Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Gag-Pol polyprotein

Gene

gag-pol

Organism
Moloney murine leukemia virus (isolate Shinnick) (MoMLV)
Status
Reviewed-Annotation score: Annotation score: 5 out of 5-Experimental evidence at protein leveli

Functioni

Gag-Pol polyprotein plays a role in budding and is processed by the viral protease during virion maturation outside the cell. During budding, it recruits, in a PPXY-dependent or independent manner, Nedd4-like ubiquitin ligases that conjugate ubiquitin molecules to Gag, or to Gag binding host factors. Interaction with HECT ubiquitin ligases probably link the viral protein to the host ESCRT pathway and facilitate release.
Matrix protein p15 targets Gag and gag-pol polyproteins to the plasma membrane via a multipartite membrane binding signal, that includes its myristoylated N-terminus. Also mediates nuclear localization of the preintegration complex (By similarity).By similarity
Capsid protein p30 forms the spherical core of the virion that encapsulates the genomic RNA-nucleocapsid complex.By similarity
Nucleocapsid protein p10 is involved in the packaging and encapsidation of two copies of the genome. Binds with high affinity to conserved UCUG elements within the packaging signal, located near the 5'-end of the genome. This binding is dependent on genome dimerization.
The aspartyl protease mediates proteolytic cleavages of Gag and Gag-Pol polyproteins during or shortly after the release of the virion from the plasma membrane. Cleavages take place as an ordered, step-wise cascade to yield mature proteins. This process is called maturation. Displays maximal activity during the budding process just prior to particle release from the cell.PROSITE-ProRule annotation
Reverse transcriptase/ribonuclease H (RT) is a multifunctional enzyme that converts the viral dimeric RNA genome into dsDNA in the cytoplasm, shortly after virus entry into the cell. This enzyme displays a DNA polymerase activity that can copy either DNA or RNA templates, and a ribonuclease H (RNase H) activity that cleaves the RNA strand of RNA-DNA heteroduplexes in a partially processive 3' to 5' endonucleasic mode. Conversion of viral genomic RNA into dsDNA requires many steps. A tRNA binds to the primer-binding site (PBS) situated at the 5' end of the viral RNA. RT uses the 3' end of the tRNA primer to perform a short round of RNA-dependent minus-strand DNA synthesis. The reading proceeds through the U5 region and ends after the repeated (R) region which is present at both ends of viral RNA. The portion of the RNA-DNA heteroduplex is digested by the RNase H, resulting in a ssDNA product attached to the tRNA primer. This ssDNA/tRNA hybridizes with the identical R region situated at the 3' end of viral RNA. This template exchange, known as minus-strand DNA strong stop transfer, can be either intra- or intermolecular. RT uses the 3' end of this newly synthesized short ssDNA to perform the RNA-dependent minus-strand DNA synthesis of the whole template. RNase H digests the RNA template except for a polypurine tract (PPT) situated at the 5' end of the genome. It is not clear if both polymerase and RNase H activities are simultaneous. RNase H probably can proceed both in a polymerase-dependent (RNA cut into small fragments by the same RT performing DNA synthesis) and a polymerase-independent mode (cleavage of remaining RNA fragments by free RTs). Secondly, RT performs DNA-directed plus-strand DNA synthesis using the PPT that has not been removed by RNase H as primers. PPT and tRNA primers are then removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to form a circular dsDNA intermediate. Strand displacement synthesis by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA copy of the viral genome that includes long terminal repeats (LTRs) at both ends (By similarity).By similarity
Integrase catalyzes viral DNA integration into the host chromosome, by performing a series of DNA cutting and joining reactions. This enzyme activity takes place after virion entry into a cell and reverse transcription of the RNA genome in dsDNA. The first step in the integration process is 3' processing. This step requires a complex comprising the viral genome, matrix protein and integrase. This complex is called the pre-integration complex (PIC). The integrase protein removes 2 nucleotides from each 3' end of the viral DNA, leaving recessed CA OH's at the 3' ends. In the second step that requires cell division, the PIC enters cell nucleus. In the third step, termed strand transfer, the integrase protein joins the previously processed 3' ends to the 5' ends of strands of target cellular DNA at the site of integration. The last step is viral DNA integration into host chromosome.1 Publication

Catalytic activityi

Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).PROSITE-ProRule annotation
Endonucleolytic cleavage to 5'-phosphomonoester.PROSITE-ProRule annotation

Cofactori

Protein has several cofactor binding sites:
  • Mg2+By similarityNote: Binds 2 magnesium ions for reverse transcriptase polymerase activity.By similarity
  • Mg2+By similarityNote: Binds 2 magnesium ions for ribonuclease H (RNase H) activity.By similarity
  • Mg2+By similarityNote: Magnesium ions are required for integrase activity. Binds at least 1, maybe 2 magnesium ions.By similarity

Enzyme regulationi

The viral protease p14 is most effciently inhibited by amprenavir, which is able to block Gag processing in MoLV-infected cells.

pH dependencei

Optimum pH is 5.0 for protease activity.

