Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

P03366

- POL_HV1B1

UniProt

P03366 - POL_HV1B1

(max 400 entries)x

Your basket is currently empty.

Select item(s) and click on "Add to basket" to create your own collection here
(400 entries max)

Protein

Gag-Pol polyprotein

Gene

gag-pol

Organism
Human immunodeficiency virus type 1 group M subtype B (isolate BH10) (HIV-1)
Status
Reviewed - Annotation score: 5 out of 5- Experimental evidence at protein leveli

Functioni

Gag-Pol polyprotein and Gag polyprotein may regulate their own translation, by the binding genomic RNA in the 5'-UTR. At low concentration, Gag-Pol and Gag would promote translation, whereas at high concentration, the polyproteins encapsidate genomic RNA and then shutt off translation (By similarity).By similarity
Matrix protein p17 has two main functions: in infected cell, it targets Gag and Gag-pol polyproteins to the plasma membrane via a multipartite membrane-binding signal, that includes its myristoylated N-terminus. The second function is to play a role in nuclear localization of the viral genome at the very start of cell infection. Matrix protein is the part of the pre-integration complex. It binds in the cytoplasm the human BAF protein which prevent autointegration of the viral genome, and might be included in virions at the ration of zero to 3 BAF dimer per virion. The myristoylation signal and the NLS thus exert conflicting influences its subcellular localization. The key regulation of these motifs might be phosphorylation of a portion of MA molecules on the C-terminal tyrosine at the time of virus maturation, by virion-associated cellular tyrosine kinase. Implicated in the release from host cell mediated by Vpu (By similarity).By similarity
Capsid protein p24 forms the conical core that encapsulates the genomic RNA-nucleocapsid complex in the virion. Most core are conical, with only 7% tubular. The core is constituted by capsid protein hexamer subunits. The core is disassembled soon after virion entry. Interaction with human PPIA/CYPA protects the virus from restriction by human TRIM5-alpha and from an unknown antiviral activity in human cells. This capsid restriction by TRIM5 is one of the factors which restricts HIV-1 to the human species (By similarity).By similarity
Nucleocapsid protein p7 encapsulates and protects viral dimeric unspliced (genomic) RNA. Binds these RNAs through its zinc fingers. Facilitates rearangement of nucleic acid secondary structure during retrotranscription of genomic RNA. This capability is referred to as nucleic acid chaperone activity (By similarity).By similarity
The aspartyl protease mediates proteolytic cleavages of Gag and Gag-Pol polyproteins during or shortly after the release of the virion from the plasma membrane. Cleavages take place as an ordered, step-wise cascade to yield mature proteins. This process is called maturation. Displays maximal activity during the budding process just prior to particle release from the cell. Also cleaves Nef and Vif, probably concomitantly with viral structural proteins on maturation of virus particles. Hydrolyzes host EIF4GI and PABP1 in order to shut off the capped cellular mRNA translation. The resulting inhibition of cellular protein synthesis serves to ensure maximal viral gene expression and to evade host immune response (By similarity).PROSITE-ProRule annotation
Reverse transcriptase/ribonuclease H (RT) is a multifunctional enzyme that converts the viral RNA genome into dsDNA in the cytoplasm, shortly after virus entry into the cell. This enzyme displays a DNA polymerase activity that can copy either DNA or RNA templates, and a ribonuclease H (RNase H) activity that cleaves the RNA strand of RNA-DNA heteroduplexes in a partially processive 3' to 5' endonucleasic mode. Conversion of viral genomic RNA into dsDNA requires many steps. A tRNA(3)-Lys binds to the primer-binding site (PBS) situated at the 5'-end of the viral RNA. RT uses the 3' end of the tRNA primer to perform a short round of RNA-dependent minus-strand DNA synthesis. The reading proceeds through the U5 region and ends after the repeated (R) region which is present at both ends of viral RNA. The portion of the RNA-DNA heteroduplex is digested by the RNase H, resulting in a ssDNA product attached to the tRNA primer. This ssDNA/tRNA hybridizes with the identical R region situated at the 3' end of viral RNA. This template exchange, known as minus-strand DNA strong stop transfer, can be either intra- or intermolecular. RT uses the 3' end of this newly synthesized short ssDNA to perform the RNA-dependent minus-strand DNA synthesis of the whole template. RNase H digests the RNA template except for two polypurine tracts (PPTs) situated at the 5'-end and near the center of the genome. It is not clear if both polymerase and RNase H activities are simultaneous. RNase H probably can proceed both in a polymerase-dependent (RNA cut into small fragments by the same RT performing DNA synthesis) and a polymerase-independent mode (cleavage of remaining RNA fragments by free RTs). Secondly, RT performs DNA-directed plus-strand DNA synthesis using the PPTs that have not been removed by RNase H as primers. PPTs and tRNA primers are then removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to form a circular dsDNA intermediate. Strand displacement synthesis by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA copy of the viral genome that includes long terminal repeats (LTRs) at both ends (By similarity).By similarity
Integrase catalyzes viral DNA integration into the host chromosome, by performing a series of DNA cutting and joining reactions. This enzyme activity takes place after virion entry into a cell and reverse transcription of the RNA genome in dsDNA. The first step in the integration process is 3' processing. This step requires a complex comprising the viral genome, matrix protein, Vpr and integrase. This complex is called the pre-integration complex (PIC). The integrase protein removes 2 nucleotides from each 3' end of the viral DNA, leaving recessed CA OH's at the 3' ends. In the second step, the PIC enters cell nucleus. This process is mediated through integrase and Vpr proteins, and allows the virus to infect a non dividing cell. This ability to enter the nucleus is specific of lentiviruses, other retroviruses cannot and rely on cell division to access cell chromosomes. In the third step, termed strand transfer, the integrase protein joins the previously processed 3' ends to the 5' ends of strands of target cellular DNA at the site of integration. The 5'-ends are produced by integrase-catalyzed staggered cuts, 5 bp apart. A Y-shaped, gapped, recombination intermediate results, with the 5'-ends of the viral DNA strands and the 3' ends of target DNA strands remaining unjoined, flanking a gap of 5 bp. The last step is viral DNA integration into host chromosome. This involves host DNA repair synthesis in which the 5 bp gaps between the unjoined strands are filled in and then ligated. Since this process occurs at both cuts flanking the HIV genome, a 5 bp duplication of host DNA is produced at the ends of HIV-1 integration. Alternatively, Integrase may catalyze the excision of viral DNA just after strand transfer, this is termed disintegration (By similarity).By similarity

Catalytic activityi

Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.PROSITE-ProRule annotation
Endohydrolysis of RNA in RNA/DNA hybrids. Three different cleavage modes: 1. sequence-specific internal cleavage of RNA. Human immunodeficiency virus type 1 and Moloney murine leukemia virus enzymes prefer to cleave the RNA strand one nucleotide away from the RNA-DNA junction. 2. RNA 5'-end directed cleavage 13-19 nucleotides from the RNA end. 3. DNA 3'-end directed cleavage 15-20 nucleotides away from the primer terminus.
3'-end directed exonucleolytic cleavage of viral RNA-DNA hybrid.
Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).PROSITE-ProRule annotation

Cofactori

Protein has several cofactor binding sites:
  • Mg2+By similarityNote: Binds 2 magnesium ions for reverse transcriptase polymerase activity.By similarity
  • Mg2+By similarityNote: Binds 2 magnesium ions for ribonuclease H (RNase H) activity. Substrate-binding is a precondition for magnesium binding.By similarity
  • Mg2+By similarityNote: Magnesium ions are required for integrase activity. Binds at least 1, maybe 2 magnesium ions.By similarity

Enzyme regulationi

The viral protease is inhibited by many synthetic protease inhibitors (PIs), such as amprenavir, atazanavir, indinavir, loprinavir, nelfinavir, ritonavir and saquinavir. RT can be inhibited either by nucleoside RT inhibitors (NRTIs) or by non nucleoside RT inhibitors (NNRTIs). NRTIs act as chain terminators, whereas NNRTIs inhibit DNA polymerization by binding a small hydrophobic pocket near the RT active site and inducing an allosteric change in this region. Classical NRTIs are abacavir, adefovir (PMEA), didanosine (ddI), lamivudine (3TC), stavudine (d4T), tenofovir (PMPA), zalcitabine (ddC), and zidovudine (AZT). Classical NNRTIs are atevirdine (BHAP U-87201E), delavirdine, efavirenz (DMP-266), emivirine (I-EBU), and nevirapine (BI-RG-587). The tritherapies used as a basic effective treatment of AIDS associate two NRTIs and one NNRTI. Use of protease inhibitors in tritherapy regimens permit more ambitious therapeutic strategies (By similarity).By similarity

Sites

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sitei132 – 1332Cleavage; by viral proteaseBy similarity
Sitei221 – 2222Cis/trans isomerization of proline peptide bond; by human PPIA/CYPABy similarity
Sitei363 – 3642Cleavage; by viral proteaseBy similarity
Sitei377 – 3782Cleavage; by viral proteaseBy similarity
Sitei432 – 4332Cleavage; by viral proteaseSequence Analysis
Sitei440 – 4412Cleavage; by viral protease
Sitei500 – 5012Cleavage; by viral protease
Active sitei525 – 5251For protease activity; shared with dimeric partner1 PublicationPROSITE-ProRule annotation
Sitei599 – 6002Cleavage; by viral proteaseBy similarity
Metal bindingi709 – 7091Magnesium; catalytic; for reverse transcriptase activity
Metal bindingi784 – 7841Magnesium; catalytic; for reverse transcriptase activity
Metal bindingi785 – 7851Magnesium; catalytic; for reverse transcriptase activity
Sitei1000 – 10001Essential for RT p66/p51 heterodimerization
Sitei1013 – 10131Essential for RT p66/p51 heterodimerization
Sitei1039 – 10402Cleavage; by viral protease; partial
Metal bindingi1042 – 10421Magnesium; catalytic; for RNase H activityCurated
Metal bindingi1077 – 10771Magnesium; catalytic; for RNase H activityCurated
Metal bindingi1097 – 10971Magnesium; catalytic; for RNase H activityCurated
Metal bindingi1148 – 11481Magnesium; catalytic; for RNase H activityCurated
Sitei1159 – 11602Cleavage; by viral proteaseBy similarity
Metal bindingi1223 – 12231Magnesium; catalytic; for integrase activityBy similarity
Metal bindingi1275 – 12751Magnesium; catalytic; for integrase activityBy similarity

Regions

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Zinc fingeri390 – 40718CCHC-type 1PROSITE-ProRule annotationAdd
BLAST
Zinc fingeri411 – 42818CCHC-type 2PROSITE-ProRule annotationAdd
BLAST
Zinc fingeri1162 – 120342Integrase-typePROSITE-ProRule annotationAdd
BLAST
DNA bindingi1382 – 142948Integrase-typePROSITE-ProRule annotationAdd
BLAST

GO - Molecular functioni

  1. aspartic-type endopeptidase activity Source: UniProtKB-KW
  2. DNA binding Source: UniProtKB-KW
  3. DNA-directed DNA polymerase activity Source: UniProtKB-KW
  4. exoribonuclease H activity Source: UniProtKB-EC
  5. RNA binding Source: UniProtKB-KW
  6. RNA-directed DNA polymerase activity Source: CACAO
  7. RNA-DNA hybrid ribonuclease activity Source: InterPro
  8. structural molecule activity Source: InterPro
  9. zinc ion binding Source: InterPro

GO - Biological processi

  1. DNA integration Source: UniProtKB-KW
  2. DNA recombination Source: UniProtKB-KW
  3. establishment of integrated proviral latency Source: UniProtKB-KW
  4. induction by virus of host cysteine-type endopeptidase activity involved in apoptotic process Source: UniProtKB-KW
  5. suppression by virus of host gene expression Source: UniProtKB-KW
  6. viral entry into host cell Source: UniProtKB-KW
  7. viral penetration into host nucleus Source: UniProtKB-KW
  8. viral release from host cell Source: UniProtKB-KW
Complete GO annotation...

Keywords - Molecular functioni

Aspartyl protease, DNA-directed DNA polymerase, Endonuclease, Hydrolase, Nuclease, Nucleotidyltransferase, Protease, RNA-directed DNA polymerase, Transferase

Keywords - Biological processi

Activation of host caspases by virus, DNA integration, DNA recombination, Eukaryotic host gene expression shutoff by virus, Eukaryotic host translation shutoff by virus, Host gene expression shutoff by virus, Host-virus interaction, Modulation of host cell apoptosis by virus, Viral genome integration, Viral penetration into host nucleus, Virion maturation, Virus entry into host cell, Virus exit from host cell

Keywords - Ligandi

DNA-binding, Magnesium, Metal-binding, RNA-binding, Viral nucleoprotein, Zinc

Enzyme and pathway databases

SABIO-RKP03366.

