828 – 8281W → A: Complete loss of RNA-dependent DNA polymerase activity. No effect on RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi829 – 8291M → A: No effect on RNA-dependent DNA polymerase activity. No effect on RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi830 – 8301G → A: Complete loss of RNA-dependent DNA polymerase activity. Complete loss of RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi831 – 8311Y → A: Complete loss of RNA-dependent DNA polymerase activity. Complete loss of RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi832 – 8321E → A: Complete loss of RNA-dependent DNA polymerase activity. Complete loss of RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi834 – 8341H → A: Complete loss of RNA-dependent DNA polymerase activity. Complete loss of RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi856 – 8561I → T: 96% loss of polymerase activity. 45% loss of RNase H activity. 1 Publication
Mutagenesisi861 – 8611G → A: Complete loss of polymerase activity. 25% loss of RNase H activity. 1 Publication
Mutagenesisi863 – 8631L → S: 17% loss of polymerase activity. 30% loss of RNase H activity. 1 Publication
Mutagenesisi865 – 8651W → T: Complete loss of polymerase activity. 87% loss of RNase H activity. 1 Publication
Mutagenesisi878 – 8781L → S: 21% loss of polymerase activity. 16% loss of RNase H activity. 1 Publication
Mutagenesisi898 – 8981A → L: 68% loss of polymerase activity. 10% loss of RNase H activity. 1 Publication
Mutagenesisi902 – 9021L → S: 59% loss of polymerase activity. 8% loss of RNase H activity. 1 Publication
Mutagenesisi909 – 9091L → S: 31% loss of polymerase activity. No loss of RNase H activity. 1 Publication
Mutagenesisi997 – 9971W → L: No effect on RT p66/p51 heterodimerization. 1 Publication
Mutagenesisi1000 – 10001W → A: Almost complete loss of RT p66/p51 heterodimerization. Complete loss of polymerase activity. 2 Publications
Mutagenesisi1000 – 10001W → F: No effect on RT p66/p51 heterodimerization. 2 Publications
Mutagenesisi1000 – 10001W → L: Almost complete loss of RT p66/p51 heterodimerization. Complete loss of polymerase activity. 2 Publications
Mutagenesisi1001 – 10011W → L: No effect on RT p66/p51 heterodimerization. 1 Publication
Mutagenesisi1004 – 10041Y → L: No effect on RT p66/p51 heterodimerization. 1 Publication
Mutagenesisi1005 – 10051W → L: Decreased RT p66/p51 heterodimerization. 1 Publication
Mutagenesisi1009 – 10091W → L: No effect on RT p66/p51 heterodimerization. 1 Publication
Mutagenesisi1013 – 10131W → L: Almost complete loss of RT p66/p51 heterodimerization. 1 Publication
Mutagenesisi1036 – 10361A → I: Replication slightly delayed. 1 Publication
Mutagenesisi1037 – 10371E → N: Virions contain primarily p51 RT. 1 Publication
Mutagenesisi1038 – 10381T → S: Almost complete loss of virion production; when associated with G-1041. 1 Publication
Mutagenesisi1039 – 10391F → A: Virions contain primarily p51 RT. 2 Publications
Mutagenesisi1039 – 10391F → I: Loss of cleavage between p51 RT and p15. 2 Publications
Mutagenesisi1039 – 10391F → L: No effect on cleavage between p51 RT and p15. 2 Publications
Mutagenesisi1039 – 10391F → V: Slight delays in replication. Virions contain primarily p51 RT. 2 Publications
Mutagenesisi1039 – 10391F → W: Slight delays in replication. Virions contain primarily p51 RT. 2 Publications
Mutagenesisi1040 – 10401Y → A: Virions contain primarily p51 RT; when associated with A-1039. 1 Publication
Mutagenesisi1040 – 10401Y → I: Almost complete loss of virion production; when associated with K-1041. 1 Publication
Mutagenesisi1040 – 10401Y → W: Virions contain primarily p51 RT; when associated with W-1039. 1 Publication
Mutagenesisi1041 – 10411V → G: Almost complete loss of virion production; when associated with S-1038. 1 Publication
Mutagenesisi1041 – 10411V → K: Almost complete loss of virion production; when associated with I-1038. 1 Publication
Mutagenesisi1041 – 10411V → S: Slight delays in replication. 1 Publication
Mutagenesisi1077 – 10771E → Q: No loss of polymerase activity. complete loss of RNase H activity. 1 Publication
Mutagenesisi1100 – 11001Y → A, G, H, L, S or Q: Complete loss of RNAase H activity. 1 Publication
Mutagenesisi1100 – 11001Y → E: Almost complete loss of RNAase H activity. 1 Publication
Mutagenesisi1100 – 11001Y → F: Almost no effect on RNAase H activity and replication. 1 Publication
Mutagenesisi1100 – 11001Y → R: Almost no effect on RNAase H activity. Unable to replicate. Completely resistant to inhibition by BBNH. 1 Publication
Mutagenesisi1100 – 11001Y → W: Almost no effect on RNAase H activity and replication. 6-fold resistance to inhibition by BBNH. 1 Publication
Mutagenesisi1138 – 11381H → D or N: Severely reduces exonuclease activity of RNase H. Probably also reduces substrate binding affinity. Modifies cleavage preferences of RNase H. No effect on the endonuclease activity. 1 Publication
Mutagenesisi1138 – 11381H → D: Severely reduced exonuclease activity of RNase H, but no effect on endonucleonuclease activity. 1 Publication
Mutagenesisi1138 – 11381H → N: Severely reduced exonuclease activity of RNase H, but no effect on endonucleonuclease activity. 1 Publication
Mutagenesisi1159 – 11591L → F: No effect on cleavage between reverse transcriptase/ribonuclease H and integrase. 1 Publication
Mutagenesisi1159 – 11591L → I: Loss of cleavage between reverse transcriptase/ribonuclease H and integrase. 1 Publication

Keywords - Diseasei

AIDS

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Initiator methioninei1 – 11Removed; by host By similarity
Chaini2 – 14471446Gag-Pol polyprotein
PRO_0000261261Add
BLAST
Chaini2 – 132131Matrix protein p17 By similarity
PRO_0000042285Add
BLAST
Chaini133 – 363231Capsid protein p24 By similarity
PRO_0000042286Add
BLAST
Peptidei364 – 37714Spacer peptide p2 By similarity
PRO_0000042287Add
BLAST
Chaini378 – 43255Nucleocapsid protein p7 By similarity
PRO_0000042288Add
BLAST
Peptidei433 – 4408Transframe peptide Reviewed prediction
PRO_0000246710
Chaini441 – 50060p6-pol Reviewed prediction
PRO_0000042289Add
BLAST
Chaini501 – 59999Protease By similarity
PRO_0000038647Add
BLAST
Chaini600 – 1159560Reverse transcriptase/ribonuclease H By similarity
PRO_0000042290Add
BLAST
Chaini600 – 1039440p51 RT By similarity
PRO_0000042291Add
BLAST
Chaini1040 – 1159120p15
PRO_0000042292Add
BLAST
Chaini1160 – 1447288Integrase By similarity
PRO_0000042293Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Lipidationi2 – 21N-myristoyl glycine; by host By similarity
Modified residuei132 – 1321Phosphotyrosine; by host By similarity

Post-translational modificationi

Specific enzymatic cleavages by the viral protease yield mature proteins. The protease is released by autocatalytic cleavage. The polyprotein is cleaved during and after budding, this process is termed maturation. Proteolytic cleavage of p66 RT removes the RNase H domain to yield the p51 RT subunit. Nucleocapsid protein p7 might be further cleaved after virus entry By similarity.2 Publications
Capsid protein p24 is phosphorylated By similarity.
Matrix protein p17 is tyrosine phosphorylated presumably in the virion by a host kinase. This modification targets the matrix protein to the nucleus By similarity.

Keywords - PTMi

Lipoprotein, Myristate, Phosphoprotein

Interactioni

Subunit structurei

Pre-integration complex interacts with human HMGA1. Matrix protein p17 is a trimer. Interacts with gp120 and human BAF. Capsid is a homodimer. Interacts with human PPIA/CYPA. The protease is a homodimer, whose active site consists of two apposed aspartic acid residues. The reverse transcriptase is a heterodimer of p66 RT and p51 RT (RT p66/p51). Heterodimerization of RT is essential for DNA polymerase activity. Despite the sequence identities, p66 RT and p51 RT have distinct folding. Integrase is a homodimer and possibly can form homotetramer. Integrase interacts with human SMARCB1/INI1 and human PSIP1/LEDGF isoform 1 Integrase interacts with human KPNA3; this interaction might play a role in nuclear import of the pre-integration complex. Integrase interacts with human NUP153; this interaction might play a role in nuclear import of the pre-integration complex By similarity.

Protein-protein interaction databases

IntActiP03366. 38 interactions.
MINTiMINT-111903.