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Active sitei566Protease; shared with dimeric partnerPROSITE-ProRule annotation1
Metal bindingi809Magnesium; catalytic; for reverse transcriptase activityBy similarity1
Metal bindingi883Magnesium; catalytic; for reverse transcriptase activityBy similarity1
Metal bindingi884Magnesium; catalytic; for reverse transcriptase activityBy similarity1
Metal bindingi1183Magnesium; for RNase H activityPROSITE-ProRule annotation1
Metal bindingi1221Magnesium; for RNase H activityPROSITE-ProRule annotation1
Metal bindingi1242Magnesium; for RNase H activityPROSITE-ProRule annotation1
Metal bindingi1312Magnesium; for RNase H activityPROSITE-ProRule annotation1
Metal bindingi1455Magnesium; catalytic; for integrase activityBy similarity1
Metal bindingi1514Magnesium; catalytic; for integrase activityBy similarity1

Regions

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Zinc fingeri502 – 519CCHC-typePROSITE-ProRule annotationAdd BLAST18

GO - Molecular functioni

GO - Biological processi

Complete GO annotation...

Keywords - Molecular functioni

Aspartyl protease, DNA-directed DNA polymerase, Endonuclease, Hydrolase, Nuclease, Nucleotidyltransferase, Protease, RNA-directed DNA polymerase, Transferase

Keywords - Biological processi

DNA integration, DNA recombination, Host-virus interaction, Viral genome integration, Virus entry into host cell

Keywords - Ligandi

DNA-binding, Magnesium, Metal-binding, RNA-binding, Viral nucleoprotein, Zinc

Enzyme and pathway databases

BRENDAi2.7.7.49. 3393.
3.1.13.2. 3393.
3.4.23.B5. 3393.

Protein family/group databases

MEROPSiA02.008.

Names & Taxonomyi

Protein namesi
Recommended name:
Gag-Pol polyprotein
Short name:
Pr180gag-pol
Cleaved into the following 7 chains:
Matrix protein p15
Short name:
MA
Alternative name(s):
pp12
Capsid protein p30
Short name:
CA
Nucleocapsid protein p10
Short name:
NC-pol
Protease p14 (EC:3.4.23.-)
Short name:
PR
Integrase p46 (EC:2.7.7.-1 Publication, EC:3.1.-.-1 Publication)
Short name:
IN
Gene namesi
Name:gag-pol
OrganismiMoloney murine leukemia virus (isolate Shinnick) (MoMLV)
Taxonomic identifieri928306 [NCBI]
Taxonomic lineageiVirusesRetro-transcribing virusesRetroviridaeOrthoretrovirinaeGammaretrovirusMurine leukemia virus
Virus hostiMus musculus (Mouse) [TaxID: 10090]
Proteomesi
  • UP000006625 Componenti: Genome

Subcellular locationi

GO - Cellular componenti

Complete GO annotation...

Keywords - Cellular componenti

Capsid protein, Host cell membrane, Host membrane, Membrane, Viral matrix protein, Virion

Pathology & Biotechi

Mutagenesis

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Mutagenesisi114P → A: Slight reduction in the number of virus-like particles produced. 1
Mutagenesisi137S → A: No effect on reverse transcription activity. 1 Publication1
Mutagenesisi148S → A: No effect on reverse transcription activity; when associated with A-150. 1 Publication1
Mutagenesisi150S → A: No effect on reverse transcription activity; when associated with A-148. 1 Publication1
Mutagenesisi165Y → A: Drastic reduction in the number of virus-like particles produced. 1 Publication1
Mutagenesisi192S → A: Complete loss of reverse transcription activity. 1 Publication1
Mutagenesisi192S → D: Complete loss of reverse transcription activity. 1 Publication1
Mutagenesisi196S → A: No effect on reverse transcription activity. 1 Publication1
Mutagenesisi209S → A: Strongly reduced reverse transcription activity. 1 Publication1
Mutagenesisi209S → D: Strongly reduced reverse transcription activity. 1 Publication1
Mutagenesisi212S → A: No effect on reverse transcription activity. 1 Publication1

Chemistry databases

ChEMBLiCHEMBL3562.