Names & Taxonomyi

Protein namesi
Recommended name:
Gag-Pol polyprotein
Alternative name(s):
Pr160Gag-Pol
Cleaved into the following 11 chains:
Matrix protein p17
Short name:
MA
Capsid protein p24
Short name:
CA
Transframe peptide
Short name:
TF
p6-pol
Short name:
p6*
Alternative name(s):
PR
Retropepsin
Alternative name(s):
Exoribonuclease H (EC:3.1.13.2)
p66 RT
Integrase
Short name:
IN
Gene namesi
Name:gag-pol
OrganismiHuman immunodeficiency virus type 1 group M subtype B (isolate BH10) (HIV-1)
Taxonomic identifieri11678 [NCBI]
Taxonomic lineageiVirusesRetro-transcribing virusesRetroviridaeOrthoretrovirinaeLentivirusPrimate lentivirus group
Virus hostiHomo sapiens (Human) [TaxID: 9606]
ProteomesiUP000007690: Genome

Subcellular locationi

Chain Matrix protein p17 : Virion Curated. Host nucleus By similarity. Host cytoplasm By similarity. Host cell membrane Curated; Lipid-anchor Curated
Note: Following virus entry, the nuclear localization signal (NLS) of the matrix protein participates with Vpr to the nuclear localization of the viral genome. During virus production, the nuclear export activity of the matrix protein counteracts the NLS to maintain the Gag and Gag-Pol polyproteins in the cytoplasm, thereby directing unspliced RNA to the plasma membrane (By similarity).By similarity
Chain Integrase : Virion Curated. Host nucleus Curated. Host cytoplasm Curated
Note: Nuclear at initial phase, cytoplasmic at assembly.Curated

GO - Cellular componenti

  1. host cell cytoplasm Source: UniProtKB-KW
  2. host cell nucleus Source: UniProtKB-KW
  3. host cell plasma membrane Source: UniProtKB-KW
  4. intracellular Source: GOC
  5. membrane Source: UniProtKB-KW
  6. viral nucleocapsid Source: UniProtKB-KW
Complete GO annotation...

Keywords - Cellular componenti

Capsid protein, Host cell membrane, Host cytoplasm, Host membrane, Host nucleus, Membrane, Virion

Pathology & Biotechi

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi440 – 4401F → I: Complete loss of cleavage between NC and TF. 1 Publication
Mutagenesisi500 – 5001F → I: Complete loss of cleavage between TF and p15. 1 Publication
Mutagenesisi651 – 6511P → G: 74% loss of polymerase activity. 86% loss of RNase H activity. 1 Publication
Mutagenesisi654 – 6541P → G: 64% loss of polymerase activity. 57% loss of RNase H activity. 1 Publication
Mutagenesisi664 – 6641K → A: Strong decrease in RT binding affinity for all dNTP substrates and in catalytic efficiency. 100-fold decreased sensitivity to ddNTP inhibitors. 1 Publication
Mutagenesisi664 – 6641K → E: Strong decrease in RT binding affinity for all dNTP substrates and in catalytic efficiency. 100-fold decreased sensitivity to ddNTP inhibitors. 1 Publication
Mutagenesisi664 – 6641K → Q: Strong decrease in RT binding affinity for all dNTP substrates and in catalytic efficiency. 100-fold decreased sensitivity to ddNTP inhibitors. 1 Publication
Mutagenesisi664 – 6641K → R: 10-fold decreased sensitivity to ddATP and ddCTP inhibitors. 1 Publication
Mutagenesisi673 – 6731L → V: No loss of polymerase activity. No loss of RNase H activity. 1 Publication
Mutagenesisi709 – 7091D → A: 5- to 12-fold decrease in affinity for dTTP substrates. Strongly decreased RNA-directed and DNA-directed DNA polymerase activities. No effect on RNase H activity. Loss of pyrophosphorolysis (reverse of the polymerase reaction). 1 Publication
Mutagenesisi709 – 7091D → S: 5- to 12-fold decrease in affinity for dTTP substrates. Strongly decreased RNA-directed DNA polymerase activity. Slightly decreased DNA-directed DNA polymerase activity. No effect on RNase H activity. Loss of pyrophosphorolysis (reverse of the polymerase reaction). 1 Publication
Mutagenesisi752 – 7521W → A: 73% loss of DNA-directed DNA polymerase activity. 70% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi752 – 7521W → F: 10% loss of DNA-directed DNA polymerase activity. 22% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi752 – 7521W → Y: 58% loss of DNA-directed DNA polymerase activity. 42% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi755 – 7551S → A: 74% loss of polymerase activity. 56% loss of RNase H activity. 1 Publication
Mutagenesisi755 – 7551S → G: Complete loss of polymerase activity. No loss of RNase H activity. 1 Publication
Mutagenesisi755 – 7551S → T: Complete loss of polymerase activity. No loss of RNase H activity. 1 Publication
Mutagenesisi756 – 7561P → G: 34% loss of polymerase activity. No loss of RNase H activity. 1 Publication
Mutagenesisi766 – 7661I → A: 71% loss of DNA-directed DNA polymerase activity. 61% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi766 – 7661I → D: 16% loss of DNA-directed DNA polymerase activity. 24% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi766 – 7661I → L: 80% loss of DNA-directed DNA polymerase activity. 23% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi766 – 7661I → T: 34% increase of DNA-directed DNA polymerase activity. 18% increase of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi766 – 7661I → V: 70% loss of DNA-directed DNA polymerase activity. 64% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi782 – 7821Y → A: Almost complete loss of polymerase activity. 1 Publication
Mutagenesisi782 – 7821Y → F: 70% loss of polymerase activity. No loss of polymerase activity; when associated with V-783. 1 Publication
Mutagenesisi783 – 7831M → I: 54% loss of polymerase activity according to PubMed:9533880; increases polymerase activity according to PubMed:9657675. No loss of RNase H activity. 2 Publications
Mutagenesisi783 – 7831M → L: 90% loss of polymerase activity. No loss of RNase H activity. 2 Publications
Mutagenesisi783 – 7831M → V: 58% loss of polymerase activity. No loss of RNase H activity. 2 Publications
Mutagenesisi784 – 7841D → A: Strongly decreased RNA-directed and DNA-directed DNA polymerase activities. No effect on RNase H activity. 2 Publications
Mutagenesisi784 – 7841D → E: Strongly decreased RNA-directed and DNA-directed DNA polymerase activities. No effect on RNase H activity. 2 Publications
Mutagenesisi784 – 7841D → N: Strongly decreased RNA-directed and DNA-directed DNA polymerase activities. No effect on RNase H activity. 2 Publications
Mutagenesisi785 – 7851D → A: Strongly decreased RNA-directed and DNA-directed DNA polymerase activities. Loss of pyrophosphorolysis (reverse of the polymerase reaction). No effect on RNase H activity. 2 Publications
Mutagenesisi785 – 7851D → E: Drastically reduced incorporation of phosphorothioate nucleotide. Loss of pyrophosphorolysis (reverse of the polymerase reaction). No effect on RNase H activity. 2 Publications
Mutagenesisi785 – 7851D → N: Loss of pyrophosphorolysis (reverse of the polymerase reaction). No effect on RNase H activity. 2 Publications
Mutagenesisi786 – 7861L → A: 76% loss of DNA-directed DNA polymerase activity. 60% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi786 – 7861L → I: 29% loss of DNA-directed DNA polymerase activity. 46% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi786 – 7861L → R: 20% loss of DNA-directed DNA polymerase activity. 21% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi786 – 7861L → V: 22% loss of DNA-directed DNA polymerase activity. No loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi788 – 7881V → A: 37% increase of DNA-directed DNA polymerase activity. No loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi788 – 7881V → I: 25% increase of DNA-directed DNA polymerase activity. No loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi788 – 7881V → M: 27% increase of DNA-directed DNA polymerase activity. 10% loss of RNA-directed DNA polymerase activity. 1 Publication
Mutagenesisi823 – 8231E → A: No effect on RNA-dependent DNA polymerase activity. No effect on RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi824 – 8241P → A: No effect on RNA-dependent DNA polymerase activity. No effect on RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi825 – 8251P → A: No effect on RNA-dependent DNA polymerase activity. Complete loss of RNA 5'-end cleavage. No effect on RNA 3'-end cleavage. 1 Publication
Mutagenesisi826 – 8261F → A: No effect on RNA-dependent DNA polymerase activity. Complete loss of RNA 5'-end cleavage. No effect on RNA 3'-end cleavage. 1 Publication
Mutagenesisi827 – 8271L → A: No effect on RNA-dependent DNA polymerase activity. No effect on RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi828 – 8281W → A: Complete loss of RNA-dependent DNA polymerase activity. No effect on RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi829 – 8291M → A: No effect on RNA-dependent DNA polymerase activity. No effect on RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi830 – 8301G → A: Complete loss of RNA-dependent DNA polymerase activity. Complete loss of RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi831 – 8311Y → A: Complete loss of RNA-dependent DNA polymerase activity. Complete loss of RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi832 – 8321E → A: Complete loss of RNA-dependent DNA polymerase activity. Complete loss of RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi834 – 8341H → A: Complete loss of RNA-dependent DNA polymerase activity. Complete loss of RNA 5'-end and 3'-end cleavages. 1 Publication
Mutagenesisi856 – 8561I → T: 96% loss of polymerase activity. 45% loss of RNase H activity. 1 Publication
Mutagenesisi861 – 8611G → A: Complete loss of polymerase activity. 25% loss of RNase H activity. 1 Publication
Mutagenesisi863 – 8631L → S: 17% loss of polymerase activity. 30% loss of RNase H activity. 1 Publication
Mutagenesisi865 – 8651W → T: Complete loss of polymerase activity. 87% loss of RNase H activity. 1 Publication
Mutagenesisi878 – 8781L → S: 21% loss of polymerase activity. 16% loss of RNase H activity. 1 Publication
Mutagenesisi898 – 8981A → L: 68% loss of polymerase activity. 10% loss of RNase H activity. 1 Publication
Mutagenesisi902 – 9021L → S: 59% loss of polymerase activity. 8% loss of RNase H activity. 1 Publication
Mutagenesisi909 – 9091L → S: 31% loss of polymerase activity. No loss of RNase H activity. 1 Publication
Mutagenesisi997 – 9971W → L: No effect on RT p66/p51 heterodimerization. 1 Publication
Mutagenesisi1000 – 10001W → A: Almost complete loss of RT p66/p51 heterodimerization. Complete loss of polymerase activity. 2 Publications
Mutagenesisi1000 – 10001W → F: No effect on RT p66/p51 heterodimerization. 2 Publications
Mutagenesisi1000 – 10001W → L: Almost complete loss of RT p66/p51 heterodimerization. Complete loss of polymerase activity. 2 Publications
Mutagenesisi1001 – 10011W → L: No effect on RT p66/p51 heterodimerization. 1 Publication
Mutagenesisi1004 – 10041Y → L: No effect on RT p66/p51 heterodimerization. 1 Publication
Mutagenesisi1005 – 10051W → L: Decreased RT p66/p51 heterodimerization. 1 Publication
Mutagenesisi1009 – 10091W → L: No effect on RT p66/p51 heterodimerization. 1 Publication
Mutagenesisi1013 – 10131W → L: Almost complete loss of RT p66/p51 heterodimerization. 1 Publication
Mutagenesisi1036 – 10361A → I: Replication slightly delayed. 1 Publication
Mutagenesisi1037 – 10371E → N: Virions contain primarily p51 RT. 1 Publication
Mutagenesisi1038 – 10381T → S: Almost complete loss of virion production; when associated with G-1041. 1 Publication
Mutagenesisi1039 – 10391F → A: Virions contain primarily p51 RT. 2 Publications
Mutagenesisi1039 – 10391F → I: Loss of cleavage between p51 RT and p15. 2 Publications
Mutagenesisi1039 – 10391F → L: No effect on cleavage between p51 RT and p15. 2 Publications
Mutagenesisi1039 – 10391F → V: Slight delays in replication. Virions contain primarily p51 RT. 2 Publications
Mutagenesisi1039 – 10391F → W: Slight delays in replication. Virions contain primarily p51 RT. 2 Publications
Mutagenesisi1040 – 10401Y → A: Virions contain primarily p51 RT; when associated with A-1039. 1 Publication
Mutagenesisi1040 – 10401Y → I: Almost complete loss of virion production; when associated with K-1041. 1 Publication
Mutagenesisi1040 – 10401Y → W: Virions contain primarily p51 RT; when associated with W-1039. 1 Publication
Mutagenesisi1041 – 10411V → G: Almost complete loss of virion production; when associated with S-1038. 1 Publication
Mutagenesisi1041 – 10411V → K: Almost complete loss of virion production; when associated with I-1038. 1 Publication
Mutagenesisi1041 – 10411V → S: Slight delays in replication. 1 Publication
Mutagenesisi1077 – 10771E → Q: No loss of polymerase activity. complete loss of RNase H activity. 1 Publication
Mutagenesisi1100 – 11001Y → A, G, H, L, S or Q: Complete loss of RNAase H activity. 1 Publication
Mutagenesisi1100 – 11001Y → E: Almost complete loss of RNAase H activity. 1 Publication
Mutagenesisi1100 – 11001Y → F: Almost no effect on RNAase H activity and replication. 1 Publication
Mutagenesisi1100 – 11001Y → R: Almost no effect on RNAase H activity. Unable to replicate. Completely resistant to inhibition by BBNH. 1 Publication
Mutagenesisi1100 – 11001Y → W: Almost no effect on RNAase H activity and replication. 6-fold resistance to inhibition by BBNH. 1 Publication
Mutagenesisi1138 – 11381H → D or N: Severely reduces exonuclease activity of RNase H. Probably also reduces substrate binding affinity. Modifies cleavage preferences of RNase H. No effect on the endonuclease activity. 1 Publication
Mutagenesisi1138 – 11381H → D: Severely reduced exonuclease activity of RNase H, but no effect on endonucleonuclease activity. 1 Publication
Mutagenesisi1138 – 11381H → N: Severely reduced exonuclease activity of RNase H, but no effect on endonucleonuclease activity. 1 Publication
Mutagenesisi1159 – 11591L → F: No effect on cleavage between reverse transcriptase/ribonuclease H and integrase. 1 Publication
Mutagenesisi1159 – 11591L → I: Loss of cleavage between reverse transcriptase/ribonuclease H and integrase. 1 Publication