Structurei

Secondary structure

Legend: HelixTurnBeta strand
Show more details
Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Turni393 – 3953
Beta strandi398 – 4003
Turni402 – 4043
Beta strandi414 – 4163
Beta strandi419 – 4213
Turni423 – 4253
Beta strandi426 – 4294
Beta strandi502 – 5043
Beta strandi505 – 5073
Beta strandi510 – 5156
Beta strandi518 – 5247
Beta strandi529 – 5335
Beta strandi542 – 5498
Beta strandi552 – 56615
Beta strandi569 – 57810
Beta strandi581 – 5855
Helixi587 – 5904
Turni591 – 5944
Beta strandi596 – 5983
Beta strandi602 – 6043
Beta strandi611 – 6144
Helixi627 – 64216
Beta strandi645 – 6484
Beta strandi651 – 6533
Beta strandi659 – 6635
Beta strandi665 – 6684
Beta strandi670 – 6745
Helixi677 – 6826
Helixi684 – 6863
Helixi689 – 6913
Helixi696 – 6983
Helixi699 – 7013
Beta strandi703 – 7097
Helixi710 – 7123
Helixi713 – 7164
Helixi721 – 7277
Beta strandi729 – 7313
Helixi734 – 7363
Beta strandi737 – 7393
Beta strandi741 – 7477
Beta strandi752 – 7543
Helixi755 – 77319
Beta strandi774 – 7763
Beta strandi777 – 7826
Beta strandi785 – 7906
Helixi794 – 80815
Helixi809 – 8113
Helixi816 – 8183
Beta strandi819 – 8235
Beta strandi824 – 8285
Beta strandi831 – 8333
Helixi835 – 8373
Beta strandi838 – 8414
Beta strandi849 – 8524
Helixi853 – 86614
Turni867 – 8693
Beta strandi870 – 8723
Helixi876 – 8794
Helixi880 – 8823
Turni883 – 8853
Beta strandi886 – 8883
Beta strandi890 – 8923
Helixi896 – 90813
Beta strandi909 – 9113
Beta strandi913 – 9164
Beta strandi920 – 9223
Beta strandi925 – 9328
Beta strandi935 – 9439
Beta strandi946 – 9549
Beta strandi957 – 9615
Helixi963 – 98220
Beta strandi987 – 9926
Helixi994 – 100310
Beta strandi1004 – 10063
Beta strandi1012 – 10154
Beta strandi1017 – 10193
Beta strandi1020 – 10223
Helixi1023 – 10264
Beta strandi1029 – 10313
Beta strandi1036 – 104510
Turni1047 – 10493
Beta strandi1052 – 10587
Beta strandi1059 – 10613
Beta strandi1063 – 10708
Helixi1073 – 108715
Beta strandi1090 – 10967
Helixi1099 – 11057
Beta strandi1110 – 11145
Helixi1115 – 112612
Beta strandi1128 – 11347
Beta strandi1137 – 11393
Beta strandi1140 – 11423
Helixi1144 – 11529
Turni1153 – 11553
Beta strandi1219 – 12279
Beta strandi1230 – 12378
Turni1238 – 12403
Beta strandi1243 – 12508
Helixi1253 – 126614
Beta strandi1271 – 12733
Helixi1277 – 12815
Helixi1283 – 129210
Beta strandi1295 – 12973
Helixi1305 – 132420
Helixi1325 – 13273
Helixi1331 – 134414
Helixi1355 – 136713
Beta strandi1380 – 13867
Beta strandi1395 – 14039
Beta strandi1405 – 142016
Helixi1421 – 14233
Beta strandi1424 – 14285
Helixi1436 – 14394

3D structure databases

Select the link destinations:
PDBe
RCSB PDB
PDBj
Links Updated
EntryMethodResolution (Å)ChainPositionsPDBsum
1A9MX-ray2.30A/B501-599[»]
1AJVX-ray2.00A/B501-599[»]
1AJXX-ray2.00A/B501-599[»]
1AXAX-ray2.00A/B501-599[»]
1BQMX-ray3.10A600-1155[»]
B600-1029[»]
1BQNX-ray3.30A600-1440[»]
B600-1029[»]
1D4HX-ray1.81A/B501-599[»]
1D4IX-ray1.81A/B501-599[»]
1D4JX-ray1.81A/B501-599[»]
1DLOX-ray2.70A600-1155[»]
B600-1026[»]
1DW6X-ray1.88C/D501-599[»]
1EBKX-ray2.06C/D/E/F501-599[»]
1EBWX-ray1.81A/B501-599[»]
1EBYX-ray2.29A/B501-599[»]
1EBZX-ray2.01A/B501-599[»]
1EC0X-ray1.79A/B501-599[»]
1EC1X-ray2.10A/B501-599[»]
1EC2X-ray2.00A/B501-599[»]
1EC3X-ray1.80A/B501-599[»]
1EETX-ray2.73A600-1156[»]
B600-1026[»]
1G35X-ray1.80A/B501-599[»]
1GNMX-ray2.30A/B501-599[»]
1GNNX-ray2.30A/B501-599[»]
1GNOX-ray2.30A/B501-599[»]
1HARX-ray2.20A600-815[»]
1HBVX-ray2.30A/B501-599[»]
1HEFX-ray2.20E501-599[»]
1HEGX-ray2.20E501-599[»]
1HIHX-ray2.20A/B501-599[»]
1HMVX-ray3.20A/C/E/G600-1159[»]
B/D/F/H600-1039[»]
1HNIX-ray2.80A600-1157[»]
B600-1026[»]
1HNVX-ray3.00A600-1157[»]
B600-1026[»]
1HOSX-ray2.30A/B501-599[»]
1HPSX-ray2.30A/B501-599[»]
1HPZX-ray3.00A600-1159[»]
B600-1029[»]
1HQEX-ray2.70A600-1159[»]
B600-1029[»]
1HQUX-ray2.70A600-1159[»]
B600-1029[»]
1HRHX-ray2.40A/B1026-1161[»]
1HTEX-ray2.80A/B501-599[»]
1HTFX-ray2.20A/B501-599[»]
1HTGX-ray2.00A/B501-599[»]
1HVIX-ray1.80A/B501-599[»]
1HVKX-ray1.80A/B501-599[»]
1HVPmodel-A/B501-599[»]
1HVUX-ray4.75A/D/G/J600-1153[»]
B/E/H/K604-1026[»]
1HYSX-ray3.00A600-1152[»]
B600-1024[»]
1IKVX-ray3.00A600-1159[»]
B600-1026[»]
1IKWX-ray3.00A600-1159[»]
B600-1026[»]
1IKXX-ray2.80A600-1159[»]
B600-1026[»]
1IKYX-ray3.00A600-1159[»]
B600-1026[»]
1J5OX-ray3.50A600-1157[»]
B600-1029[»]
1KJHX-ray2.00P1155-1164[»]
1MERX-ray1.90A/B501-599[»]
1MESX-ray1.90A/B501-599[»]
1METX-ray1.90A/B501-599[»]
1MEUX-ray1.90A/B501-599[»]
1N5YX-ray3.10A600-1157[»]
B600-1029[»]
1N6QX-ray3.00A600-1157[»]
B600-1029[»]
1NPAX-ray2.00A/B501-599[»]
1NPVX-ray2.00A/B501-599[»]
1NPWX-ray2.00A/B501-599[»]
1QE1X-ray2.85A600-1157[»]
B600-1026[»]
1QMCNMR-A/B1379-1429[»]
1R0AX-ray2.80A600-1157[»]
B600-1028[»]
1RDHX-ray2.80A/B1026-1159[»]
1RTDX-ray3.20A/C600-1153[»]
1RVLmodel-A600-1155[»]
B600-1027[»]
1RVMmodel-A600-1155[»]
B600-1027[»]
1RVNmodel-A600-1155[»]
B600-1027[»]
1RVOmodel-A600-1155[»]
B600-1027[»]
1RVPmodel-A600-1155[»]
B600-1027[»]
1RVQmodel-A600-1155[»]
B600-1027[»]
1RVRmodel-A600-1155[»]
B600-1027[»]
1S6PX-ray2.90A600-1159[»]
B600-1029[»]
1S6QX-ray3.00A600-1159[»]
B600-1029[»]
1S9EX-ray2.60A600-1159[»]
B600-1029[»]
1S9GX-ray2.80A600-1159[»]
B600-1029[»]
1SBGX-ray2.30A/B501-599[»]
1SUQX-ray3.00A600-1159[»]
B600-1029[»]
1SV5X-ray2.90A600-1159[»]
B600-1029[»]
1T03X-ray3.10A600-1157[»]
B600-1028[»]
1T05X-ray3.00A600-1157[»]
1T7KX-ray2.10A/B501-599[»]
1TV6X-ray2.80A600-1159[»]
B600-1039[»]
1TVRX-ray3.00A600-1157[»]
B600-1026[»]
1UWBX-ray3.20A600-1157[»]
B600-1026[»]
1W5VX-ray1.80A/B490-599[»]
1W5WX-ray1.80A/B490-599[»]
1W5XX-ray1.90A/B490-599[»]
1W5YX-ray1.90A/B490-599[»]
1YT9X-ray3.00A/B501-599[»]
1ZP8X-ray2.02A501-599[»]
1ZPAX-ray2.02A501-599[»]
1ZSFX-ray1.98A/B501-599[»]
1ZSRX-ray2.06A/B501-599[»]
2AQUX-ray2.00A/B501-599[»]
2B5JX-ray2.90A600-1159[»]
B600-1029[»]
2B6AX-ray2.65A600-1159[»]
B600-1029[»]
2BANX-ray2.95A600-1159[»]
B600-1029[»]
2BBBX-ray1.70A/B501-599[»]
2BE2X-ray2.43A600-1159[»]
B600-1029[»]
2EXFNMR-A390-432[»]
2G69X-ray1.35A501-599[»]
2HB3X-ray1.35A/B501-598[»]
2HMIX-ray2.80A600-1157[»]
B600-1029[»]
2HNZX-ray3.00B606-1027[»]
2HS1X-ray0.84A/B501-599[»]
2HS2X-ray1.22A/B501-599[»]
2I4DX-ray1.50A/B501-599[»]
2I4UX-ray1.50A/B501-599[»]
2I4VX-ray1.50A/B501-599[»]
2I4WX-ray1.55A/B501-599[»]
2I4XX-ray1.55A/B501-599[»]
2I5JX-ray3.15A600-1150[»]
B600-1027[»]
2IAJX-ray2.50A600-1158[»]
B600-1045[»]
2IC3X-ray3.00A600-1158[»]
B600-1045[»]
2IDWX-ray1.10A/B501-599[»]
2IEOX-ray1.53A/B501-599[»]
2JZWNMR-A390-432[»]
2L45NMR-A411-429[»]
2L46NMR-A411-429[»]
2L4LNMR-A388-432[»]
2UXZX-ray1.75A/B501-599[»]
2UY0X-ray1.76A/B501-599[»]
2VG5X-ray2.80A600-1156[»]
B600-1027[»]
2VG6X-ray3.01A600-1156[»]
B600-1027[»]
2VG7X-ray2.82A600-1156[»]
B600-1027[»]
2X4UX-ray2.10C/F908-916[»]
2YKMX-ray2.90A600-1156[»]
B600-1027[»]
2YKNX-ray2.12A600-1156[»]
B600-1027[»]
2ZD1X-ray1.80A600-1154[»]
B600-1027[»]
2ZE2X-ray2.90A600-1154[»]
B600-1027[»]
3AVIX-ray1.70A/B1209-1371[»]
3BGRX-ray2.10A600-1154[»]
B600-1027[»]
3DLKX-ray1.85A600-1154[»]
B605-1027[»]
3GGAX-ray2.50A/B/C/D/G/H501-599[»]
3GGVX-ray3.09A/B/C/D/E/F/G/H/I501-599[»]
3GGXX-ray2.70A/B/C/D/E/F/G/H501-599[»]
3HVTX-ray2.90A600-1155[»]
B600-1027[»]
3IG1X-ray2.80A600-1154[»]
B600-1027[»]
3IRXX-ray2.80A600-1154[»]
B600-1027[»]
3IS9X-ray2.55A600-1154[»]
B600-1027[»]
3ISNX-ray2.50C600-1159[»]
D600-1026[»]
3ITHX-ray2.80A/C600-1159[»]
B/D600-1026[»]
3JSMX-ray3.00A600-1157[»]
B600-1028[»]
3JYTX-ray3.30A600-1157[»]
B600-1028[»]
3K2PX-ray2.04A/B1026-1159[»]
3K4VX-ray1.39A/B/C/D501-599[»]
3KLEX-ray3.20A/E/I/M600-1157[»]
B/F/J/N600-1027[»]
3KLFX-ray3.15A/E/I/M600-1154[»]
B/F/J/N600-1027[»]
3KLGX-ray3.65A/E600-1157[»]
B/F600-1027[»]
3KLHX-ray2.90A600-1159[»]
B600-1027[»]
3KLIX-ray2.65A600-1157[»]
B600-1027[»]
3NDTX-ray1.72A/B/C/D501-599[»]
3NU3X-ray1.02A/B501-599[»]
3NU4X-ray1.20A/B501-599[»]
3NU5X-ray1.29A/B501-599[»]
3NU6X-ray1.16A/B501-599[»]
3NU9X-ray1.85A/B501-599[»]
3NUJX-ray1.50A/B501-599[»]
3NUOX-ray1.35A/B501-599[»]
3OK9X-ray1.27A/B501-599[»]
3PSUX-ray2.07A501-599[»]
3QAAX-ray1.40A/B501-599[»]
3QLHX-ray2.70A600-1153[»]
B605-1027[»]
3QO9X-ray2.60A600-1154[»]
B600-1027[»]
3TKGX-ray1.36A/B/C/D497-599[»]
3TKWX-ray1.55A/B497-599[»]
3TL9X-ray1.32A/B497-599[»]
3TLHX-ray2.00A501-599[»]
3V4IX-ray2.80A/C600-1153[»]
B/D600-1027[»]
3V6DX-ray2.70A/C600-1153[»]
B/D600-1027[»]
3V81X-ray2.85A/C600-1153[»]
B/D600-1027[»]
3ZPSX-ray1.55A/B501-599[»]
3ZPTX-ray1.54A/B501-599[»]
3ZPUX-ray1.80A/B501-599[»]
4DG1X-ray2.15A600-1148[»]
B600-1026[»]
4G1QX-ray1.51A600-1154[»]
B600-1027[»]
4G8GX-ray2.40C263-272[»]
4G8IX-ray1.60C263-272[»]
4G9DX-ray1.60C263-272[»]
4G9FX-ray1.90C263-272[»]
4H4MX-ray2.85A600-1154[»]
B600-1027[»]
4H4OX-ray2.90A600-1154[»]
B600-1027[»]
4I2PX-ray2.30A600-1154[»]
B600-1027[»]
4I2QX-ray2.70A600-1154[»]
B600-1027[»]
4ICLX-ray1.80A600-1154[»]
B600-1027[»]
4ID5X-ray1.95A600-1154[»]
B600-1027[»]
4IDKX-ray2.10A600-1154[»]
B600-1027[»]
4IFVX-ray2.05A600-1154[»]
B600-1027[»]
4IFYX-ray2.10A600-1154[»]
B600-1027[»]
4IG0X-ray2.50A600-1154[»]
B600-1027[»]
4IG3X-ray1.95A600-1154[»]
B600-1027[»]
4KFBX-ray1.85A600-1154[»]
B604-1027[»]
4KKOX-ray2.89A600-1154[»]
B600-1027[»]
4KO0X-ray1.95A600-1154[»]
B600-1027[»]
4LSLX-ray2.69A600-1154[»]
B600-1027[»]
4LSNX-ray3.10A600-1154[»]
B600-1027[»]
4MFBX-ray2.88A600-1154[»]
B600-1027[»]
4O44X-ray2.89A600-1154[»]
B600-1027[»]
4OJRX-ray1.82A1209-1371[»]
4PQUX-ray2.51A/C600-1153[»]
B/D600-1027[»]
4PUOX-ray2.90A/C600-1153[»]
B/D600-1027[»]
4PWDX-ray3.00A/C600-1153[»]
B/D600-1027[»]
4Q0BX-ray3.30A/C600-1153[»]
B/D600-1027[»]
4QAGX-ray1.71A/B1024-1156[»]
ProteinModelPortaliP03366.
SMRiP03366. Positions 1-432, 501-1155, 1160-1429.