PTM / Processingi

Molecule processing

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Initiator methionineiRemoved; by host1 Publication
ChainiPRO_00003907952 – 1738Gag-Pol polyproteinAdd BLAST1737
ChainiPRO_50000536182 – 131Matrix protein p15Add BLAST130
ChainiPRO_5000053619132 – 215RNA-binding phosphoprotein p12Add BLAST84
ChainiPRO_5000053620216 – 478Capsid protein p30Add BLAST263
ChainiPRO_5000053621479 – 534Nucleocapsid protein p10Add BLAST56
ChainiPRO_5000053622535 – 659Protease p14Add BLAST125
ChainiPRO_5000053623660 – 1330Reverse transcriptase/ribonuclease H p80Add BLAST671
ChainiPRO_50000536241331 – 1738Integrase p46Add BLAST408

Amino acid modifications

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Lipidationi2N-myristoyl glycine; by host1 Publication1
Modified residuei192Phosphoserine; by host1 Publication1

Post-translational modificationi

Specific enzymatic cleavages by the viral protease yield mature proteins. The protease is released by autocatalytic cleavage. The polyprotein is cleaved during and after budding, this process is termed maturation (By similarity).By similarity
Capsid protein p30 is sumoylated; which is required for virus replication.1 Publication
RNA-binding phosphoprotein p12 is phosphorylated on serine residues.1 Publication

Sites

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Sitei131 – 132Cleavage; by viral protease p142
Sitei215 – 216Cleavage; by viral protease p142
Sitei478 – 479Cleavage; by viral protease p142
Sitei534 – 535Cleavage; by viral protease p142
Sitei659 – 660Cleavage; by viral protease p142
Sitei1330 – 1331Cleavage; by viral protease p142

Keywords - PTMi

Lipoprotein, Myristate, Phosphoprotein, Ubl conjugation

PTM databases

iPTMnetiP03355.
PhosphoSitePlusiP03355.

Miscellaneous databases

PMAP-CutDBO92808.

Interactioni

Subunit structurei

Capsid protein p30 is a homohexamer, that further associates as homomultimer. The virus core is composed of a lattice formed from hexagonal rings, each containing six capsid monomers. The protease is a homodimer, whose active site consists of two apposed aspartic acid residues. The reverse transcriptase is a monomer (By similarity). Capsid protein p30 interacts with mouse UBE2I and mouse PIAS4. Reverse transcriptase/ribonuclease H p80 interacts (via RT and RNase domains) with host release factor ETF1; this interaction is essential for translational readthrough of amber codon between viral gag and pol genes. Gag-Pol polyprotein also interacts with host release factor ETF1.By similarity3 Publications