Keywords - Diseasei

AIDS

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Initiator methioninei1 – 11Removed; by hostBy similarity
Chaini2 – 14471446Gag-Pol polyproteinPRO_0000261261Add
BLAST
Chaini2 – 132131Matrix protein p17By similarityPRO_0000042285Add
BLAST
Chaini133 – 363231Capsid protein p24By similarityPRO_0000042286Add
BLAST
Peptidei364 – 37714Spacer peptide p2By similarityPRO_0000042287Add
BLAST
Chaini378 – 43255Nucleocapsid protein p7By similarityPRO_0000042288Add
BLAST
Peptidei433 – 4408Transframe peptideSequence AnalysisPRO_0000246710
Chaini441 – 50060p6-polSequence AnalysisPRO_0000042289Add
BLAST
Chaini501 – 59999ProteaseBy similarityPRO_0000038647Add
BLAST
Chaini600 – 1159560Reverse transcriptase/ribonuclease HBy similarityPRO_0000042290Add
BLAST
Chaini600 – 1039440p51 RTBy similarityPRO_0000042291Add
BLAST
Chaini1040 – 1159120p15PRO_0000042292Add
BLAST
Chaini1160 – 1447288IntegraseBy similarityPRO_0000042293Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Lipidationi2 – 21N-myristoyl glycine; by hostBy similarity
Modified residuei132 – 1321Phosphotyrosine; by hostBy similarity

Post-translational modificationi

Specific enzymatic cleavages by the viral protease yield mature proteins. The protease is released by autocatalytic cleavage. The polyprotein is cleaved during and after budding, this process is termed maturation. Proteolytic cleavage of p66 RT removes the RNase H domain to yield the p51 RT subunit. Nucleocapsid protein p7 might be further cleaved after virus entry (By similarity).PROSITE-ProRule annotation
Capsid protein p24 is phosphorylated.By similarity
Matrix protein p17 is tyrosine phosphorylated presumably in the virion by a host kinase. This modification targets the matrix protein to the nucleus (By similarity).By similarity

Keywords - PTMi

Lipoprotein, Myristate, Phosphoprotein

Interactioni

Subunit structurei

Pre-integration complex interacts with human HMGA1. Matrix protein p17 is a trimer. Interacts with gp120 and human BAF. Capsid is a homodimer. Interacts with human PPIA/CYPA. The protease is a homodimer, whose active site consists of two apposed aspartic acid residues. The reverse transcriptase is a heterodimer of p66 RT and p51 RT (RT p66/p51). Heterodimerization of RT is essential for DNA polymerase activity. Despite the sequence identities, p66 RT and p51 RT have distinct folding. Integrase is a homodimer and possibly can form homotetramer. Integrase interacts with human SMARCB1/INI1 and human PSIP1/LEDGF isoform 1 Integrase interacts with human KPNA3; this interaction might play a role in nuclear import of the pre-integration complex. Integrase interacts with human NUP153; this interaction might play a role in nuclear import of the pre-integration complex (By similarity).By similarity

Protein-protein interaction databases

IntActiP03366. 38 interactions.
MINTiMINT-111903.

Structurei

Secondary structure

1
1447
Legend: HelixTurnBeta strand
Show more details
Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Turni393 – 3953Combined sources
Beta strandi398 – 4003Combined sources
Turni402 – 4043Combined sources
Beta strandi414 – 4163Combined sources
Beta strandi419 – 4213Combined sources
Turni423 – 4253Combined sources
Beta strandi426 – 4294Combined sources
Beta strandi502 – 5043Combined sources
Beta strandi505 – 5073Combined sources
Beta strandi510 – 5156Combined sources
Beta strandi518 – 5247Combined sources
Beta strandi529 – 5335Combined sources
Beta strandi542 – 5498Combined sources
Beta strandi552 – 56615Combined sources
Beta strandi569 – 57810Combined sources
Beta strandi581 – 5855Combined sources
Helixi587 – 5904Combined sources
Turni591 – 5944Combined sources
Beta strandi596 – 5983Combined sources
Beta strandi602 – 6043Combined sources
Beta strandi611 – 6144Combined sources
Helixi627 – 64216Combined sources
Beta strandi645 – 6484Combined sources
Beta strandi651 – 6533Combined sources
Beta strandi659 – 6635Combined sources
Beta strandi665 – 6684Combined sources
Beta strandi670 – 6745Combined sources
Helixi677 – 6826Combined sources
Helixi684 – 6874Combined sources
Helixi689 – 6913Combined sources
Helixi696 – 6983Combined sources
Helixi699 – 7013Combined sources
Beta strandi703 – 7097Combined sources
Helixi710 – 7123Combined sources
Helixi713 – 7164Combined sources
Helixi721 – 7277Combined sources
Beta strandi729 – 7313Combined sources
Helixi734 – 7363Combined sources
Beta strandi737 – 7393Combined sources
Beta strandi741 – 7477Combined sources
Beta strandi752 – 7543Combined sources
Helixi755 – 77319Combined sources
Beta strandi774 – 7763Combined sources
Beta strandi777 – 7826Combined sources
Beta strandi785 – 7906Combined sources
Helixi794 – 80815Combined sources
Helixi809 – 8113Combined sources
Helixi816 – 8183Combined sources
Beta strandi819 – 8235Combined sources
Beta strandi824 – 8285Combined sources
Beta strandi831 – 8333Combined sources
Helixi835 – 8373Combined sources
Beta strandi838 – 8414Combined sources
Beta strandi849 – 8524Combined sources
Helixi853 – 86614Combined sources
Turni867 – 8693Combined sources
Beta strandi870 – 8723Combined sources
Helixi876 – 8794Combined sources
Helixi880 – 8823Combined sources
Turni883 – 8853Combined sources
Beta strandi886 – 8883Combined sources
Beta strandi890 – 8923Combined sources
Helixi896 – 90813Combined sources
Beta strandi909 – 9113Combined sources
Beta strandi913 – 9164Combined sources
Beta strandi920 – 9223Combined sources
Beta strandi925 – 9328Combined sources
Beta strandi935 – 9439Combined sources
Beta strandi946 – 9549Combined sources
Beta strandi957 – 9615Combined sources
Helixi963 – 98220Combined sources
Beta strandi987 – 9926Combined sources
Helixi994 – 100310Combined sources
Beta strandi1004 – 10063Combined sources
Beta strandi1012 – 10154Combined sources
Beta strandi1017 – 10193Combined sources
Beta strandi1020 – 10223Combined sources
Helixi1023 – 10264Combined sources
Beta strandi1029 – 10313Combined sources
Beta strandi1036 – 104510Combined sources
Turni1047 – 10493Combined sources
Beta strandi1052 – 10587Combined sources
Beta strandi1059 – 10613Combined sources
Beta strandi1063 – 10708Combined sources
Helixi1073 – 108715Combined sources
Beta strandi1090 – 10967Combined sources
Helixi1099 – 11057Combined sources
Beta strandi1110 – 11145Combined sources
Helixi1115 – 112612Combined sources
Beta strandi1128 – 11347Combined sources
Beta strandi1137 – 11393Combined sources
Beta strandi1140 – 11423Combined sources
Helixi1144 – 11529Combined sources
Turni1153 – 11553Combined sources
Beta strandi1219 – 12279Combined sources
Beta strandi1230 – 12378Combined sources
Turni1238 – 12403Combined sources
Beta strandi1243 – 12508Combined sources
Helixi1253 – 126614Combined sources
Beta strandi1271 – 12733Combined sources
Helixi1277 – 12815Combined sources
Helixi1283 – 129210Combined sources
Beta strandi1295 – 12973Combined sources
Helixi1305 – 132420Combined sources
Helixi1325 – 13273Combined sources
Helixi1331 – 134414Combined sources
Helixi1355 – 136713Combined sources
Beta strandi1380 – 13867Combined sources
Beta strandi1395 – 14039Combined sources
Beta strandi1405 – 142016Combined sources
Helixi1421 – 14233Combined sources
Beta strandi1424 – 14285Combined sources
Helixi1436 – 14394Combined sources