Miscellaneous databases

EvolutionaryTraceiP03366.

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Domaini520 – 58970Peptidase A2
Add
BLAST
Domaini643 – 833191Reverse transcriptase
Add
BLAST
Domaini1033 – 1156124RNase H
Add
BLAST
Domaini1213 – 1363151Integrase catalytic
Add
BLAST

Region

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Regioni826 – 8349RT 'primer grip'

Motif

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Motifi16 – 227Nuclear export signal By similarity
Motifi26 – 327Nuclear localization signal By similarity
Motifi997 – 101317Tryptophan repeat motif
Add
BLAST

Domaini

The reverse transcriptase/ribonuclease H (RT) is structured in five subdomains: finger, palm, thumb, connection and RNase H. Within the palm subdomain, the 'primer grip' region is thought to be involved in the positioning of the primer terminus for accommodating the incoming nucleotide. The RNase H domain stabilizes the association of RT with primer-template By similarity.2 Publications
The tryptophan repeat motif is involved in RT p66/p51 dimerization By similarity.2 Publications
Integrase core domain contains the D-x(n)-D-x(35)-E motif, named for the phylogenetically conserved glutamic acid and aspartic acid residues and the invariant 35 amino acid spacing between the second and third acidic residues. Each acidic residue of the D,D(35)E motif is independently essential for the 3'-processing and strand transfer activities of purified integrase protein By similarity.2 Publications

Sequence similaritiesi

Contains 1 RNase H domain.

Keywords - Domaini

Repeat, Zinc-finger

Family and domain databases

Gene3Di1.10.10.200. 1 hit.
1.10.1200.30. 1 hit.
1.10.150.90. 1 hit.
1.10.375.10. 1 hit.
2.30.30.10. 1 hit.
2.40.70.10. 1 hit.
3.30.420.10. 2 hits.
4.10.60.10. 1 hit.
InterProiIPR001969. Aspartic_peptidase_AS.
IPR000721. Gag_p24.
IPR001037. Integrase_C_retrovir.
IPR001584. Integrase_cat-core.
IPR017856. Integrase_Zn-bd_dom-like_N.
IPR003308. Integrase_Zn-bd_dom_N.
IPR000071. Lentvrl_matrix_N.
IPR012344. Matrix_N_HIV/RSV.
IPR018061. Pept_A2A_retrovirus_sg.
IPR001995. Peptidase_A2_cat.
IPR021109. Peptidase_aspartic_dom.
IPR008916. Retrov_capsid_C.
IPR008919. Retrov_capsid_N.
IPR010999. Retrovr_matrix_N.
IPR012337. RNaseH-like_dom.
IPR002156. RNaseH_domain.
IPR000477. RT_dom.
IPR010659. RVT_connect.
IPR010661. RVT_thumb.
IPR001878. Znf_CCHC.
[Graphical view]
PfamiPF00540. Gag_p17. 1 hit.
PF00607. Gag_p24. 1 hit.
PF00552. IN_DBD_C. 1 hit.
PF02022. Integrase_Zn. 1 hit.
PF00075. RNase_H. 1 hit.
PF00665. rve. 1 hit.
PF00077. RVP. 1 hit.
PF00078. RVT_1. 1 hit.
PF06815. RVT_connect. 1 hit.
PF06817. RVT_thumb. 1 hit.
PF00098. zf-CCHC. 2 hits.
[Graphical view]
PRINTSiPR00234. HIV1MATRIX.
SMARTiSM00343. ZnF_C2HC. 2 hits.
[Graphical view]
SUPFAMiSSF46919. SSF46919. 1 hit.
SSF47353. SSF47353. 1 hit.
SSF47836. SSF47836. 1 hit.
SSF47943. SSF47943. 1 hit.
SSF50122. SSF50122. 1 hit.
SSF50630. SSF50630. 1 hit.
SSF53098. SSF53098. 2 hits.
SSF57756. SSF57756. 1 hit.
PROSITEiPS50175. ASP_PROT_RETROV. 1 hit.
PS00141. ASP_PROTEASE. 1 hit.
PS50994. INTEGRASE. 1 hit.
PS51027. INTEGRASE_DBD. 1 hit.
PS50879. RNASE_H. 1 hit.
PS50878. RT_POL. 1 hit.
PS50158. ZF_CCHC. 2 hits.
PS50876. ZF_INTEGRASE. 1 hit.
[Graphical view]

Sequences (2)i

Sequence statusi: Complete.