Structurei

Secondary structure

11738
Legend: HelixTurnBeta strandPDB Structure known for this area
Show more details
Feature keyPosition(s)DescriptionActionsGraphical viewLength
Turni488 – 491Combined sources4
Helixi496 – 498Combined sources3
Turni505 – 507Combined sources3
Beta strandi510 – 512Combined sources3
Helixi514 – 516Combined sources3
Beta strandi520 – 522Combined sources3
Beta strandi524 – 526Combined sources3
Helixi529 – 532Combined sources4
Helixi684 – 687Combined sources4
Turni689 – 691Combined sources3
Helixi693 – 696Combined sources4
Beta strandi702 – 704Combined sources3
Helixi727 – 742Combined sources16
Beta strandi745 – 749Combined sources5
Beta strandi757 – 759Combined sources3
Beta strandi763 – 766Combined sources4
Beta strandi770 – 772Combined sources3
Helixi775 – 778Combined sources4
Helixi791 – 795Combined sources5
Beta strandi804 – 810Combined sources7
Turni811 – 813Combined sources3
Helixi814 – 816Combined sources3
Beta strandi817 – 819Combined sources3
Turni821 – 823Combined sources3
Helixi824 – 827Combined sources4
Beta strandi829 – 831Combined sources3
Helixi834 – 836Combined sources3
Beta strandi840 – 846Combined sources7
Helixi854 – 872Combined sources19
Beta strandi876 – 881Combined sources6
Beta strandi884 – 891Combined sources8
Helixi892 – 909Combined sources18
Turni915 – 917Combined sources3
Beta strandi919 – 927Combined sources9
Beta strandi930 – 933Combined sources4
Helixi941 – 948Combined sources8
Helixi956 – 966Combined sources11
Helixi967 – 969Combined sources3
Helixi976 – 979Combined sources4
Turni980 – 985Combined sources6
Helixi997 – 1011Combined sources15
Beta strandi1025 – 1044Combined sources20
Beta strandi1047 – 1057Combined sources11
Helixi1060 – 1063Combined sources4
Helixi1067 – 1086Combined sources20
Beta strandi1091 – 1094Combined sources4
Turni1100 – 1104Combined sources5
Helixi1116 – 1123Combined sources8
Turni1126 – 1128Combined sources3
Beta strandi1129 – 1131Combined sources3
Turni1139 – 1141Combined sources3
Beta strandi1169 – 1171Combined sources3
Beta strandi1177 – 1189Combined sources13
Beta strandi1192 – 1200Combined sources9
Beta strandi1205 – 1211Combined sources7
Helixi1217 – 1231Combined sources15
Turni1232 – 1234Combined sources3
Beta strandi1235 – 1241Combined sources7
Helixi1244 – 1249Combined sources6
Helixi1273 – 1282Combined sources10
Beta strandi1285 – 1293Combined sources9
Helixi1303 – 1321Combined sources19
Helixi1346 – 1355Combined sources10
Beta strandi1358 – 1360Combined sources3
Turni1361 – 1364Combined sources4
Beta strandi1365 – 1368Combined sources4
Beta strandi1371 – 1374Combined sources4
Helixi1376 – 1390Combined sources15
Helixi1394 – 1402Combined sources9
Turni1403 – 1405Combined sources3
Beta strandi1407 – 1410Combined sources4
Helixi1413 – 1422Combined sources10
Helixi1425 – 1431Combined sources7
Beta strandi1661 – 1667Combined sources7
Beta strandi1670 – 1673Combined sources4
Beta strandi1676 – 1687Combined sources12
Beta strandi1690 – 1693Combined sources4
Beta strandi1696 – 1698Combined sources3
Helixi1702 – 1704Combined sources3
Beta strandi1705 – 1707Combined sources3
Turni1714 – 1716Combined sources3
Beta strandi1717 – 1719Combined sources3
Turni1726 – 1728Combined sources3

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
1D0EX-ray3.00A/B683-937[»]
1D1UX-ray2.30A683-937[»]
1I6JX-ray2.00A683-937[»]
1MMLX-ray1.80A669-933[»]
1N4LX-ray2.00A683-937[»]
1NNDX-ray2.30A683-937[»]
1QAIX-ray2.30A/B669-933[»]
1QAJX-ray2.30A/B683-937[»]
1ZTTX-ray1.85A683-937[»]
1ZTWX-ray1.80A683-937[»]
2FJVX-ray2.05A683-937[»]
2FJWX-ray1.95A683-937[»]
2FJXX-ray1.80A683-937[»]
2FVPX-ray2.25A683-937[»]
2FVQX-ray2.30A683-937[»]
2FVRX-ray2.20A683-937[»]
2FVSX-ray2.35A683-937[»]
2HB5X-ray1.59A1157-1330[»]
2M9UNMR-A1659-1738[»]
2MQVNMR-A479-534[»]
2MS0NMR-A/C479-534[»]
2MS1NMR-A479-534[»]
2R2RX-ray2.10A683-937[»]
2R2SX-ray2.80A683-937[»]
2R2TX-ray2.00A683-937[»]
2R2UX-ray2.30A683-937[»]
3FSIX-ray1.75A683-937[»]
3NNQX-ray2.69A/B1331-1435[»]
4M94X-ray2.14A683-937[»]
4M95X-ray1.72A683-937[»]
4MH8X-ray3.00A683-1330[»]
4NZGX-ray2.15A/B/C/D1338-1435[»]
4XO0X-ray1.70A683-937[»]
4XPCX-ray1.68A683-937[»]
4XPEX-ray1.78A683-937[»]
5DMQX-ray4.00A683-1330[»]
5DMRX-ray2.80A1159-1330[»]
DisProtiDP00651.
ProteinModelPortaliP03355.
SMRiP03355.
ModBaseiSearch...
MobiDBiSearch...