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
EntryMethodResolution (Å)ChainPositionsPDBsum
1A9MX-ray2.30A/B501-599[»]
1AJVX-ray2.00A/B501-599[»]
1AJXX-ray2.00A/B501-599[»]
1AXAX-ray2.00A/B501-599[»]
1BQMX-ray3.10A600-1155[»]
B600-1029[»]
1BQNX-ray3.30A600-1440[»]
B600-1029[»]
1D4HX-ray1.81A/B501-599[»]
1D4IX-ray1.81A/B501-599[»]
1D4JX-ray1.81A/B501-599[»]
1DLOX-ray2.70A600-1155[»]
B600-1026[»]
1DW6X-ray1.88C/D501-599[»]
1EBKX-ray2.06C/D/E/F501-599[»]
1EBWX-ray1.81A/B501-599[»]
1EBYX-ray2.29A/B501-599[»]
1EBZX-ray2.01A/B501-599[»]
1EC0X-ray1.79A/B501-599[»]
1EC1X-ray2.10A/B501-599[»]
1EC2X-ray2.00A/B501-599[»]
1EC3X-ray1.80A/B501-599[»]
1EETX-ray2.73A600-1156[»]
B600-1026[»]
1G35X-ray1.80A/B501-599[»]
1GNMX-ray2.30A/B501-599[»]
1GNNX-ray2.30A/B501-599[»]
1GNOX-ray2.30A/B501-599[»]
1HARX-ray2.20A600-815[»]
1HBVX-ray2.30A/B501-599[»]
1HEFX-ray2.20E501-599[»]
1HEGX-ray2.20E501-599[»]
1HIHX-ray2.20A/B501-599[»]
1HMVX-ray3.20A/C/E/G600-1159[»]
B/D/F/H600-1039[»]
1HNIX-ray2.80A600-1157[»]
B600-1026[»]
1HNVX-ray3.00A600-1157[»]
B600-1026[»]
1HOSX-ray2.30A/B501-599[»]
1HPSX-ray2.30A/B501-599[»]
1HPZX-ray3.00A600-1159[»]
B600-1029[»]
1HQEX-ray2.70A600-1159[»]
B600-1029[»]
1HQUX-ray2.70A600-1159[»]
B600-1029[»]
1HRHX-ray2.40A/B1026-1161[»]
1HTEX-ray2.80A/B501-599[»]
1HTFX-ray2.20A/B501-599[»]
1HTGX-ray2.00A/B501-599[»]
1HVIX-ray1.80A/B501-599[»]
1HVKX-ray1.80A/B501-599[»]
1HVPmodel-A/B501-599[»]
1HVUX-ray4.75A/D/G/J600-1153[»]
B/E/H/K604-1026[»]
1HYSX-ray3.00A600-1152[»]
B600-1024[»]
1IKVX-ray3.00A600-1159[»]
B600-1026[»]
1IKWX-ray3.00A600-1159[»]
B600-1026[»]
1IKXX-ray2.80A600-1159[»]
B600-1026[»]
1IKYX-ray3.00A600-1159[»]
B600-1026[»]
1J5OX-ray3.50A600-1157[»]
B600-1029[»]
1KJHX-ray2.00P1155-1164[»]
1MERX-ray1.90A/B501-599[»]
1MESX-ray1.90A/B501-599[»]
1METX-ray1.90A/B501-599[»]
1MEUX-ray1.90A/B501-599[»]
1N5YX-ray3.10A600-1157[»]
B600-1029[»]
1N6QX-ray3.00A600-1157[»]
B600-1029[»]
1NPAX-ray2.00A/B501-599[»]
1NPVX-ray2.00A/B501-599[»]
1NPWX-ray2.00A/B501-599[»]
1QE1X-ray2.85A600-1157[»]
B600-1026[»]
1QMCNMR-A/B1379-1429[»]
1R0AX-ray2.80A600-1157[»]
B600-1028[»]
1RDHX-ray2.80A/B1026-1159[»]
1RTDX-ray3.20A/C600-1153[»]
1RVLmodel-A600-1155[»]
B600-1027[»]
1RVMmodel-A600-1155[»]
B600-1027[»]
1RVNmodel-A600-1155[»]
B600-1027[»]
1RVOmodel-A600-1155[»]
B600-1027[»]
1RVPmodel-A600-1155[»]
B600-1027[»]
1RVQmodel-A600-1155[»]
B600-1027[»]
1RVRmodel-A600-1155[»]
B600-1027[»]
1S6PX-ray2.90A600-1159[»]
B600-1029[»]
1S6QX-ray3.00A600-1159[»]
B600-1029[»]
1S9EX-ray2.60A600-1159[»]
B600-1029[»]
1S9GX-ray2.80A600-1159[»]
B600-1029[»]
1SBGX-ray2.30A/B501-599[»]
1SUQX-ray3.00A600-1159[»]
B600-1029[»]
1SV5X-ray2.90A600-1159[»]
B600-1029[»]
1T03X-ray3.10A600-1157[»]
B600-1028[»]
1T05X-ray3.00A600-1157[»]
1T7KX-ray2.10A/B501-599[»]
1TV6X-ray2.80A600-1159[»]
B600-1039[»]
1TVRX-ray3.00A600-1157[»]
B600-1026[»]
1UWBX-ray3.20A600-1157[»]
B600-1026[»]
1W5VX-ray1.80A/B490-599[»]
1W5WX-ray1.80A/B490-599[»]
1W5XX-ray1.90A/B490-599[»]
1W5YX-ray1.90A/B490-599[»]
1YT9X-ray3.00A/B501-599[»]
1ZP8X-ray2.02A501-599[»]
1ZPAX-ray2.02A501-599[»]
1ZSFX-ray1.98A/B501-599[»]
1ZSRX-ray2.06A/B501-599[»]
2AQUX-ray2.00A/B501-599[»]
2B5JX-ray2.90A600-1159[»]
B600-1029[»]
2B6AX-ray2.65A600-1159[»]
B600-1029[»]
2BANX-ray2.95A600-1159[»]
B600-1029[»]
2BBBX-ray1.70A/B501-599[»]
2BE2X-ray2.43A600-1159[»]
B600-1029[»]
2EXFNMR-A390-432[»]
2G69X-ray1.35A501-599[»]
2HB3X-ray1.35A/B501-598[»]
2HMIX-ray2.80A600-1157[»]
B600-1029[»]
2HNZX-ray3.00B606-1027[»]
2HS1X-ray0.84A/B501-599[»]
2HS2X-ray1.22A/B501-599[»]
2I4DX-ray1.50A/B501-599[»]
2I4UX-ray1.50A/B501-599[»]
2I4VX-ray1.50A/B501-599[»]
2I4WX-ray1.55A/B501-599[»]
2I4XX-ray1.55A/B501-599[»]
2I5JX-ray3.15A600-1150[»]
B600-1027[»]
2IAJX-ray2.50A600-1158[»]
B600-1045[»]
2IC3X-ray3.00A600-1158[»]
B600-1045[»]
2IDWX-ray1.10A/B501-599[»]
2IEOX-ray1.53A/B501-599[»]
2JZWNMR-A390-432[»]
2L45NMR-A411-429[»]
2L46NMR-A411-429[»]
2L4LNMR-A388-432[»]
2UXZX-ray1.75A/B501-599[»]
2UY0X-ray1.76A/B501-599[»]
2VG5X-ray2.80A600-1156[»]
B600-1027[»]
2VG6X-ray3.01A600-1156[»]
B600-1027[»]
2VG7X-ray2.82A600-1156[»]
B600-1027[»]
2X4UX-ray2.10C/F908-916[»]
2YKMX-ray2.90A600-1156[»]
B600-1027[»]
2YKNX-ray2.12A600-1156[»]
B600-1027[»]
2ZD1X-ray1.80A600-1154[»]
B600-1027[»]
2ZE2X-ray2.90A600-1154[»]
B600-1027[»]
3AVIX-ray1.70A/B1209-1371[»]
3BGRX-ray2.10A600-1154[»]
B600-1027[»]
3DLKX-ray1.85A600-1154[»]
B605-1027[»]
3GGAX-ray2.50A/B/C/D/G/H501-599[»]
3GGVX-ray3.09A/B/C/D/E/F/G/H/I501-599[»]
3GGXX-ray2.70A/B/C/D/E/F/G/H501-599[»]
3HVTX-ray2.90A600-1155[»]
B600-1027[»]
3IG1X-ray2.80A600-1154[»]
B600-1027[»]
3IRXX-ray2.80A600-1154[»]
B600-1027[»]
3IS9X-ray2.55A600-1154[»]
B600-1027[»]
3ISNX-ray2.50C600-1159[»]
D600-1026[»]
3ITHX-ray2.80A/C600-1159[»]
B/D600-1026[»]
3JSMX-ray3.00A600-1157[»]
B600-1028[»]
3JYTX-ray3.30A600-1157[»]
B600-1028[»]
3K2PX-ray2.04A/B1026-1159[»]
3K4VX-ray1.39A/B/C/D501-599[»]
3KLEX-ray3.20A/E/I/M600-1157[»]
B/F/J/N600-1027[»]
3KLFX-ray3.15A/E/I/M600-1154[»]
B/F/J/N600-1027[»]
3KLGX-ray3.65A/E600-1157[»]
B/F600-1027[»]
3KLHX-ray2.90A600-1159[»]
B600-1027[»]
3KLIX-ray2.65A600-1157[»]
B600-1027[»]
3NDTX-ray1.72A/B/C/D501-599[»]
3NU3X-ray1.02A/B501-599[»]
3NU4X-ray1.20A/B501-599[»]
3NU5X-ray1.29A/B501-599[»]
3NU6X-ray1.16A/B501-599[»]
3NU9X-ray1.85A/B501-599[»]
3NUJX-ray1.50A/B501-599[»]
3NUOX-ray1.35A/B501-599[»]
3OK9X-ray1.27A/B501-599[»]
3PSUX-ray2.07A501-599[»]
3QAAX-ray1.40A/B501-599[»]
3QLHX-ray2.70A600-1153[»]
B605-1027[»]
3QO9X-ray2.60A600-1154[»]
B600-1027[»]
3TKGX-ray1.36A/B/C/D497-599[»]
3TKWX-ray1.55A/B497-599[»]
3TL9X-ray1.32A/B497-599[»]
3TLHX-ray2.00A501-599[»]
3V4IX-ray2.80A/C600-1153[»]
B/D600-1027[»]
3V6DX-ray2.70A/C600-1153[»]
B/D600-1027[»]
3V81X-ray2.85A/C600-1153[»]
B/D600-1027[»]
3ZPSX-ray1.55A/B501-599[»]
3ZPTX-ray1.54A/B501-599[»]
3ZPUX-ray1.80A/B501-599[»]
4DG1X-ray2.15A600-1148[»]
B600-1026[»]
4G1QX-ray1.51A600-1154[»]
B600-1027[»]
4G8GX-ray2.40C263-272[»]
4G8IX-ray1.60C263-272[»]
4G9DX-ray1.60C263-272[»]
4G9FX-ray1.90C263-272[»]
4H4MX-ray2.85A600-1154[»]
B600-1027[»]
4H4OX-ray2.90A600-1154[»]
B600-1027[»]
4I2PX-ray2.30A600-1154[»]
B600-1027[»]
4I2QX-ray2.70A600-1154[»]
B600-1027[»]
4ICLX-ray1.80A600-1154[»]
B600-1027[»]
4ID5X-ray1.95A600-1154[»]
B600-1027[»]
4IDKX-ray2.10A600-1154[»]
B600-1027[»]
4IFVX-ray2.05A600-1154[»]
B600-1027[»]
4IFYX-ray2.10A600-1154[»]
B600-1027[»]
4IG0X-ray2.50A600-1154[»]
B600-1027[»]
4IG3X-ray1.95A600-1154[»]
B600-1027[»]
4KFBX-ray1.85A600-1154[»]
B604-1027[»]
4KKOX-ray2.89A600-1154[»]
B600-1027[»]
4KO0X-ray1.95A600-1154[»]
B600-1027[»]
4LSLX-ray2.69A600-1154[»]
B600-1027[»]
4LSNX-ray3.10A600-1154[»]
B600-1027[»]
4MFBX-ray2.88A600-1154[»]
B600-1027[»]
4O44X-ray2.89A600-1154[»]
B600-1027[»]
4OJRX-ray1.82A1209-1371[»]
4PQUX-ray2.51A/C600-1153[»]
B/D600-1027[»]
4PUOX-ray2.90A/C600-1153[»]
B/D600-1027[»]
4PWDX-ray3.00A/C600-1153[»]
B/D600-1027[»]
4Q0BX-ray3.30A/C600-1153[»]
B/D600-1027[»]
4QAGX-ray1.71A/B1024-1156[»]
ProteinModelPortaliP03366.
SMRiP03366. Positions 1-432, 501-1155, 1160-1429.
ModBaseiSearch...
MobiDBiSearch...

Miscellaneous databases

EvolutionaryTraceiP03366.