Sequence processingi: The displayed sequence is further processed into a mature form.

This entry describes 2 isoformsi produced by ribosomal frameshifting. Align

Note: Translation results in the formation of the Gag polyprotein most of the time. Ribosomal frameshifting at the gag-pol genes boundary occurs at low frequency and produces the Gag-Pol polyprotein. This strategy of translation probably allows the virus to modulate the quantity of each viral protein. Maintenance of a correct Gag to Gag-Pol ratio is essential for RNA dimerization and viral infectivity.

Isoform Gag-Pol polyprotein (identifier: P03366-1) [UniParc]FASTAAdd to Basket

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

« Hide

MGARASVLSG GELDRWEKIR LRPGGKKKYK LKHIVWASRE LERFAVNPGL     50
LETSEGCRQI LGQLQPSLQT GSEELRSLYN TVATLYCVHQ RIEIKDTKEA 100
LDKIEEEQNK SKKKAQQAAA DTGHSSQVSQ NYPIVQNIQG QMVHQAISPR 150
TLNAWVKVVE EKAFSPEVIP MFSALSEGAT PQDLNTMLNT VGGHQAAMQM 200
LKETINEEAA EWDRVHPVHA GPIAPGQMRE PRGSDIAGTT STLQEQIGWM 250
TNNPPIPVGE IYKRWIILGL NKIVRMYSPT SILDIRQGPK EPFRDYVDRF 300
YKTLRAEQAS QEVKNWMTET LLVQNANPDC KTILKALGPA ATLEEMMTAC 350
QGVGGPGHKA RVLAEAMSQV TNTATIMMQR GNFRNQRKMV KCFNCGKEGH 400
TARNCRAPRK KGCWKCGKEG HQMKDCTERQ ANFLREDLAF LQGKAREFSS 450
EQTRANSPTI SSEQTRANSP TRRELQVWGR DNNSPSEAGA DRQGTVSFNF 500
PQITLWQRPL VTIKIGGQLK EALLDTGADD TVLEEMSLPG RWKPKMIGGI 550
GGFIKVRQYD QILIEICGHK AIGTVLVGPT PVNIIGRNLL TQIGCTLNFP 600
ISPIETVPVK LKPGMDGPKV KQWPLTEEKI KALVEICTEM EKEGKISKIG 650
PENPYNTPVF AIKKKDSTKW RKLVDFRELN KRTQDFWEVQ LGIPHPAGLK 700
KKKSVTVLDV GDAYFSVPLD EDFRKYTAFT IPSINNETPG IRYQYNVLPQ 750
GWKGSPAIFQ SSMTKILEPF KKQNPDIVIY QYMDDLYVGS DLEIGQHRTK 800
IEELRQHLLR WGLTTPDKKH QKEPPFLWMG YELHPDKWTV QPIVLPEKDS 850
WTVNDIQKLV GKLNWASQIY PGIKVRQLCK LLRGTKALTE VIPLTEEAEL 900
ELAENREILK EPVHGVYYDP SKDLIAEIQK QGQGQWTYQI YQEPFKNLKT 950
GKYARMRGAH TNDVKQLTEA VQKITTESIV IWGKTPKFKL PIQKETWETW 1000
WTEYWQATWI PEWEFVNTPP LVKLWYQLEK EPIVGAETFY VDGAANRETK 1050
LGKAGYVTNK GRQKVVPLTN TTNQKTELQA IYLALQDSGL EVNIVTDSQY 1100
ALGIIQAQPD KSESELVNQI IEQLIKKEKV YLAWVPAHKG IGGNEQVDKL 1150
VSAGIRKILF LDGIDKAQDE HEKYHSNWRA MASDFNLPPV VAKEIVASCD 1200
KCQLKGEAMH GQVDCSPGIW QLDCTHLEGK VILVAVHVAS GYIEAEVIPA 1250
ETGQETAYFL LKLAGRWPVK TIHTDNGSNF TSATVKAACW WAGIKQEFGI 1300
PYNPQSQGVV ESMNKELKKI IGQVRDQAEH LKTAVQMAVF IHNFKRKGGI 1350
GGYSAGERIV DIIATDIQTK ELQKQITKIQ NFRVYYRDSR NPLWKGPAKL 1400
LWKGEGAVVI QDNSDIKVVP RRKAKIIRDY GKQMAGDDCV ASRQDED 1447

Note: Produced by -1 ribosomal frameshifting.

Length:1,447
Mass (Da):163,288
Last modified:January 23, 2007 - v3
Checksum:iAC3EE1439592E0AD
GO
Isoform Gag polyprotein (identifier: P03347-1) [UniParc]FASTAAdd to Basket

The sequence of this isoform can be found in the external entry P03347.
Isoforms of the same protein are often annotated in two different entries if their sequences differ significantly.

Note: Produced by conventional translation.

Length:512
Mass (Da):57,256
GO

Natural variant

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Natural varianti297 – 2971V → L in strain: Isolate PV22.
Natural varianti434 – 4341L → F.
Natural varianti771 – 7711K → R in strain: Isolate PV22.
Natural varianti1050 – 10501K → R in strain: Isolate PV22.
Natural varianti1057 – 10571V → L in strain: Isolate PV22.
Natural varianti1111 – 11111K → Q in strain: Isolate PV22.
Natural varianti1128 – 11281E → Q in strain: Isolate PV22.

Sequence databases

Select the link destinations:
EMBL
GenBank
DDBJ
Links Updated
M15654 Genomic RNA. Translation: AAA44198.1. Sequence problems.
K02083 Genomic DNA. Translation: AAB59867.1. Sequence problems.
X01762 Genomic RNA. No translation available.
PIRiA03965. GNVWH3.
A03967. GNVWVL.

Keywords - Coding sequence diversityi

Ribosomal frameshifting

Cross-referencesi

Web resourcesi

HIV drug resistance mutations
hivdb

HIV drug resistance database

BioAfrica: HIV bioinformatics in Africa

Sequence databases

Select the link destinations:
EMBL
GenBank
DDBJ
Links Updated
M15654 Genomic RNA. Translation: AAA44198.1 . Sequence problems.
K02083 Genomic DNA. Translation: AAB59867.1 . Sequence problems.
X01762 Genomic RNA. No translation available.
PIRi A03965. GNVWH3.
A03967. GNVWVL.