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Domaini520 – 58970Peptidase A2PROSITE-ProRule annotationAdd
BLAST
Domaini643 – 833191Reverse transcriptasePROSITE-ProRule annotationAdd
BLAST
Domaini1033 – 1156124RNase HPROSITE-ProRule annotationAdd
BLAST
Domaini1213 – 1363151Integrase catalyticPROSITE-ProRule annotationAdd
BLAST

Region

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Regioni826 – 8349RT 'primer grip'

Motif

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Motifi16 – 227Nuclear export signalBy similarity
Motifi26 – 327Nuclear localization signalBy similarity
Motifi997 – 101317Tryptophan repeat motifAdd
BLAST

Domaini

The reverse transcriptase/ribonuclease H (RT) is structured in five subdomains: finger, palm, thumb, connection and RNase H. Within the palm subdomain, the 'primer grip' region is thought to be involved in the positioning of the primer terminus for accommodating the incoming nucleotide. The RNase H domain stabilizes the association of RT with primer-template (By similarity).By similarity
The tryptophan repeat motif is involved in RT p66/p51 dimerization.By similarity
Integrase core domain contains the D-x(n)-D-x(35)-E motif, named for the phylogenetically conserved glutamic acid and aspartic acid residues and the invariant 35 amino acid spacing between the second and third acidic residues. Each acidic residue of the D,D(35)E motif is independently essential for the 3'-processing and strand transfer activities of purified integrase protein (By similarity).By similarity

Sequence similaritiesi

Contains 2 CCHC-type zinc fingers.PROSITE-ProRule annotation
Contains 1 integrase catalytic domain.PROSITE-ProRule annotation
Contains 1 integrase-type DNA-binding domain.PROSITE-ProRule annotation
Contains 1 integrase-type zinc finger.PROSITE-ProRule annotation
Contains 1 peptidase A2 domain.PROSITE-ProRule annotation
Contains 1 reverse transcriptase domain.PROSITE-ProRule annotation
Contains 1 RNase H domain.PROSITE-ProRule annotation

Zinc finger

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Zinc fingeri390 – 40718CCHC-type 1PROSITE-ProRule annotationAdd
BLAST
Zinc fingeri411 – 42818CCHC-type 2PROSITE-ProRule annotationAdd
BLAST
Zinc fingeri1162 – 120342Integrase-typePROSITE-ProRule annotationAdd
BLAST

Keywords - Domaini

Repeat, Zinc-finger

Family and domain databases

Gene3Di1.10.10.200. 1 hit.
1.10.1200.30. 1 hit.
1.10.150.90. 1 hit.
1.10.375.10. 1 hit.
2.30.30.10. 1 hit.
2.40.70.10. 1 hit.
3.30.420.10. 2 hits.
4.10.60.10. 1 hit.
InterProiIPR001969. Aspartic_peptidase_AS.
IPR000721. Gag_p24.
IPR001037. Integrase_C_retrovir.
IPR001584. Integrase_cat-core.
IPR017856. Integrase_Zn-bd_dom-like_N.
IPR003308. Integrase_Zn-bd_dom_N.
IPR000071. Lentvrl_matrix_N.
IPR012344. Matrix_N_HIV/RSV.
IPR018061. Pept_A2A_retrovirus_sg.
IPR001995. Peptidase_A2_cat.
IPR021109. Peptidase_aspartic_dom.
IPR008916. Retrov_capsid_C.
IPR008919. Retrov_capsid_N.
IPR010999. Retrovr_matrix_N.
IPR012337. RNaseH-like_dom.
IPR002156. RNaseH_domain.
IPR000477. RT_dom.
IPR010659. RVT_connect.
IPR010661. RVT_thumb.
IPR001878. Znf_CCHC.
[Graphical view]
PfamiPF00540. Gag_p17. 1 hit.
PF00607. Gag_p24. 1 hit.
PF00552. IN_DBD_C. 1 hit.
PF02022. Integrase_Zn. 1 hit.
PF00075. RNase_H. 1 hit.
PF00665. rve. 1 hit.
PF00077. RVP. 1 hit.
PF00078. RVT_1. 1 hit.
PF06815. RVT_connect. 1 hit.
PF06817. RVT_thumb. 1 hit.
PF00098. zf-CCHC. 2 hits.
[Graphical view]
PRINTSiPR00234. HIV1MATRIX.
SMARTiSM00343. ZnF_C2HC. 2 hits.
[Graphical view]
SUPFAMiSSF46919. SSF46919. 1 hit.
SSF47353. SSF47353. 1 hit.
SSF47836. SSF47836. 1 hit.
SSF47943. SSF47943. 1 hit.
SSF50122. SSF50122. 1 hit.
SSF50630. SSF50630. 1 hit.
SSF53098. SSF53098. 2 hits.
SSF57756. SSF57756. 1 hit.
PROSITEiPS50175. ASP_PROT_RETROV. 1 hit.
PS00141. ASP_PROTEASE. 1 hit.
PS50994. INTEGRASE. 1 hit.
PS51027. INTEGRASE_DBD. 1 hit.
PS50879. RNASE_H. 1 hit.
PS50878. RT_POL. 1 hit.
PS50158. ZF_CCHC. 2 hits.
PS50876. ZF_INTEGRASE. 1 hit.
[Graphical view]

Sequences (2)i

Sequence statusi: Complete.

Sequence processingi: The displayed sequence is further processed into a mature form.

This entry describes 2 isoformsi produced by ribosomal frameshifting. Align

Note: Translation results in the formation of the Gag polyprotein most of the time. Ribosomal frameshifting at the gag-pol genes boundary occurs at low frequency and produces the Gag-Pol polyprotein. This strategy of translation probably allows the virus to modulate the quantity of each viral protein. Maintenance of a correct Gag to Gag-Pol ratio is essential for RNA dimerization and viral infectivity.1 Publication

Isoform Gag-Pol polyprotein (identifier: P03366-1) [UniParc]FASTAAdd to Basket

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

« Hide

        10         20         30         40         50
MGARASVLSG GELDRWEKIR LRPGGKKKYK LKHIVWASRE LERFAVNPGL
60 70 80 90 100
LETSEGCRQI LGQLQPSLQT GSEELRSLYN TVATLYCVHQ RIEIKDTKEA
110 120 130 140 150
LDKIEEEQNK SKKKAQQAAA DTGHSSQVSQ NYPIVQNIQG QMVHQAISPR
160 170 180 190 200
TLNAWVKVVE EKAFSPEVIP MFSALSEGAT PQDLNTMLNT VGGHQAAMQM
210 220 230 240 250
LKETINEEAA EWDRVHPVHA GPIAPGQMRE PRGSDIAGTT STLQEQIGWM
260 270 280 290 300
TNNPPIPVGE IYKRWIILGL NKIVRMYSPT SILDIRQGPK EPFRDYVDRF
310 320 330 340 350
YKTLRAEQAS QEVKNWMTET LLVQNANPDC KTILKALGPA ATLEEMMTAC
360 370 380 390 400
QGVGGPGHKA RVLAEAMSQV TNTATIMMQR GNFRNQRKMV KCFNCGKEGH
410 420 430 440 450
TARNCRAPRK KGCWKCGKEG HQMKDCTERQ ANFLREDLAF LQGKAREFSS
460 470 480 490 500
EQTRANSPTI SSEQTRANSP TRRELQVWGR DNNSPSEAGA DRQGTVSFNF
510 520 530 540 550
PQITLWQRPL VTIKIGGQLK EALLDTGADD TVLEEMSLPG RWKPKMIGGI
560 570 580 590 600
GGFIKVRQYD QILIEICGHK AIGTVLVGPT PVNIIGRNLL TQIGCTLNFP
610 620 630 640 650
ISPIETVPVK LKPGMDGPKV KQWPLTEEKI KALVEICTEM EKEGKISKIG
660 670 680 690 700
PENPYNTPVF AIKKKDSTKW RKLVDFRELN KRTQDFWEVQ LGIPHPAGLK
710 720 730 740 750
KKKSVTVLDV GDAYFSVPLD EDFRKYTAFT IPSINNETPG IRYQYNVLPQ
760 770 780 790 800
GWKGSPAIFQ SSMTKILEPF KKQNPDIVIY QYMDDLYVGS DLEIGQHRTK
810 820 830 840 850
IEELRQHLLR WGLTTPDKKH QKEPPFLWMG YELHPDKWTV QPIVLPEKDS
860 870 880 890 900
WTVNDIQKLV GKLNWASQIY PGIKVRQLCK LLRGTKALTE VIPLTEEAEL
910 920 930 940 950
ELAENREILK EPVHGVYYDP SKDLIAEIQK QGQGQWTYQI YQEPFKNLKT
960 970 980 990 1000
GKYARMRGAH TNDVKQLTEA VQKITTESIV IWGKTPKFKL PIQKETWETW
1010 1020 1030 1040 1050
WTEYWQATWI PEWEFVNTPP LVKLWYQLEK EPIVGAETFY VDGAANRETK
1060 1070 1080 1090 1100
LGKAGYVTNK GRQKVVPLTN TTNQKTELQA IYLALQDSGL EVNIVTDSQY
1110 1120 1130 1140 1150
ALGIIQAQPD KSESELVNQI IEQLIKKEKV YLAWVPAHKG IGGNEQVDKL
1160 1170 1180 1190 1200
VSAGIRKILF LDGIDKAQDE HEKYHSNWRA MASDFNLPPV VAKEIVASCD
1210 1220 1230 1240 1250
KCQLKGEAMH GQVDCSPGIW QLDCTHLEGK VILVAVHVAS GYIEAEVIPA
1260 1270 1280 1290 1300
ETGQETAYFL LKLAGRWPVK TIHTDNGSNF TSATVKAACW WAGIKQEFGI
1310 1320 1330 1340 1350
PYNPQSQGVV ESMNKELKKI IGQVRDQAEH LKTAVQMAVF IHNFKRKGGI
1360 1370 1380 1390 1400
GGYSAGERIV DIIATDIQTK ELQKQITKIQ NFRVYYRDSR NPLWKGPAKL
1410 1420 1430 1440
LWKGEGAVVI QDNSDIKVVP RRKAKIIRDY GKQMAGDDCV ASRQDED

Note: Produced by -1 ribosomal frameshifting.

Length:1,447
Mass (Da):163,288
Last modified:January 23, 2007 - v3
Checksum:iAC3EE1439592E0AD
GO
Isoform Gag polyprotein (identifier: P03347-1) [UniParc]FASTAAdd to Basket

The sequence of this isoform can be found in the external entry P03347.
Isoforms of the same protein are often annotated in two different entries if their sequences differ significantly.

Note: Produced by conventional translation.

Length:512
Mass (Da):57,256
GO

Natural variant

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Natural varianti297 – 2971V → L in strain: Isolate PV22.
Natural varianti434 – 4341L → F.
Natural varianti771 – 7711K → R in strain: Isolate PV22.
Natural varianti1050 – 10501K → R in strain: Isolate PV22.
Natural varianti1057 – 10571V → L in strain: Isolate PV22.
Natural varianti1111 – 11111K → Q in strain: Isolate PV22.
Natural varianti1128 – 11281E → Q in strain: Isolate PV22.

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
M15654 Genomic RNA. Translation: AAA44198.1. Sequence problems.
K02083 Genomic DNA. Translation: AAB59867.1. Sequence problems.
X01762 Genomic RNA. No translation available.
PIRiA03965. GNVWH3.
A03967. GNVWVL.

Keywords - Coding sequence diversityi

Ribosomal frameshifting

Cross-referencesi

Web resourcesi

HIV drug resistance mutations
hivdb

HIV drug resistance database

BioAfrica: HIV bioinformatics in Africa

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
M15654 Genomic RNA. Translation: AAA44198.1 . Sequence problems.
K02083 Genomic DNA. Translation: AAB59867.1 . Sequence problems.
X01762 Genomic RNA. No translation available.
PIRi A03965. GNVWH3.
A03967. GNVWVL.