3D structure databases

Select the link destinations:
PDBe
RCSB PDB
PDBj
Links Updated
Entry Method Resolution (Å) Chain Positions PDBsum
1A9M X-ray 2.30 A/B 501-599 [» ]
1AJV X-ray 2.00 A/B 501-599 [» ]
1AJX X-ray 2.00 A/B 501-599 [» ]
1AXA X-ray 2.00 A/B 501-599 [» ]
1BQM X-ray 3.10 A 600-1155 [» ]
B 600-1029 [» ]
1BQN X-ray 3.30 A 600-1440 [» ]
B 600-1029 [» ]
1D4H X-ray 1.81 A/B 501-599 [» ]
1D4I X-ray 1.81 A/B 501-599 [» ]
1D4J X-ray 1.81 A/B 501-599 [» ]
1DLO X-ray 2.70 A 600-1155 [» ]
B 600-1026 [» ]
1DW6 X-ray 1.88 C/D 501-599 [» ]
1EBK X-ray 2.06 C/D/E/F 501-599 [» ]
1EBW X-ray 1.81 A/B 501-599 [» ]
1EBY X-ray 2.29 A/B 501-599 [» ]
1EBZ X-ray 2.01 A/B 501-599 [» ]
1EC0 X-ray 1.79 A/B 501-599 [» ]
1EC1 X-ray 2.10 A/B 501-599 [» ]
1EC2 X-ray 2.00 A/B 501-599 [» ]
1EC3 X-ray 1.80 A/B 501-599 [» ]
1EET X-ray 2.73 A 600-1156 [» ]
B 600-1026 [» ]
1G35 X-ray 1.80 A/B 501-599 [» ]
1GNM X-ray 2.30 A/B 501-599 [» ]
1GNN X-ray 2.30 A/B 501-599 [» ]
1GNO X-ray 2.30 A/B 501-599 [» ]
1HAR X-ray 2.20 A 600-815 [» ]
1HBV X-ray 2.30 A/B 501-599 [» ]
1HEF X-ray 2.20 E 501-599 [» ]
1HEG X-ray 2.20 E 501-599 [» ]
1HIH X-ray 2.20 A/B 501-599 [» ]
1HMV X-ray 3.20 A/C/E/G 600-1159 [» ]
B/D/F/H 600-1039 [» ]
1HNI X-ray 2.80 A 600-1157 [» ]
B 600-1026 [» ]
1HNV X-ray 3.00 A 600-1157 [» ]
B 600-1026 [» ]
1HOS X-ray 2.30 A/B 501-599 [» ]
1HPS X-ray 2.30 A/B 501-599 [» ]
1HPZ X-ray 3.00 A 600-1159 [» ]
B 600-1029 [» ]
1HQE X-ray 2.70 A 600-1159 [» ]
B 600-1029 [» ]
1HQU X-ray 2.70 A 600-1159 [» ]
B 600-1029 [» ]
1HRH X-ray 2.40 A/B 1026-1161 [» ]
1HTE X-ray 2.80 A/B 501-599 [» ]
1HTF X-ray 2.20 A/B 501-599 [» ]
1HTG X-ray 2.00 A/B 501-599 [» ]
1HVI X-ray 1.80 A/B 501-599 [» ]
1HVK X-ray 1.80 A/B 501-599 [» ]
1HVP model - A/B 501-599 [» ]
1HVU X-ray 4.75 A/D/G/J 600-1153 [» ]
B/E/H/K 604-1026 [» ]
1HYS X-ray 3.00 A 600-1152 [» ]
B 600-1024 [» ]
1IKV X-ray 3.00 A 600-1159 [» ]
B 600-1026 [» ]
1IKW X-ray 3.00 A 600-1159 [» ]
B 600-1026 [» ]
1IKX X-ray 2.80 A 600-1159 [» ]
B 600-1026 [» ]
1IKY X-ray 3.00 A 600-1159 [» ]
B 600-1026 [» ]
1J5O X-ray 3.50 A 600-1157 [» ]
B 600-1029 [» ]
1KJH X-ray 2.00 P 1155-1164 [» ]
1MER X-ray 1.90 A/B 501-599 [» ]
1MES X-ray 1.90 A/B 501-599 [» ]
1MET X-ray 1.90 A/B 501-599 [» ]
1MEU X-ray 1.90 A/B 501-599 [» ]
1N5Y X-ray 3.10 A 600-1157 [» ]
B 600-1029 [» ]
1N6Q X-ray 3.00 A 600-1157 [» ]
B 600-1029 [» ]
1NPA X-ray 2.00 A/B 501-599 [» ]
1NPV X-ray 2.00 A/B 501-599 [» ]
1NPW X-ray 2.00 A/B 501-599 [» ]
1QE1 X-ray 2.85 A 600-1157 [» ]
B 600-1026 [» ]
1QMC NMR - A/B 1379-1429 [» ]
1R0A X-ray 2.80 A 600-1157 [» ]
B 600-1028 [» ]
1RDH X-ray 2.80 A/B 1026-1159 [» ]
1RTD X-ray 3.20 A/C 600-1153 [» ]
1RVL model - A 600-1155 [» ]
B 600-1027 [» ]
1RVM model - A 600-1155 [» ]
B 600-1027 [» ]
1RVN model - A 600-1155 [» ]
B 600-1027 [» ]
1RVO model - A 600-1155 [» ]
B 600-1027 [» ]
1RVP model - A 600-1155 [» ]
B 600-1027 [» ]
1RVQ model - A 600-1155 [» ]
B 600-1027 [» ]
1RVR model - A 600-1155 [» ]
B 600-1027 [» ]
1S6P X-ray 2.90 A 600-1159 [» ]
B 600-1029 [» ]
1S6Q X-ray 3.00 A 600-1159 [» ]
B 600-1029 [» ]
1S9E X-ray 2.60 A 600-1159 [» ]
B 600-1029 [» ]
1S9G X-ray 2.80 A 600-1159 [» ]
B 600-1029 [» ]
1SBG X-ray 2.30 A/B 501-599 [» ]
1SUQ X-ray 3.00 A 600-1159 [» ]
B 600-1029 [» ]
1SV5 X-ray 2.90 A 600-1159 [» ]
B 600-1029 [» ]
1T03 X-ray 3.10 A 600-1157 [» ]
B 600-1028 [» ]
1T05 X-ray 3.00 A 600-1157 [» ]
1T7K X-ray 2.10 A/B 501-599 [» ]
1TV6 X-ray 2.80 A 600-1159 [» ]
B 600-1039 [» ]
1TVR X-ray 3.00 A 600-1157 [» ]
B 600-1026 [» ]
1UWB X-ray 3.20 A 600-1157 [» ]
B 600-1026 [» ]
1W5V X-ray 1.80 A/B 490-599 [» ]
1W5W X-ray 1.80 A/B 490-599 [» ]
1W5X X-ray 1.90 A/B 490-599 [» ]
1W5Y X-ray 1.90 A/B 490-599 [» ]
1YT9 X-ray 3.00 A/B 501-599 [» ]
1ZP8 X-ray 2.02 A 501-599 [» ]
1ZPA X-ray 2.02 A 501-599 [» ]
1ZSF X-ray 1.98 A/B 501-599 [» ]
1ZSR X-ray 2.06 A/B 501-599 [» ]
2AQU X-ray 2.00 A/B 501-599 [» ]
2B5J X-ray 2.90 A 600-1159 [» ]
B 600-1029 [» ]
2B6A X-ray 2.65 A 600-1159 [» ]
B 600-1029 [» ]
2BAN X-ray 2.95 A 600-1159 [» ]
B 600-1029 [» ]
2BBB X-ray 1.70 A/B 501-599 [» ]
2BE2 X-ray 2.43 A 600-1159 [» ]
B 600-1029 [» ]
2EXF NMR - A 390-432 [» ]
2G69 X-ray 1.35 A 501-599 [» ]
2HB3 X-ray 1.35 A/B 501-598 [» ]
2HMI X-ray 2.80 A 600-1157 [» ]
B 600-1029 [» ]
2HNZ X-ray 3.00 B 606-1027 [» ]
2HS1 X-ray 0.84 A/B 501-599 [» ]
2HS2 X-ray 1.22 A/B 501-599 [» ]
2I4D X-ray 1.50 A/B 501-599 [» ]
2I4U X-ray 1.50 A/B 501-599 [» ]
2I4V X-ray 1.50 A/B 501-599 [» ]
2I4W X-ray 1.55 A/B 501-599 [» ]
2I4X X-ray 1.55 A/B 501-599 [» ]
2I5J X-ray 3.15 A 600-1150 [» ]
B 600-1027 [» ]
2IAJ X-ray 2.50 A 600-1158 [» ]
B 600-1045 [» ]
2IC3 X-ray 3.00 A 600-1158 [» ]
B 600-1045 [» ]
2IDW X-ray 1.10 A/B 501-599 [» ]
2IEO X-ray 1.53 A/B 501-599 [» ]
2JZW NMR - A 390-432 [» ]
2L45 NMR - A 411-429 [» ]
2L46 NMR - A 411-429 [» ]
2L4L NMR - A 388-432 [» ]
2UXZ X-ray 1.75 A/B 501-599 [» ]
2UY0 X-ray 1.76 A/B 501-599 [» ]
2VG5 X-ray 2.80 A 600-1156 [» ]
B 600-1027 [» ]
2VG6 X-ray 3.01 A 600-1156 [» ]
B 600-1027 [» ]
2VG7 X-ray 2.82 A 600-1156 [» ]
B 600-1027 [» ]
2X4U X-ray 2.10 C/F 908-916 [» ]
2YKM X-ray 2.90 A 600-1156 [» ]
B 600-1027 [» ]
2YKN X-ray 2.12 A 600-1156 [» ]
B 600-1027 [» ]
2ZD1 X-ray 1.80 A 600-1154 [» ]
B 600-1027 [» ]
2ZE2 X-ray 2.90 A 600-1154 [» ]
B 600-1027 [» ]
3AVI X-ray 1.70 A/B 1209-1371 [» ]
3BGR X-ray 2.10 A 600-1154 [» ]
B 600-1027 [» ]
3DLK X-ray 1.85 A 600-1154 [» ]
B 605-1027 [» ]
3GGA X-ray 2.50 A/B/C/D/G/H 501-599 [» ]
3GGV X-ray 3.09 A/B/C/D/E/F/G/H/I 501-599 [» ]
3GGX X-ray 2.70 A/B/C/D/E/F/G/H 501-599 [» ]
3HVT X-ray 2.90 A 600-1155 [» ]
B 600-1027 [» ]
3IG1 X-ray 2.80 A 600-1154 [» ]
B 600-1027 [» ]
3IRX X-ray 2.80 A 600-1154 [» ]
B 600-1027 [» ]
3IS9 X-ray 2.55 A 600-1154 [» ]
B 600-1027 [» ]
3ISN X-ray 2.50 C 600-1159 [» ]
D 600-1026 [» ]
3ITH X-ray 2.80 A/C 600-1159 [» ]
B/D 600-1026 [» ]
3JSM X-ray 3.00 A 600-1157 [» ]
B 600-1028 [» ]
3JYT X-ray 3.30 A 600-1157 [» ]
B 600-1028 [» ]
3K2P X-ray 2.04 A/B 1026-1159 [» ]
3K4V X-ray 1.39 A/B/C/D 501-599 [» ]
3KLE X-ray 3.20 A/E/I/M 600-1157 [» ]
B/F/J/N 600-1027 [» ]
3KLF X-ray 3.15 A/E/I/M 600-1154 [» ]
B/F/J/N 600-1027 [» ]
3KLG X-ray 3.65 A/E 600-1157 [» ]
B/F 600-1027 [» ]
3KLH X-ray 2.90 A 600-1159 [» ]
B 600-1027 [» ]
3KLI X-ray 2.65 A 600-1157 [» ]
B 600-1027 [» ]
3NDT X-ray 1.72 A/B/C/D 501-599 [» ]
3NU3 X-ray 1.02 A/B 501-599 [» ]
3NU4 X-ray 1.20 A/B 501-599 [» ]
3NU5 X-ray 1.29 A/B 501-599 [» ]
3NU6 X-ray 1.16 A/B 501-599 [» ]
3NU9 X-ray 1.85 A/B 501-599 [» ]
3NUJ X-ray 1.50 A/B 501-599 [» ]
3NUO X-ray 1.35 A/B 501-599 [» ]
3OK9 X-ray 1.27 A/B 501-599 [» ]
3PSU X-ray 2.07 A 501-599 [» ]
3QAA X-ray 1.40 A/B 501-599 [» ]
3QLH X-ray 2.70 A 600-1153 [» ]
B 605-1027 [» ]
3QO9 X-ray 2.60 A 600-1154 [» ]
B 600-1027 [» ]
3TKG X-ray 1.36 A/B/C/D 497-599 [» ]
3TKW X-ray 1.55 A/B 497-599 [» ]
3TL9 X-ray 1.32 A/B 497-599 [» ]
3TLH X-ray 2.00 A 501-599 [» ]
3V4I X-ray 2.80 A/C 600-1153 [» ]
B/D 600-1027 [» ]
3V6D X-ray 2.70 A/C 600-1153 [» ]
B/D 600-1027 [» ]
3V81 X-ray 2.85 A/C 600-1153 [» ]
B/D 600-1027 [» ]
3ZPS X-ray 1.55 A/B 501-599 [» ]
3ZPT X-ray 1.54 A/B 501-599 [» ]
3ZPU X-ray 1.80 A/B 501-599 [» ]
4DG1 X-ray 2.15 A 600-1148 [» ]
B 600-1026 [» ]
4G1Q X-ray 1.51 A 600-1154 [» ]
B 600-1027 [» ]
4G8G X-ray 2.40 C 263-272 [» ]
4G8I X-ray 1.60 C 263-272 [» ]
4G9D X-ray 1.60 C 263-272 [» ]
4G9F X-ray 1.90 C 263-272 [» ]
4H4M X-ray 2.85 A 600-1154 [» ]
B 600-1027 [» ]
4H4O X-ray 2.90 A 600-1154 [» ]
B 600-1027 [» ]
4I2P X-ray 2.30 A 600-1154 [» ]
B 600-1027 [» ]
4I2Q X-ray 2.70 A 600-1154 [» ]
B 600-1027 [» ]
4ICL X-ray 1.80 A 600-1154 [» ]
B 600-1027 [» ]
4ID5 X-ray 1.95 A 600-1154 [» ]
B 600-1027 [» ]
4IDK X-ray 2.10 A 600-1154 [» ]
B 600-1027 [» ]
4IFV X-ray 2.05 A 600-1154 [» ]
B 600-1027 [» ]
4IFY X-ray 2.10 A 600-1154 [» ]
B 600-1027 [» ]
4IG0 X-ray 2.50 A 600-1154 [» ]
B 600-1027 [» ]
4IG3 X-ray 1.95 A 600-1154 [» ]
B 600-1027 [» ]
4KFB X-ray 1.85 A 600-1154 [» ]
B 604-1027 [» ]
4KKO X-ray 2.89 A 600-1154 [» ]
B 600-1027 [» ]
4KO0 X-ray 1.95 A 600-1154 [» ]
B 600-1027 [» ]
4LSL X-ray 2.69 A 600-1154 [» ]
B 600-1027 [» ]
4LSN X-ray 3.10 A 600-1154 [» ]
B 600-1027 [» ]
4MFB X-ray 2.88 A 600-1154 [» ]
B 600-1027 [» ]
4O44 X-ray 2.89 A 600-1154 [» ]
B 600-1027 [» ]
4OJR X-ray 1.82 A 1209-1371 [» ]
4PQU X-ray 2.51 A/C 600-1153 [» ]
B/D 600-1027 [» ]
4PUO X-ray 2.90 A/C 600-1153 [» ]
B/D 600-1027 [» ]
4PWD X-ray 3.00 A/C 600-1153 [» ]
B/D 600-1027 [» ]
4Q0B X-ray 3.30 A/C 600-1153 [» ]
B/D 600-1027 [» ]
4QAG X-ray 1.71 A/B 1024-1156 [» ]
ProteinModelPortali P03366.
SMRi P03366. Positions 1-432, 501-1155, 1160-1429.
ModBasei Search...

Protein-protein interaction databases

IntActi P03366. 38 interactions.
MINTi MINT-111903.

Chemistry

ChEMBLi CHEMBL5823.
DrugBanki DB01264. Darunavir.
DB01093. Dimethyl sulfoxide.
DB01601. Lopinavir.

Protocols and materials databases

Structural Biology Knowledgebase Search...

Enzyme and pathway databases

SABIO-RK P03366.

Miscellaneous databases

EvolutionaryTracei P03366.

Family and domain databases

Gene3Di 1.10.10.200. 1 hit.
1.10.1200.30. 1 hit.
1.10.150.90. 1 hit.
1.10.375.10. 1 hit.
2.30.30.10. 1 hit.
2.40.70.10. 1 hit.
3.30.420.10. 2 hits.
4.10.60.10. 1 hit.
InterProi IPR001969. Aspartic_peptidase_AS.
IPR000721. Gag_p24.
IPR001037. Integrase_C_retrovir.
IPR001584. Integrase_cat-core.
IPR017856. Integrase_Zn-bd_dom-like_N.
IPR003308. Integrase_Zn-bd_dom_N.
IPR000071. Lentvrl_matrix_N.
IPR012344. Matrix_N_HIV/RSV.
IPR018061. Pept_A2A_retrovirus_sg.
IPR001995. Peptidase_A2_cat.
IPR021109. Peptidase_aspartic_dom.
IPR008916. Retrov_capsid_C.
IPR008919. Retrov_capsid_N.
IPR010999. Retrovr_matrix_N.
IPR012337. RNaseH-like_dom.
IPR002156. RNaseH_domain.
IPR000477. RT_dom.
IPR010659. RVT_connect.
IPR010661. RVT_thumb.
IPR001878. Znf_CCHC.
[Graphical view ]
Pfami PF00540. Gag_p17. 1 hit.
PF00607. Gag_p24. 1 hit.
PF00552. IN_DBD_C. 1 hit.
PF02022. Integrase_Zn. 1 hit.
PF00075. RNase_H. 1 hit.
PF00665. rve. 1 hit.
PF00077. RVP. 1 hit.
PF00078. RVT_1. 1 hit.
PF06815. RVT_connect. 1 hit.
PF06817. RVT_thumb. 1 hit.
PF00098. zf-CCHC. 2 hits.
[Graphical view ]
PRINTSi PR00234. HIV1MATRIX.
SMARTi SM00343. ZnF_C2HC. 2 hits.
[Graphical view ]
SUPFAMi SSF46919. SSF46919. 1 hit.
SSF47353. SSF47353. 1 hit.
SSF47836. SSF47836. 1 hit.
SSF47943. SSF47943. 1 hit.
SSF50122. SSF50122. 1 hit.
SSF50630. SSF50630. 1 hit.
SSF53098. SSF53098. 2 hits.
SSF57756. SSF57756. 1 hit.
PROSITEi PS50175. ASP_PROT_RETROV. 1 hit.
PS00141. ASP_PROTEASE. 1 hit.
PS50994. INTEGRASE. 1 hit.
PS51027. INTEGRASE_DBD. 1 hit.
PS50879. RNASE_H. 1 hit.
PS50878. RT_POL. 1 hit.
PS50158. ZF_CCHC. 2 hits.
PS50876. ZF_INTEGRASE. 1 hit.
[Graphical view ]
ProtoNeti Search...