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
Entry Method Resolution (Å) Chain Positions PDBsum
1A9M X-ray 2.30 A/B 501-599 [» ]
1AJV X-ray 2.00 A/B 501-599 [» ]
1AJX X-ray 2.00 A/B 501-599 [» ]
1AXA X-ray 2.00 A/B 501-599 [» ]
1BQM X-ray 3.10 A 600-1155 [» ]
B 600-1029 [» ]
1BQN X-ray 3.30 A 600-1440 [» ]
B 600-1029 [» ]
1D4H X-ray 1.81 A/B 501-599 [» ]
1D4I X-ray 1.81 A/B 501-599 [» ]
1D4J X-ray 1.81 A/B 501-599 [» ]
1DLO X-ray 2.70 A 600-1155 [» ]
B 600-1026 [» ]
1DW6 X-ray 1.88 C/D 501-599 [» ]
1EBK X-ray 2.06 C/D/E/F 501-599 [» ]
1EBW X-ray 1.81 A/B 501-599 [» ]
1EBY X-ray 2.29 A/B 501-599 [» ]
1EBZ X-ray 2.01 A/B 501-599 [» ]
1EC0 X-ray 1.79 A/B 501-599 [» ]
1EC1 X-ray 2.10 A/B 501-599 [» ]
1EC2 X-ray 2.00 A/B 501-599 [» ]
1EC3 X-ray 1.80 A/B 501-599 [» ]
1EET X-ray 2.73 A 600-1156 [» ]
B 600-1026 [» ]
1G35 X-ray 1.80 A/B 501-599 [» ]
1GNM X-ray 2.30 A/B 501-599 [» ]
1GNN X-ray 2.30 A/B 501-599 [» ]
1GNO X-ray 2.30 A/B 501-599 [» ]
1HAR X-ray 2.20 A 600-815 [» ]
1HBV X-ray 2.30 A/B 501-599 [» ]
1HEF X-ray 2.20 E 501-599 [» ]
1HEG X-ray 2.20 E 501-599 [» ]
1HIH X-ray 2.20 A/B 501-599 [» ]
1HMV X-ray 3.20 A/C/E/G 600-1159 [» ]
B/D/F/H 600-1039 [» ]
1HNI X-ray 2.80 A 600-1157 [» ]
B 600-1026 [» ]
1HNV X-ray 3.00 A 600-1157 [» ]
B 600-1026 [» ]
1HOS X-ray 2.30 A/B 501-599 [» ]
1HPS X-ray 2.30 A/B 501-599 [» ]
1HPZ X-ray 3.00 A 600-1159 [» ]
B 600-1029 [» ]
1HQE X-ray 2.70 A 600-1159 [» ]
B 600-1029 [» ]
1HQU X-ray 2.70 A 600-1159 [» ]
B 600-1029 [» ]
1HRH X-ray 2.40 A/B 1026-1161 [» ]
1HTE X-ray 2.80 A/B 501-599 [» ]
1HTF X-ray 2.20 A/B 501-599 [» ]
1HTG X-ray 2.00 A/B 501-599 [» ]
1HVI X-ray 1.80 A/B 501-599 [» ]
1HVK X-ray 1.80 A/B 501-599 [» ]
1HVP model - A/B 501-599 [» ]
1HVU X-ray 4.75 A/D/G/J 600-1153 [» ]
B/E/H/K 604-1026 [» ]
1HYS X-ray 3.00 A 600-1152 [» ]
B 600-1024 [» ]
1IKV X-ray 3.00 A 600-1159 [» ]
B 600-1026 [» ]
1IKW X-ray 3.00 A 600-1159 [» ]
B 600-1026 [» ]
1IKX X-ray 2.80 A 600-1159 [» ]
B 600-1026 [» ]
1IKY X-ray 3.00 A 600-1159 [» ]
B 600-1026 [» ]
1J5O X-ray 3.50 A 600-1157 [» ]
B 600-1029 [» ]
1KJH X-ray 2.00 P 1155-1164 [» ]
1MER X-ray 1.90 A/B 501-599 [» ]
1MES X-ray 1.90 A/B 501-599 [» ]
1MET X-ray 1.90 A/B 501-599 [» ]
1MEU X-ray 1.90 A/B 501-599 [» ]
1N5Y X-ray 3.10 A 600-1157 [» ]
B 600-1029 [» ]
1N6Q X-ray 3.00 A 600-1157 [» ]
B 600-1029 [» ]
1NPA X-ray 2.00 A/B 501-599 [» ]
1NPV X-ray 2.00 A/B 501-599 [» ]
1NPW X-ray 2.00 A/B 501-599 [» ]
1QE1 X-ray 2.85 A 600-1157 [» ]
B 600-1026 [» ]
1QMC NMR - A/B 1379-1429 [» ]
1R0A X-ray 2.80 A 600-1157 [» ]
B 600-1028 [» ]
1RDH X-ray 2.80 A/B 1026-1159 [» ]
1RTD X-ray 3.20 A/C 600-1153 [» ]
1RVL model - A 600-1155 [» ]
B 600-1027 [» ]
1RVM model - A 600-1155 [» ]
B 600-1027 [» ]
1RVN model - A 600-1155 [» ]
B 600-1027 [» ]
1RVO model - A 600-1155 [» ]
B 600-1027 [» ]
1RVP model - A 600-1155 [» ]
B 600-1027 [» ]
1RVQ model - A 600-1155 [» ]
B 600-1027 [» ]
1RVR model - A 600-1155 [» ]
B 600-1027 [» ]
1S6P X-ray 2.90 A 600-1159 [» ]
B 600-1029 [» ]
1S6Q X-ray 3.00 A 600-1159 [» ]
B 600-1029 [» ]
1S9E X-ray 2.60 A 600-1159 [» ]
B 600-1029 [» ]
1S9G X-ray 2.80 A 600-1159 [» ]
B 600-1029 [» ]
1SBG X-ray 2.30 A/B 501-599 [» ]
1SUQ X-ray 3.00 A 600-1159 [» ]
B 600-1029 [» ]
1SV5 X-ray 2.90 A 600-1159 [» ]
B 600-1029 [» ]
1T03 X-ray 3.10 A 600-1157 [» ]
B 600-1028 [» ]
1T05 X-ray 3.00 A 600-1157 [» ]
1T7K X-ray 2.10 A/B 501-599 [» ]
1TV6 X-ray 2.80 A 600-1159 [» ]
B 600-1039 [» ]
1TVR X-ray 3.00 A 600-1157 [» ]
B 600-1026 [» ]
1UWB X-ray 3.20 A 600-1157 [» ]
B 600-1026 [» ]
1W5V X-ray 1.80 A/B 490-599 [» ]
1W5W X-ray 1.80 A/B 490-599 [» ]
1W5X X-ray 1.90 A/B 490-599 [» ]
1W5Y X-ray 1.90 A/B 490-599 [» ]
1YT9 X-ray 3.00 A/B 501-599 [» ]
1ZP8 X-ray 2.02 A 501-599 [» ]
1ZPA X-ray 2.02 A 501-599 [» ]
1ZSF X-ray 1.98 A/B 501-599 [» ]
1ZSR X-ray 2.06 A/B 501-599 [» ]
2AQU X-ray 2.00 A/B 501-599 [» ]
2B5J X-ray 2.90 A 600-1159 [» ]
B 600-1029 [» ]
2B6A X-ray 2.65 A 600-1159 [» ]
B 600-1029 [» ]
2BAN X-ray 2.95 A 600-1159 [» ]
B 600-1029 [» ]
2BBB X-ray 1.70 A/B 501-599 [» ]
2BE2 X-ray 2.43 A 600-1159 [» ]
B 600-1029 [» ]
2EXF NMR - A 390-432 [» ]
2G69 X-ray 1.35 A 501-599 [» ]
2HB3 X-ray 1.35 A/B 501-598 [» ]
2HMI X-ray 2.80 A 600-1157 [» ]
B 600-1029 [» ]
2HNZ X-ray 3.00 B 606-1027 [» ]
2HS1 X-ray 0.84 A/B 501-599 [» ]
2HS2 X-ray 1.22 A/B 501-599 [» ]
2I4D X-ray 1.50 A/B 501-599 [» ]
2I4U X-ray 1.50 A/B 501-599 [» ]
2I4V X-ray 1.50 A/B 501-599 [» ]
2I4W X-ray 1.55 A/B 501-599 [» ]
2I4X X-ray 1.55 A/B 501-599 [» ]
2I5J X-ray 3.15 A 600-1150 [» ]
B 600-1027 [» ]
2IAJ X-ray 2.50 A 600-1158 [» ]
B 600-1045 [» ]
2IC3 X-ray 3.00 A 600-1158 [» ]
B 600-1045 [» ]
2IDW X-ray 1.10 A/B 501-599 [» ]
2IEO X-ray 1.53 A/B 501-599 [» ]
2JZW NMR - A 390-432 [» ]
2L45 NMR - A 411-429 [» ]
2L46 NMR - A 411-429 [» ]
2L4L NMR - A 388-432 [» ]
2UXZ X-ray 1.75 A/B 501-599 [» ]
2UY0 X-ray 1.76 A/B 501-599 [» ]
2VG5 X-ray 2.80 A 600-1156 [» ]
B 600-1027 [» ]
2VG6 X-ray 3.01 A 600-1156 [» ]
B 600-1027 [» ]
2VG7 X-ray 2.82 A 600-1156 [» ]
B 600-1027 [» ]
2X4U X-ray 2.10 C/F 908-916 [» ]
2YKM X-ray 2.90 A 600-1156 [» ]
B 600-1027 [» ]
2YKN X-ray 2.12 A 600-1156 [» ]
B 600-1027 [» ]
2ZD1 X-ray 1.80 A 600-1154 [» ]
B 600-1027 [» ]
2ZE2 X-ray 2.90 A 600-1154 [» ]
B 600-1027 [» ]
3AVI X-ray 1.70 A/B 1209-1371 [» ]
3BGR X-ray 2.10 A 600-1154 [» ]
B 600-1027 [» ]
3DLK X-ray 1.85 A 600-1154 [» ]
B 605-1027 [» ]
3GGA X-ray 2.50 A/B/C/D/G/H 501-599 [» ]
3GGV X-ray 3.09 A/B/C/D/E/F/G/H/I 501-599 [» ]
3GGX X-ray 2.70 A/B/C/D/E/F/G/H 501-599 [» ]
3HVT X-ray 2.90 A 600-1155 [» ]
B 600-1027 [» ]
3IG1 X-ray 2.80 A 600-1154 [» ]
B 600-1027 [» ]
3IRX X-ray 2.80 A 600-1154 [» ]
B 600-1027 [» ]
3IS9 X-ray 2.55 A 600-1154 [» ]
B 600-1027 [» ]
3ISN X-ray 2.50 C 600-1159 [» ]
D 600-1026 [» ]
3ITH X-ray 2.80 A/C 600-1159 [» ]
B/D 600-1026 [» ]
3JSM X-ray 3.00 A 600-1157 [» ]
B 600-1028 [» ]
3JYT X-ray 3.30 A 600-1157 [» ]
B 600-1028 [» ]
3K2P X-ray 2.04 A/B 1026-1159 [» ]
3K4V X-ray 1.39 A/B/C/D 501-599 [» ]
3KLE X-ray 3.20 A/E/I/M 600-1157 [» ]
B/F/J/N 600-1027 [» ]
3KLF X-ray 3.15 A/E/I/M 600-1154 [» ]
B/F/J/N 600-1027 [» ]
3KLG X-ray 3.65 A/E 600-1157 [» ]
B/F 600-1027 [» ]
3KLH X-ray 2.90 A 600-1159 [» ]
B 600-1027 [» ]
3KLI X-ray 2.65 A 600-1157 [» ]
B 600-1027 [» ]
3NDT X-ray 1.72 A/B/C/D 501-599 [» ]
3NU3 X-ray 1.02 A/B 501-599 [» ]
3NU4 X-ray 1.20 A/B 501-599 [» ]
3NU5 X-ray 1.29 A/B 501-599 [» ]
3NU6 X-ray 1.16 A/B 501-599 [» ]
3NU9 X-ray 1.85 A/B 501-599 [» ]
3NUJ X-ray 1.50 A/B 501-599 [» ]
3NUO X-ray 1.35 A/B 501-599 [» ]
3OK9 X-ray 1.27 A/B 501-599 [» ]
3PSU X-ray 2.07 A 501-599 [» ]
3QAA X-ray 1.40 A/B 501-599 [» ]
3QLH X-ray 2.70 A 600-1153 [» ]
B 605-1027 [» ]
3QO9 X-ray 2.60 A 600-1154 [» ]
B 600-1027 [» ]
3TKG X-ray 1.36 A/B/C/D 497-599 [» ]
3TKW X-ray 1.55 A/B 497-599 [» ]
3TL9 X-ray 1.32 A/B 497-599 [» ]
3TLH X-ray 2.00 A 501-599 [» ]
3V4I X-ray 2.80 A/C 600-1153 [» ]
B/D 600-1027 [» ]
3V6D X-ray 2.70 A/C 600-1153 [» ]
B/D 600-1027 [» ]
3V81 X-ray 2.85 A/C 600-1153 [» ]
B/D 600-1027 [» ]
3ZPS X-ray 1.55 A/B 501-599 [» ]
3ZPT X-ray 1.54 A/B 501-599 [» ]
3ZPU X-ray 1.80 A/B 501-599 [» ]
4DG1 X-ray 2.15 A 600-1148 [» ]
B 600-1026 [» ]
4G1Q X-ray 1.51 A 600-1154 [» ]
B 600-1027 [» ]
4G8G X-ray 2.40 C 263-272 [» ]
4G8I X-ray 1.60 C 263-272 [» ]
4G9D X-ray 1.60 C 263-272 [» ]
4G9F X-ray 1.90 C 263-272 [» ]
4H4M X-ray 2.85 A 600-1154 [» ]
B 600-1027 [» ]
4H4O X-ray 2.90 A 600-1154 [» ]
B 600-1027 [» ]
4I2P X-ray 2.30 A 600-1154 [» ]
B 600-1027 [» ]
4I2Q X-ray 2.70 A 600-1154 [» ]
B 600-1027 [» ]
4ICL X-ray 1.80 A 600-1154 [» ]
B 600-1027 [» ]
4ID5 X-ray 1.95 A 600-1154 [» ]
B 600-1027 [» ]
4IDK X-ray 2.10 A 600-1154 [» ]
B 600-1027 [» ]
4IFV X-ray 2.05 A 600-1154 [» ]
B 600-1027 [» ]
4IFY X-ray 2.10 A 600-1154 [» ]
B 600-1027 [» ]
4IG0 X-ray 2.50 A 600-1154 [» ]
B 600-1027 [» ]
4IG3 X-ray 1.95 A 600-1154 [» ]
B 600-1027 [» ]
4KFB X-ray 1.85 A 600-1154 [» ]
B 604-1027 [» ]
4KKO X-ray 2.89 A 600-1154 [» ]
B 600-1027 [» ]
4KO0 X-ray 1.95 A 600-1154 [» ]
B 600-1027 [» ]
4LSL X-ray 2.69 A 600-1154 [» ]
B 600-1027 [» ]
4LSN X-ray 3.10 A 600-1154 [» ]
B 600-1027 [» ]
4MFB X-ray 2.88 A 600-1154 [» ]
B 600-1027 [» ]
4O44 X-ray 2.89 A 600-1154 [» ]
B 600-1027 [» ]
4OJR X-ray 1.82 A 1209-1371 [» ]
4PQU X-ray 2.51 A/C 600-1153 [» ]
B/D 600-1027 [» ]
4PUO X-ray 2.90 A/C 600-1153 [» ]
B/D 600-1027 [» ]
4PWD X-ray 3.00 A/C 600-1153 [» ]
B/D 600-1027 [» ]
4Q0B X-ray 3.30 A/C 600-1153 [» ]
B/D 600-1027 [» ]
4QAG X-ray 1.71 A/B 1024-1156 [» ]
ProteinModelPortali P03366.
SMRi P03366. Positions 1-432, 501-1155, 1160-1429.
ModBasei Search...
MobiDBi Search...

Protein-protein interaction databases

IntActi P03366. 38 interactions.
MINTi MINT-111903.

Chemistry

ChEMBLi CHEMBL5823.

Protocols and materials databases

Structural Biology Knowledgebase Search...

Enzyme and pathway databases

SABIO-RK P03366.

Miscellaneous databases

EvolutionaryTracei P03366.

Family and domain databases

Gene3Di 1.10.10.200. 1 hit.
1.10.1200.30. 1 hit.
1.10.150.90. 1 hit.
1.10.375.10. 1 hit.
2.30.30.10. 1 hit.
2.40.70.10. 1 hit.
3.30.420.10. 2 hits.
4.10.60.10. 1 hit.
InterProi IPR001969. Aspartic_peptidase_AS.
IPR000721. Gag_p24.
IPR001037. Integrase_C_retrovir.
IPR001584. Integrase_cat-core.
IPR017856. Integrase_Zn-bd_dom-like_N.
IPR003308. Integrase_Zn-bd_dom_N.
IPR000071. Lentvrl_matrix_N.
IPR012344. Matrix_N_HIV/RSV.
IPR018061. Pept_A2A_retrovirus_sg.
IPR001995. Peptidase_A2_cat.
IPR021109. Peptidase_aspartic_dom.
IPR008916. Retrov_capsid_C.
IPR008919. Retrov_capsid_N.
IPR010999. Retrovr_matrix_N.
IPR012337. RNaseH-like_dom.
IPR002156. RNaseH_domain.
IPR000477. RT_dom.
IPR010659. RVT_connect.
IPR010661. RVT_thumb.
IPR001878. Znf_CCHC.
[Graphical view ]
Pfami PF00540. Gag_p17. 1 hit.
PF00607. Gag_p24. 1 hit.
PF00552. IN_DBD_C. 1 hit.
PF02022. Integrase_Zn. 1 hit.
PF00075. RNase_H. 1 hit.
PF00665. rve. 1 hit.
PF00077. RVP. 1 hit.
PF00078. RVT_1. 1 hit.
PF06815. RVT_connect. 1 hit.
PF06817. RVT_thumb. 1 hit.
PF00098. zf-CCHC. 2 hits.
[Graphical view ]
PRINTSi PR00234. HIV1MATRIX.
SMARTi SM00343. ZnF_C2HC. 2 hits.
[Graphical view ]
SUPFAMi SSF46919. SSF46919. 1 hit.
SSF47353. SSF47353. 1 hit.
SSF47836. SSF47836. 1 hit.
SSF47943. SSF47943. 1 hit.
SSF50122. SSF50122. 1 hit.
SSF50630. SSF50630. 1 hit.
SSF53098. SSF53098. 2 hits.
SSF57756. SSF57756. 1 hit.
PROSITEi PS50175. ASP_PROT_RETROV. 1 hit.
PS00141. ASP_PROTEASE. 1 hit.
PS50994. INTEGRASE. 1 hit.
PS51027. INTEGRASE_DBD. 1 hit.
PS50879. RNASE_H. 1 hit.
PS50878. RT_POL. 1 hit.
PS50158. ZF_CCHC. 2 hits.
PS50876. ZF_INTEGRASE. 1 hit.
[Graphical view ]
ProtoNeti Search...