Publicationsi

  1. Cited for: NUCLEOTIDE SEQUENCE [GENOMIC RNA].
  2. "Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus."
    Muesing M.A., Smith D.H., Cabradilla C.D., Benton C.V., Lasky L.A., Capon D.J.
    Nature 313:450-458(1985) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
    Strain: Isolate PV22.
  3. Muesing M.A.
    Submitted (MAY-1992) to the EMBL/GenBank/DDBJ databases
    Cited for: SEQUENCE REVISION.
  4. "Human immunodeficiency virus reverse transcriptase displays a partially processive 3' to 5' endonuclease activity."
    DeStefano J.J., Buiser R.G., Mallaber L.M., Bambara R.A., Fay P.J.
    J. Biol. Chem. 266:24295-24301(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: CHARACTERIZATION OF RNASE H.
  5. "Mutating P2 and P1 residues at cleavage junctions in the HIV-1 pol polyprotein. Effects on hydrolysis by HIV-1 proteinase."
    Jupp R.A., Phylip L.H., Mills J.S., Le Grice S.F.J., Kay J.
    FEBS Lett. 283:180-184(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: PROTEOLYTIC PROCESSING OF POLYPROTEIN, MUTAGENESIS OF PHE-1039 AND LEU-1159.
  6. "Mutations of a conserved residue within HIV-1 ribonuclease H affect its exo- and endonuclease activities."
    Wohrl B.M., Volkmann S., Moelling K.
    J. Mol. Biol. 220:801-818(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF HIS-1138.
  7. "Biochemical analysis of catalytically crucial aspartate mutants of human immunodeficiency virus type 1 reverse transcriptase."
    Kaushik N., Rege N., Yadav P.N.S., Sarafianos S.G., Modak M.J., Pandey V.N.
    Biochemistry 35:11536-11546(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: ACTIVE SITES OF REVERSE TRANSCRIPTASE, MUTAGENESIS OF ASP-709; ASP-784 AND ASP-785.
  8. "Mutations within the primer grip region of HIV-1 reverse transcriptase result in loss of RNase H function."
    Palaniappan C., Wisniewski M., Jacques P.S., Le Grice S.F., Fay P.J., Bambara R.A.
    J. Biol. Chem. 272:11157-11164(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF GLU-823; PRO-824; PRO-825; PHE-826; LEU-827; TRP-828; MET-829; GLY-830; TYR-831; GLU-832 AND HIS-834.
  9. "Effects of mutations in the polymerase domain on the polymerase, RNase H and strand transfer activities of human immunodeficiency virus type 1 reverse transcriptase."
    Gao H.-Q., Boyer P.L., Arnold E., Hughes S.H.
    J. Mol. Biol. 277:559-572(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF PRO-651; PRO-654; LEU-673; SER-755; PRO-756; MET-783; ILE-856; GLY-861; LEU-863; TRP-865; LEU-878; ALA-898; LEU-902; LEU-909 AND GLU-1077.
  10. "Loss of polymerase activity due to Tyr to Phe substitution in the YMDD motif of human immunodeficiency virus type-1 reverse transcriptase is compensated by Met to Val substitution within the same motif."
    Harris D., Yadav P.N.S., Pandey V.N.
    Biochemistry 37:9630-9640(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF TYR-782; MET-783; ASP-784 AND ASP-785.
  11. "Sequence requirements for removal of tRNA by an isolated human immunodeficiency virus type 1 RNase H domain."
    Smith C.M., Leon O., Smith J.S., Roth M.J.
    J. Virol. 72:6805-6812(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION OF RNASE H.
  12. "Mutational analysis of Lys65 of HIV-1 reverse transcriptase."
    Sluis-Cremer N., Arion D., Kaushik N., Lim H., Parniak M.A.
    Biochem. J. 348:77-82(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF LYS-664.
  13. "Unique progressive cleavage mechanism of HIV reverse transcriptase RNase H."
    Wisniewski M., Balakrishnan M., Palaniappan C., Fay P.J., Bambara R.A.
    Proc. Natl. Acad. Sci. U.S.A. 97:11978-11983(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: CHARACTERIZATION OF RNASE H.
  14. "Extended nucleocapsid protein is cleaved from the Gag-Pol precursor of human immunodeficiency virus type 1."
    Chen N., Morag A., Almog N., Blumenzweig I., Dreazin O., Kotler M.
    J. Gen. Virol. 82:581-590(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: RIBOSOMAL FRAMESHIFT, PROTEOLYTIC PROCESSING OF POLYPROTEIN, MUTAGENESIS OF PHE-440 AND PHE-500.
  15. "Maintenance of the Gag/Gag-Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity."
    Shehu-Xhilaga M., Crowe S.M., Mak J.
    J. Virol. 75:1834-1841(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: GAG/GAG-POL RATIO.
  16. "Conformational changes in HIV-1 proteinase: effect of protonation of the active center on conformation of HIV-1 proteinase in water."
    Koval'skii D.B., Kanibolotskii D.S., Dubina V.N., Korneliuk A.I.
    Ukr. Biokhim. Zh. 74:135-138(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: ACTIVE SITE ASP-525 OF PROTEASE.
  17. "Substitution of conserved hydrophobic residues in motifs B and C of HIV-1 RT alters the geometry of its catalytic pocket."
    Sharma B., Kaushik N., Singh K., Kumar S., Pandey V.N.
    Biochemistry 41:15685-15697(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF TRP-752; ILE-766; LEU-786 AND VAL-788.
  18. "Mutational analysis of Tyr-501 of HIV-1 reverse transcriptase. Effects on ribonuclease H activity and inhibition of this activity by N-acylhydrazones."
    Arion D., Sluis-Cremer N., Min K.-L., Abram M.E., Fletcher R.S., Parniak M.A.
    J. Biol. Chem. 277:1370-1374(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF TYR-1100.
  19. "Role of residues in the tryptophan repeat motif for HIV-1 reverse transcriptase dimerization."
    Tachedjian G., Aronson H.-E., de los Santos M., Seehra J., McCoy J.M., Goff S.P.
    J. Mol. Biol. 326:381-396(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: DOMAIN TRYPTOPHAN REPEAT MOTIF, MUTAGENESIS OF TRP-997; TRP-1000; TRP-1001; TYR-1004; TRP-1005; TRP-1009 AND TRP-1013.
  20. "Recognition of internal cleavage sites by retroviral RNases H."
    Schultz S.J., Zhang M., Champoux J.J.
    J. Mol. Biol. 344:635-652(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: CHARACTERIZATION OF RNASE H.
  21. "Relationship between enzyme activity and dimeric structure of recombinant HIV-1 reverse transcriptase."
    Tachedjian G., Radzio J., Sluis-Cremer N.
    Proteins 60:5-13(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: CHARACTERIZATION OF REVERSE TRANSCRIPTASE, MUTAGENESIS OF TRP-1000.
  22. "Nucleotide modification at the gamma-phosphate leads to the improved fidelity of HIV-1 reverse transcriptase."
    Mulder B.A., Anaya S., Yu P., Lee K.W., Nguyen A., Murphy J., Willson R., Briggs J.M., Gao X., Hardin S.H.
    Nucleic Acids Res. 33:4865-4873(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: CHARACTERIZATION OF RNASE H.
  23. "Virion instability of human immunodeficiency virus type 1 reverse transcriptase (RT) mutated in the protease cleavage site between RT p51 and the RT RNase H domain."
    Abram M.E., Parniak M.A.
    J. Virol. 79:11952-11961(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF ALA-1036; GLU-1037; THR-1038; PHE-1039; TYR-1040 AND VAL-1041.
  24. "Proteolytic processing and particle maturation."
    Vogt V.M.
    Curr. Top. Microbiol. Immunol. 214:95-131(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  25. Cited for: REVIEW.
  26. "Mechanisms of retroviral recombination."
    Negroni M., Buc H.
    Annu. Rev. Genet. 35:275-302(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  27. Cited for: REVIEW.
  28. "Role of HIV-1 Gag domains in viral assembly."
    Scarlata S., Carter C.
    Biochim. Biophys. Acta 1614:62-72(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  29. "Molecular modeling of the HIV-1 protease and its substrate binding site."
    Weber I.T., Miller M., Jaskolski M., Leis J., Skalka A.M., Wlodawer A.
    Science 243:928-931(1989) [PubMed] [Europe PMC] [Abstract]
    Cited for: 3D-STRUCTURE MODELING OF PROTEASE DOMAIN.
  30. "Recombinant HIV-1 reverse transcriptase: purification, primary structure, and polymerase/ribonuclease H activities."
    Mizrahi V., Lazarus G.M., Miles L.M., Meyers C.A., Debouck C.
    Arch. Biochem. Biophys. 273:347-358(1989) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.2 ANGSTROMS) OF 600-1159.
  31. Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 501-599 IN COMPLEX WITH A C2 SYMMETRIC INHIBITOR.
  32. "Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase."
    Davies J.F. II, Hostomska Z., Hostomsky Z., Jordan S.R., Matthews D.A.
    Science 252:88-95(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS) OF 1026-1161.
  33. "A recombinant ribonuclease H domain of HIV-1 reverse transcriptase that is enzymatically active."
    Evans D.B., Brawn K., Deibel M.R. Jr., Tarpley W.G., Sharma S.K.
    J. Biol. Chem. 266:20583-20585(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 1026-1159.
  34. "Proteolytic release and crystallization of the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase."
    Hostomska Z., Matthews D.A., Davies J.F. II, Nodes B.R., Hostomsky Z.
    J. Biol. Chem. 266:14697-14702(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS) OF 1026-1161.
  35. "Crystal structure at 3.5-A resolution of HIV-1 reverse transcriptase complexed with an inhibitor."
    Kohlstaedt L.A., Wang J., Friedman J.M., Rice P.A., Steitz T.A.
    Science 256:1783-1790(1992) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.5 ANGSTROMS) OF 600-1155 IN COMPLEX WITH AN INHIBITOR.
  36. "Structure of HIV-1 reverse transcriptase/DNA complex at 7 A resolution showing active site locations."
    Arnold E., Jacobo-Molina A., Nanni R.G., Williams R.L., Lu X., Ding J., Clark A.D. Jr., Zhang A., Ferris A.L., Clark P., Hizi A., Hughes S.H.
    Nature 357:85-89(1992) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 600-1157.
  37. "A series of penicillin-derived C2-symmetric inhibitors of HIV-1 proteinase: structural and modeling studies."
    Wonacott A., Cooke R., Hayes F.R., Hann M.M., Jhoti H., McMeekin P., Mistry A., Murray-Rust P., Singh O.M., Weir M.P.
    J. Med. Chem. 36:3113-3119(1993) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 501-599.
  38. "A novel constrained reduced-amide inhibitor of HIV-1 protease derived from the sequential incorporation of gamma-turn mimetics into a model substrate."
    Newlander K.A., Callahan J.F., Moore M.L., Tomaszek T.A. Jr., Huffman W.F.
    J. Med. Chem. 36:2321-2331(1993) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 501-599 IN COMPLEX WITH A NOVEL GAMMA-TURN MIMETIC INHIBITOR.
  39. "Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0-A resolution shows bent DNA."
    Jacobo-Molina A., Ding J., Nanni R.G., Clark A.D. Jr., Lu X., Tantillo C., Williams R.L., Kamer G., Ferris A.L., Clark P., Hizi A., Hughes S.H., Arnold E.
    Proc. Natl. Acad. Sci. U.S.A. 90:6320-6324(1993) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 600-1155.
  40. "Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1."
    Smerdon S.J., Jager J., Wang J., Kohlstaedt L.A., Chirino A.J., Friedman J.M., Rice P.A., Steitz T.A.
    Proc. Natl. Acad. Sci. U.S.A. 91:3911-3915(1994) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 600-1159.
  41. "Comparative analysis of the X-ray structures of HIV-1 and HIV-2 proteases in complex with CGP 53820, a novel pseudosymmetric inhibitor."
    Priestle J.P., Fassler A., Rosel J., Tintelnot-Blomley M., Strop P., Gruetter M.G.
    Structure 3:381-389(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 501-599 IN COMPLEX WITH A NOVEL PSEUDOSYMMETRIC INHIBITOR.
  42. "Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors."
    Ding J., Das K., Moereels H., Koymans L., Andries K., Janssen P.A., Hughes S.H., Arnold E.
    Nat. Struct. Biol. 2:407-415(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.7 ANGSTROMS) OF 600-1155 IN COMPLEX WITH A NONNUCLEOSIDE INHIBITOR.
  43. "Structure of HIV-1 reverse transcriptase in a complex with the non-nucleoside inhibitor alpha-APA R 95845 at 2.8-A resolution."
    Ding J., Das K., Tantillo C., Zhang W., Clark A.D. Jr., Jessen S., Lu X., Hsiou Y., Jacobo-Molina A., Andries K., Et A.L.
    Structure 3:365-379(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 600-1157 IN COMPLEX WITH A NON-NUCLEOSIDE INHIBITOR.
  44. "The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1."
    Rodgers D.W., Gamblin S.J., Harris B.A., Ray S., Culp J.S., Hellmig B., Woolf D.J., Debouck C., Harrison S.C.
    Proc. Natl. Acad. Sci. U.S.A. 92:1222-1226(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.2 ANGSTROMS) OF 600-1159.
  45. Cited for: STRUCTURE BY NMR OF 1379-1429.
  46. "Effect of point mutations on the kinetics and the inhibition of human immunodeficiency virus type 1 protease: relationship to drug resistance."
    Lin Y.Z., Lin X.L., Hong L., Foundling S.I., Heinrikson R.L., Thaisrivongs S., Leelamanit W., Raterman D., Shah M., Dunn B.M., Tang J.
    Biochemistry 34:1143-1152(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 501-599 IN COMPLEX WITH THE PEPTIDIC INHIBITOR U-89360E.
  47. "Structure of unliganded HIV-1 reverse transcriptase at 2.7-A resolution: implications of conformational changes for polymerization and inhibition mechanisms."
    Hsiou Y., Ding J., Das K., Clark A.D. Jr., Hughes S.H., Arnold E.
    Structure 4:853-860(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.7 ANGSTROMS) OF 600-1155.
  48. "Unexpected binding mode of a cyclic sulfamide HIV-1 protease inhibitor."
    Backbro K., Lowgren S., Osterlund K., Atepo J., Unge T., Hulten J., Bonham N.M., Schaal W., Karlen A., Hallberg A.
    J. Med. Chem. 40:898-902(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 501-599 IN COMPLEX WITH A SULFAMIDE AND A UREA DERIVATIVE.
  49. "Molecular basis of HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with cyclic urea inhibitors."
    Ala P.J., Huston E.E., Klabe R.M., McCabe D.D., Duke J.L., Rizzo C.J., Korant B.D., DeLoskey R.J., Lam P.Y.S., Hodge C.N., Chang C.-H.
    Biochemistry 36:1573-1580(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (1.9 ANGSTROMS) OF 502-599 IN COMPLEX WITH A CYCLIC UREA INHIBITOR.
  50. "Structure of a G48H mutant of HIV-1 protease explains how glycine-48 replacements produce mutants resistant to inhibitor drugs."
    Hong L., Zhang X.-J., Foundling S.I., Hartsuck J.A., Tang J.
    FEBS Lett. 420:11-16(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 501-599 IN COMPLEX WITH THE PEPTIDIC INHIBITOR U-89360E.
  51. "An orally bioavailable pyrrolinone inhibitor of HIV-1 protease: computational analysis and X-ray crystal structure of the enzyme complex."
    Smith A.B. III, Hirschmann R., Pasternak A., Yao W., Sprengeler P.A., Holloway M.K., Kuo L.C., Chen Z., Darke P.L., Schleif W.A.
    J. Med. Chem. 40:2440-2444(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 501-599.
  52. "Active-site mobility in human immunodeficiency virus, type 1, protease as demonstrated by crystal structure of A28S mutant."
    Hong L., Hartsuck J.A., Foundling S.I., Ermolieff J., Tang J.
    Protein Sci. 7:300-305(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 501-599 IN COMPLEX WITH A PEPTIDIC INHIBITOR.
  53. "Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance."
    Huang H., Chopra R., Verdine G.L., Harrison S.C.
    Science 282:1669-1675(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.2 ANGSTROMS) OF 588-1027.
  54. "The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor."
    Jaeger J., Restle T., Steitz T.A.
    EMBO J. 17:4535-4542(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (4.75 ANGSTROMS) OF 600-1153 IN COMPLEX WITH AN RNA PSEUDOKNOT INHIBITOR.
  55. "Structures of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097: inhibitor flexibility is a useful design feature for reducing drug resistance."
    Hsiou Y., Das K., Ding J., Clark A.D. Jr., Kleim J.P., Rosner M., Winkler I., Riess G., Hughes S.H., Arnold E.
    J. Mol. Biol. 284:313-323(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.1 ANGSTROMS) OF 600-1155 IN COMPLEX WITH A NON-NUCLEOSIDE INHIBITOR.
  56. "Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with beta-branched amino acids."
    Sarafianos S.G., Das K., Clark A.D. Jr., Ding J., Boyer P.L., Hughes S.H., Arnold E.
    Proc. Natl. Acad. Sci. U.S.A. 96:10027-10032(1999) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.5 ANGSTROMS) OF 600-1157.
  57. "Urea-PETT compounds as a new class of HIV-1 reverse transcriptase inhibitors. 3. Synthesis and further structure-activity relationship studies of PETT analogues."
    Hogberg M., Sahlberg C., Engelhardt P., Noreen R., Kangasmetsa J., Johansson N.G., Oberg B., Vrang L., Zhang H., Sahlberg B.L., Unge T., Lovgren S., Fridborg K., Backbro K.
    J. Med. Chem. 43:304-304(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.73 ANGSTROMS) OF 600-1156.
  58. "Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA."
    Sarafianos S.G., Das K., Tantillo C., Clark A.D. Jr., Ding J., Whitcomb J.M., Boyer P.L., Hughes S.H., Arnold E.
    EMBO J. 20:1449-1461(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 600-1152 IN COMPLEX WITH AN OLIGONUCLEOTIDE, ACTIVE SITES OF RNASE H.
  59. Cited for: X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 600-1159.
  60. "Structures of HIV-1 reverse transcriptase with pre- and post-translocation AZTMP-terminated DNA."
    Sarafianos S.G., Clark A.D. Jr., Das K., Tuske S., Birktoft J.J., Ilankumaran P., Ramesha A.R., Sayer J.M., Jerina D.M., Boyer P.L., Hughes S.H., Arnold E.
    EMBO J. 21:6614-6624(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.1 ANGSTROMS) OF 600-1157.
  61. "Structural basis for the inhibitory efficacy of efavirenz (DMP-266), MSC194 and PNU142721 towards the HIV-1 RT K103N mutant."
    Lindberg J., Sigurdsson S., Lowgren S., Andersson H.O., Sahlberg C., Noreen R., Fridborg K., Zhang H., Unge T.
    Eur. J. Biochem. 269:1670-1677(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 600-1159 IN COMPLEX WITH EFIVARENZ.
  62. Cited for: X-RAY CRYSTALLOGRAPHY (1.81 ANGSTROMS) OF 501-599.
  63. Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 501-599 IN COMPLEX WITH MONOPYRROLINONE-BASED INHIBITORS LDC271 AND LGZ479.
  64. "Symmetric fluoro-substituted diol-based HIV protease inhibitors. Ortho-fluorinated and meta-fluorinated P1/P1'-benzyloxy side groups significantly improve the antiviral activity and preserve binding efficacy."
    Lindberg J., Pyring D., Lowgren S., Rosenquist A., Zuccarello G., Kvarnstrom I., Zhang H., Vrang L., Classon B., Hallberg A., Samuelsson B., Unge T.
    Eur. J. Biochem. 271:4594-4602(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (1.79 ANGSTROMS) OF 501-599.
  65. "Nonnucleoside inhibitor binding affects the interactions of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase with DNA."
    Peletskaya E.N., Kogon A.A., Tuske S., Arnold E., Hughes S.H.
    J. Virol. 78:3387-3397(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 600-1157.
  66. Cited for: X-RAY CRYSTALLOGRAPHY (3.1 ANGSTROMS) OF 600-1157 IN COMPLEX WITH DNA BOUND TO TENOFOVIR.
  67. "Synthesis and antiviral activity of P1' arylsulfonamide azacyclic urea HIV protease inhibitors."
    Huang P.P., Randolph J.T., Klein L.L., Vasavanonda S., Dekhtyar T., Stoll V.S., Kempf D.J.
    Bioorg. Med. Chem. Lett. 14:4075-4078(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (1.3 ANGSTROMS) OF 501-599 IN COMPLEX WITH ARYLSULFONAMIDE AZACYCLIC UREA INHIBITORS.
  68. Cited for: X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 501-599 IN COMPLEX WITH OXIMINOARYLSULFONAMIDE INHIBITOR.