Publicationsi

  1. Cited for: NUCLEOTIDE SEQUENCE [GENOMIC RNA].
  2. "Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus."
    Muesing M.A., Smith D.H., Cabradilla C.D., Benton C.V., Lasky L.A., Capon D.J.
    Nature 313:450-458(1985) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
    Strain: Isolate PV22.
  3. Muesing M.A.
    Submitted (MAY-1992) to the EMBL/GenBank/DDBJ databases
    Cited for: SEQUENCE REVISION.
  4. "Human immunodeficiency virus reverse transcriptase displays a partially processive 3' to 5' endonuclease activity."
    DeStefano J.J., Buiser R.G., Mallaber L.M., Bambara R.A., Fay P.J.
    J. Biol. Chem. 266:24295-24301(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: CHARACTERIZATION OF RNASE H.
  5. "Mutating P2 and P1 residues at cleavage junctions in the HIV-1 pol polyprotein. Effects on hydrolysis by HIV-1 proteinase."
    Jupp R.A., Phylip L.H., Mills J.S., Le Grice S.F.J., Kay J.
    FEBS Lett. 283:180-184(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: PROTEOLYTIC PROCESSING OF POLYPROTEIN, MUTAGENESIS OF PHE-1039 AND LEU-1159.
  6. "Mutations of a conserved residue within HIV-1 ribonuclease H affect its exo- and endonuclease activities."
    Wohrl B.M., Volkmann S., Moelling K.
    J. Mol. Biol. 220:801-818(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF HIS-1138.
  7. "Biochemical analysis of catalytically crucial aspartate mutants of human immunodeficiency virus type 1 reverse transcriptase."
    Kaushik N., Rege N., Yadav P.N.S., Sarafianos S.G., Modak M.J., Pandey V.N.
    Biochemistry 35:11536-11546(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: ACTIVE SITES OF REVERSE TRANSCRIPTASE, MUTAGENESIS OF ASP-709; ASP-784 AND ASP-785.
  8. "Mutations within the primer grip region of HIV-1 reverse transcriptase result in loss of RNase H function."
    Palaniappan C., Wisniewski M., Jacques P.S., Le Grice S.F., Fay P.J., Bambara R.A.
    J. Biol. Chem. 272:11157-11164(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF GLU-823; PRO-824; PRO-825; PHE-826; LEU-827; TRP-828; MET-829; GLY-830; TYR-831; GLU-832 AND HIS-834.
  9. "Effects of mutations in the polymerase domain on the polymerase, RNase H and strand transfer activities of human immunodeficiency virus type 1 reverse transcriptase."
    Gao H.-Q., Boyer P.L., Arnold E., Hughes S.H.
    J. Mol. Biol. 277:559-572(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF PRO-651; PRO-654; LEU-673; SER-755; PRO-756; MET-783; ILE-856; GLY-861; LEU-863; TRP-865; LEU-878; ALA-898; LEU-902; LEU-909 AND GLU-1077.
  10. "Loss of polymerase activity due to Tyr to Phe substitution in the YMDD motif of human immunodeficiency virus type-1 reverse transcriptase is compensated by Met to Val substitution within the same motif."
    Harris D., Yadav P.N.S., Pandey V.N.
    Biochemistry 37:9630-9640(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF TYR-782; MET-783; ASP-784 AND ASP-785.
  11. "Sequence requirements for removal of tRNA by an isolated human immunodeficiency virus type 1 RNase H domain."
    Smith C.M., Leon O., Smith J.S., Roth M.J.
    J. Virol. 72:6805-6812(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION OF RNASE H.
  12. "Mutational analysis of Lys65 of HIV-1 reverse transcriptase."
    Sluis-Cremer N., Arion D., Kaushik N., Lim H., Parniak M.A.
    Biochem. J. 348:77-82(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF LYS-664.
  13. "Unique progressive cleavage mechanism of HIV reverse transcriptase RNase H."
    Wisniewski M., Balakrishnan M., Palaniappan C., Fay P.J., Bambara R.A.
    Proc. Natl. Acad. Sci. U.S.A. 97:11978-11983(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: CHARACTERIZATION OF RNASE H.
  14. "Extended nucleocapsid protein is cleaved from the Gag-Pol precursor of human immunodeficiency virus type 1."
    Chen N., Morag A., Almog N., Blumenzweig I., Dreazin O., Kotler M.
    J. Gen. Virol. 82:581-590(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: RIBOSOMAL FRAMESHIFT, PROTEOLYTIC PROCESSING OF POLYPROTEIN, MUTAGENESIS OF PHE-440 AND PHE-500.
  15. "Maintenance of the Gag/Gag-Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity."
    Shehu-Xhilaga M., Crowe S.M., Mak J.
    J. Virol. 75:1834-1841(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: GAG/GAG-POL RATIO.
  16. "Conformational changes in HIV-1 proteinase: effect of protonation of the active center on conformation of HIV-1 proteinase in water."
    Koval'skii D.B., Kanibolotskii D.S., Dubina V.N., Korneliuk A.I.
    Ukr. Biokhim. Zh. 74:135-138(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: ACTIVE SITE ASP-525 OF PROTEASE.
  17. "Substitution of conserved hydrophobic residues in motifs B and C of HIV-1 RT alters the geometry of its catalytic pocket."
    Sharma B., Kaushik N., Singh K., Kumar S., Pandey V.N.
    Biochemistry 41:15685-15697(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF TRP-752; ILE-766; LEU-786 AND VAL-788.
  18. "Mutational analysis of Tyr-501 of HIV-1 reverse transcriptase. Effects on ribonuclease H activity and inhibition of this activity by N-acylhydrazones."
    Arion D., Sluis-Cremer N., Min K.-L., Abram M.E., Fletcher R.S., Parniak M.A.
    J. Biol. Chem. 277:1370-1374(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF TYR-1100.
  19. "Role of residues in the tryptophan repeat motif for HIV-1 reverse transcriptase dimerization."
    Tachedjian G., Aronson H.-E., de los Santos M., Seehra J., McCoy J.M., Goff S.P.
    J. Mol. Biol. 326:381-396(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: DOMAIN TRYPTOPHAN REPEAT MOTIF, MUTAGENESIS OF TRP-997; TRP-1000; TRP-1001; TYR-1004; TRP-1005; TRP-1009 AND TRP-1013.
  20. "Recognition of internal cleavage sites by retroviral RNases H."
    Schultz S.J., Zhang M., Champoux J.J.
    J. Mol. Biol. 344:635-652(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: CHARACTERIZATION OF RNASE H.
  21. "Relationship between enzyme activity and dimeric structure of recombinant HIV-1 reverse transcriptase."
    Tachedjian G., Radzio J., Sluis-Cremer N.
    Proteins 60:5-13(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: CHARACTERIZATION OF REVERSE TRANSCRIPTASE, MUTAGENESIS OF TRP-1000.
  22. "Nucleotide modification at the gamma-phosphate leads to the improved fidelity of HIV-1 reverse transcriptase."
    Mulder B.A., Anaya S., Yu P., Lee K.W., Nguyen A., Murphy J., Willson R., Briggs J.M., Gao X., Hardin S.H.
    Nucleic Acids Res. 33:4865-4873(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: CHARACTERIZATION OF RNASE H.
  23. "Virion instability of human immunodeficiency virus type 1 reverse transcriptase (RT) mutated in the protease cleavage site between RT p51 and the RT RNase H domain."
    Abram M.E., Parniak M.A.
    J. Virol. 79:11952-11961(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF ALA-1036; GLU-1037; THR-1038; PHE-1039; TYR-1040 AND VAL-1041.
  24. "Proteolytic processing and particle maturation."
    Vogt V.M.
    Curr. Top. Microbiol. Immunol. 214:95-131(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  25. Cited for: REVIEW.
  26. "Mechanisms of retroviral recombination."
    Negroni M., Buc H.
    Annu. Rev. Genet. 35:275-302(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  27. Cited for: REVIEW.
  28. "Role of HIV-1 Gag domains in viral assembly."
    Scarlata S., Carter C.
    Biochim. Biophys. Acta 1614:62-72(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  29. "Molecular modeling of the HIV-1 protease and its substrate binding site."
    Weber I.T., Miller M., Jaskolski M., Leis J., Skalka A.M., Wlodawer A.
    Science 243:928-931(1989) [PubMed] [Europe PMC] [Abstract]
    Cited for: 3D-STRUCTURE MODELING OF PROTEASE DOMAIN.
  30. "Recombinant HIV-1 reverse transcriptase: purification, primary structure, and polymerase/ribonuclease H activities."
    Mizrahi V., Lazarus G.M., Miles L.M., Meyers C.A., Debouck C.
    Arch. Biochem. Biophys. 273:347-358(1989) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.2 ANGSTROMS) OF 600-1159.
  31. Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 501-599 IN COMPLEX WITH A C2 SYMMETRIC INHIBITOR.
  32. "Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase."
    Davies J.F. II, Hostomska Z., Hostomsky Z., Jordan S.R., Matthews D.A.
    Science 252:88-95(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS) OF 1026-1161.
  33. "A recombinant ribonuclease H domain of HIV-1 reverse transcriptase that is enzymatically active."
    Evans D.B., Brawn K., Deibel M.R. Jr., Tarpley W.G., Sharma S.K.
    J. Biol. Chem. 266:20583-20585(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 1026-1159.
  34. "Proteolytic release and crystallization of the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase."
    Hostomska Z., Matthews D.A., Davies J.F. II, Nodes B.R., Hostomsky Z.
    J. Biol. Chem. 266:14697-14702(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS) OF 1026-1161.
  35. "Crystal structure at 3.5-A resolution of HIV-1 reverse transcriptase complexed with an inhibitor."
    Kohlstaedt L.A., Wang J., Friedman J.M., Rice P.A., Steitz T.A.
    Science 256:1783-1790(1992) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.5 ANGSTROMS) OF 600-1155 IN COMPLEX WITH AN INHIBITOR.
  36. "Structure of HIV-1 reverse transcriptase/DNA complex at 7 A resolution showing active site locations."
    Arnold E., Jacobo-Molina A., Nanni R.G., Williams R.L., Lu X., Ding J., Clark A.D. Jr., Zhang A., Ferris A.L., Clark P., Hizi A., Hughes S.H.
    Nature 357:85-89(1992) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 600-1157.
  37. "A series of penicillin-derived C2-symmetric inhibitors of HIV-1 proteinase: structural and modeling studies."
    Wonacott A., Cooke R., Hayes F.R., Hann M.M., Jhoti H., McMeekin P., Mistry A., Murray-Rust P., Singh O.M., Weir M.P.
    J. Med. Chem. 36:3113-3119(1993) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 501-599.
  38. "A novel constrained reduced-amide inhibitor of HIV-1 protease derived from the sequential incorporation of gamma-turn mimetics into a model substrate."
    Newlander K.A., Callahan J.F., Moore M.L., Tomaszek T.A. Jr., Huffman W.F.
    J. Med. Chem. 36:2321-2331(1993) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 501-599 IN COMPLEX WITH A NOVEL GAMMA-TURN MIMETIC INHIBITOR.
  39. "Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0-A resolution shows bent DNA."
    Jacobo-Molina A., Ding J., Nanni R.G., Clark A.D. Jr., Lu X., Tantillo C., Williams R.L., Kamer G., Ferris A.L., Clark P., Hizi A., Hughes S.H., Arnold E.
    Proc. Natl. Acad. Sci. U.S.A. 90:6320-6324(1993) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 600-1155.
  40. "Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1."
    Smerdon S.J., Jager J., Wang J., Kohlstaedt L.A., Chirino A.J., Friedman J.M., Rice P.A., Steitz T.A.
    Proc. Natl. Acad. Sci. U.S.A. 91:3911-3915(1994) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 600-1159.
  41. "Comparative analysis of the X-ray structures of HIV-1 and HIV-2 proteases in complex with CGP 53820, a novel pseudosymmetric inhibitor."
    Priestle J.P., Fassler A., Rosel J., Tintelnot-Blomley M., Strop P., Gruetter M.G.
    Structure 3:381-389(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS) OF 501-599 IN COMPLEX WITH A NOVEL PSEUDOSYMMETRIC INHIBITOR.
  42. "Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors."
    Ding J., Das K., Moereels H., Koymans L., Andries K., Janssen P.A., Hughes S.H., Arnold E.
    Nat. Struct. Biol. 2:407-415(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.7 ANGSTROMS) OF 600-1155 IN COMPLEX WITH A NONNUCLEOSIDE INHIBITOR.
  43. "Structure of HIV-1 reverse transcriptase in a complex with the non-nucleoside inhibitor alpha-APA R 95845 at 2.8-A resolution."
    Ding J., Das K., Tantillo C., Zhang W., Clark A.D. Jr., Jessen S., Lu X., Hsiou Y., Jacobo-Molina A., Andries K., Et A.L.
    Structure 3:365-379(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 600-1157 IN COMPLEX WITH A NON-NUCLEOSIDE INHIBITOR.
  44. "The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1."
    Rodgers D.W., Gamblin S.J., Harris B.A., Ray S., Culp J.S., Hellmig B., Woolf D.J., Debouck C., Harrison S.C.
    Proc. Natl. Acad. Sci. U.S.A. 92:1222-1226(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.2 ANGSTROMS) OF 600-1159.
  45. Cited for: STRUCTURE BY NMR OF 1379-1429.
  46. "Effect of point mutations on the kinetics and the inhibition of human immunodeficiency virus type 1 protease: relationship to drug resistance."
    Lin Y.Z., Lin X.L., Hong L., Foundling S.I., Heinrikson R.L., Thaisrivongs S., Leelamanit W., Raterman D., Shah M., Dunn B.M., Tang J.
    Biochemistry 34:1143-1152(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 501-599 IN COMPLEX WITH THE PEPTIDIC INHIBITOR U-89360E.
  47. "Structure of unliganded HIV-1 reverse transcriptase at 2.7-A resolution: implications of conformational changes for polymerization and inhibition mechanisms."
    Hsiou Y., Ding J., Das K., Clark A.D. Jr., Hughes S.H., Arnold E.
    Structure 4:853-860(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.7 ANGSTROMS) OF 600-1155.
  48. "Unexpected binding mode of a cyclic sulfamide HIV-1 protease inhibitor."
    Backbro K., Lowgren S., Osterlund K., Atepo J., Unge T., Hulten J., Bonham N.M., Schaal W., Karlen A., Hallberg A.
    J. Med. Chem. 40:898-902(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 501-599 IN COMPLEX WITH A SULFAMIDE AND A UREA DERIVATIVE.
  49. "Molecular basis of HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with cyclic urea inhibitors."
    Ala P.J., Huston E.E., Klabe R.M., McCabe D.D., Duke J.L., Rizzo C.J., Korant B.D., DeLoskey R.J., Lam P.Y.S., Hodge C.N., Chang C.-H.
    Biochemistry 36:1573-1580(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (1.9 ANGSTROMS) OF 502-599 IN COMPLEX WITH A CYCLIC UREA INHIBITOR.
  50. "Structure of a G48H mutant of HIV-1 protease explains how glycine-48 replacements produce mutants resistant to inhibitor drugs."
    Hong L., Zhang X.-J., Foundling S.I., Hartsuck J.A., Tang J.
    FEBS Lett. 420:11-16(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF 501-599 IN COMPLEX WITH THE PEPTIDIC INHIBITOR U-89360E.
  51. "An orally bioavailable pyrrolinone inhibitor of HIV-1 protease: computational analysis and X-ray crystal structure of the enzyme complex."
    Smith A.B. III, Hirschmann R., Pasternak A., Yao W., Sprengeler P.A., Holloway M.K., Kuo L.C., Chen Z., Darke P.L., Schleif W.A.
    J. Med. Chem. 40:2440-2444(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 501-599.
  52. "Active-site mobility in human immunodeficiency virus, type 1, protease as demonstrated by crystal structure of A28S mutant."
    Hong L., Hartsuck J.A., Foundling S.I., Ermolieff J., Tang J.
    Protein Sci. 7:300-305(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 501-599 IN COMPLEX WITH A PEPTIDIC INHIBITOR.
  53. "Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance."
    Huang H., Chopra R., Verdine G.L., Harrison S.C.
    Science 282:1669-1675(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.2 ANGSTROMS) OF 588-1027.
  54. "The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor."
    Jaeger J., Restle T., Steitz T.A.
    EMBO J. 17:4535-4542(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (4.75 ANGSTROMS) OF 600-1153 IN COMPLEX WITH AN RNA PSEUDOKNOT INHIBITOR.
  55. "Structures of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097: inhibitor flexibility is a useful design feature for reducing drug resistance."
    Hsiou Y., Das K., Ding J., Clark A.D. Jr., Kleim J.P., Rosner M., Winkler I., Riess G., Hughes S.H., Arnold E.
    J. Mol. Biol. 284:313-323(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.1 ANGSTROMS) OF 600-1155 IN COMPLEX WITH A NON-NUCLEOSIDE INHIBITOR.
  56. "Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with beta-branched amino acids."
    Sarafianos S.G., Das K., Clark A.D. Jr., Ding J., Boyer P.L., Hughes S.H., Arnold E.
    Proc. Natl. Acad. Sci. U.S.A. 96:10027-10032(1999) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.5 ANGSTROMS) OF 600-1157.
  57. "Urea-PETT compounds as a new class of HIV-1 reverse transcriptase inhibitors. 3. Synthesis and further structure-activity relationship studies of PETT analogues."
    Hogberg M., Sahlberg C., Engelhardt P., Noreen R., Kangasmetsa J., Johansson N.G., Oberg B., Vrang L., Zhang H., Sahlberg B.L., Unge T., Lovgren S., Fridborg K., Backbro K.
    J. Med. Chem. 43:304-304(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.73 ANGSTROMS) OF 600-1156.
  58. "Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA."
    Sarafianos S.G., Das K., Tantillo C., Clark A.D. Jr., Ding J., Whitcomb J.M., Boyer P.L., Hughes S.H., Arnold E.
    EMBO J. 20:1449-1461(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 600-1152 IN COMPLEX WITH AN OLIGONUCLEOTIDE, ACTIVE SITES OF RNASE H.
  59. Cited for: X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 600-1159.
  60. "Structures of HIV-1 reverse transcriptase with pre- and post-translocation AZTMP-terminated DNA."
    Sarafianos S.G., Clark A.D. Jr., Das K., Tuske S., Birktoft J.J., Ilankumaran P., Ramesha A.R., Sayer J.M., Jerina D.M., Boyer P.L., Hughes S.H., Arnold E.
    EMBO J. 21:6614-6624(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.1 ANGSTROMS) OF 600-1157.
  61. "Structural basis for the inhibitory efficacy of efavirenz (DMP-266), MSC194 and PNU142721 towards the HIV-1 RT K103N mutant."
    Lindberg J., Sigurdsson S., Lowgren S., Andersson H.O., Sahlberg C., Noreen R., Fridborg K., Zhang H., Unge T.
    Eur. J. Biochem. 269:1670-1677(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (3.0 ANGSTROMS) OF 600-1159 IN COMPLEX WITH EFIVARENZ.
  62. Cited for: X-RAY CRYSTALLOGRAPHY (1.81 ANGSTROMS) OF 501-599.
  63. Cited for: X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS) OF 501-599 IN COMPLEX WITH MONOPYRROLINONE-BASED INHIBITORS LDC271 AND LGZ479.
  64. "Symmetric fluoro-substituted diol-based HIV protease inhibitors. Ortho-fluorinated and meta-fluorinated P1/P1'-benzyloxy side groups significantly improve the antiviral activity and preserve binding efficacy."
    Lindberg J., Pyring D., Lowgren S., Rosenquist A., Zuccarello G., Kvarnstrom I., Zhang H., Vrang L., Classon B., Hallberg A., Samuelsson B., Unge T.
    Eur. J. Biochem. 271:4594-4602(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (1.79 ANGSTROMS) OF 501-599.
  65. "Nonnucleoside inhibitor binding affects the interactions of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase with DNA."
    Peletskaya E.N.,