Entry informationi

Entry nameiPOL_HV1B1
AccessioniPrimary (citable) accession number: P03366
Secondary accession number(s): P03368
Entry historyi
Integrated into UniProtKB/Swiss-Prot: July 21, 1986
Last sequence update: January 23, 2007
Last modified: September 3, 2014
This is version 186 of the entry and version 3 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programViral Protein Annotation Program

Miscellaneousi

Miscellaneous

Capsid protein p24 is able to bind macaque TRIM5-alpha or owl monkey TRIMCyp, preventing reverse transcription of the viral genome and succesfull infection of macaque or owl monkey by HIV-1 By similarity.
The reverse transcriptase is an error-prone enzyme that lacks a proof-reading function. High mutations rate is a direct consequence of this characteristic. RT also displays frequent template switching leading to high recombination rate. Recombination mostly occurs between homologous regions of the two copackaged RNA genomes. If these two RNA molecules derive from different viral strains, reverse transcription will give rise to highly recombinated proviral DNAs.
HIV-1 lineages are divided in three main groups, M (for Major), O (for Outlier), and N (for New, or Non-M, Non-O). The vast majority of strains found worldwide belong to the group M. Group O seems to be endemic to and largely confined to Cameroon and neighboring countries in West Central Africa, where these viruses represent a small minority of HIV-1 strains. The group N is represented by a limited number of isolates from Cameroonian persons. The group M is further subdivided in 9 clades or subtypes (A to D, F to H, J and K).
Resistance to inhibitors associated with mutations are observed both in viral protease and in reverse transcriptase. Most of the time, single mutations confer only a modest reduction in drug susceptibility. Combination of several mutations is usually required to develop a high-level drug resistance. These mutations are predominantly found in clade B viruses and not in other genotypes. They are listed in the clade B representative isolate HXB2 (AC P04585).

Keywords - Technical termi

3D-structure, Complete proteome, Multifunctional enzyme

Documents

  1. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  2. Peptidase families
    Classification of peptidase families and list of entries
  3. SIMILARITY comments
    Index of protein domains and families

External Data

Dasty 3

Similar proteinsi