Miscellaneous databases

EvolutionaryTraceiP03355.

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Domaini560 – 631Peptidase A2PROSITE-ProRule annotationAdd BLAST72
Domaini741 – 932Reverse transcriptasePROSITE-ProRule annotationAdd BLAST192
Domaini1174 – 1320RNase HPROSITE-ProRule annotationAdd BLAST147
Domaini1444 – 1602Integrase catalyticPROSITE-ProRule annotationAdd BLAST159

Coiled coil

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Coiled coili438 – 478Sequence analysisAdd BLAST41

Motif

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Motifi111 – 114PTAP/PSAP motif4
Motifi130 – 134LYPX(n)L motif5
Motifi162 – 165PPXY motif4

Compositional bias

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Compositional biasi71 – 193Pro-richAdd BLAST123

Domaini

Late-budding domains (L domains) are short sequence motifs essential for viral particle release. They can occur individually or in close proximity within structural proteins. They interacts with sorting cellular proteins of the multivesicular body (MVB) pathway. Most of these proteins are class E vacuolar protein sorting factors belonging to ESCRT-I, ESCRT-II or ESCRT-III complexes. RNA-binding phosphoprotein p12 contains one L domain: a PPXY motif which potentially interacts with the WW domain 3 of NEDD4 E3 ubiquitin ligase. PPXY motif is essential for virus egress. Matrix protein p15 contains one L domain: a PTAP/PSAP motif, which potentially interacts with the UEV domain of TSG101. The junction between the matrix protein p15 and RNA-binding phosphoprotein p12 also contains one L domain: a LYPX(n)L motif which potentially interacts with PDCD6IP. Both PSAP and LYPX(n)L domains might play little to no role in budding and possibly drive residual virus release. contains (By similarity).By similarity

Sequence similaritiesi

Contains 1 CCHC-type zinc finger.PROSITE-ProRule annotation
Contains 1 integrase catalytic domain.PROSITE-ProRule annotation
Contains 1 peptidase A2 domain.PROSITE-ProRule annotation
Contains 1 reverse transcriptase domain.PROSITE-ProRule annotation
Contains 1 RNase H domain.PROSITE-ProRule annotation

Zinc finger

Feature keyPosition(s)DescriptionActionsGraphical viewLength
Zinc fingeri502 – 519CCHC-typePROSITE-ProRule annotationAdd BLAST18

Keywords - Domaini

Coiled coil, Zinc-finger

Family and domain databases

Gene3Di1.10.150.180. 1 hit.
1.10.375.10. 1 hit.
2.40.70.10. 1 hit.
3.30.420.10. 2 hits.
4.10.60.10. 1 hit.
InterProiIPR001969. Aspartic_peptidase_AS.
IPR000840. G_retro_matrix.
IPR002079. Gag_p12.
IPR003036. Gag_P30.
IPR001584. Integrase_cat-core.
IPR001995. Peptidase_A2_cat.
IPR021109. Peptidase_aspartic_dom.
IPR018061. Retropepsins.
IPR008919. Retrov_capsid_N.
IPR010999. Retrovr_matrix.
IPR012337. RNaseH-like_dom.
IPR002156. RNaseH_domain.
IPR000477. RT_dom.
IPR001878. Znf_CCHC.
[Graphical view]
PfamiPF01140. Gag_MA. 1 hit.
PF01141. Gag_p12. 1 hit.
PF02093. Gag_p30. 1 hit.
PF00075. RNase_H. 1 hit.
PF00665. rve. 1 hit.
PF00077. RVP. 1 hit.
PF00078. RVT_1. 1 hit.
PF00098. zf-CCHC. 1 hit.
[Graphical view]
SMARTiSM00343. ZnF_C2HC. 1 hit.
[Graphical view]
SUPFAMiSSF47836. SSF47836. 1 hit.
SSF47943. SSF47943. 1 hit.
SSF50630. SSF50630. 1 hit.
SSF53098. SSF53098. 2 hits.
SSF57756. SSF57756. 1 hit.
PROSITEiPS50175. ASP_PROT_RETROV. 1 hit.
PS00141. ASP_PROTEASE. 1 hit.
PS50994. INTEGRASE. 1 hit.
PS50879. RNASE_H. 1 hit.
PS50878. RT_POL. 1 hit.
PS50158. ZF_CCHC. 1 hit.
[Graphical view]

Sequencei

Sequence statusi: Complete.

Sequence processingi: The displayed sequence is further processed into a mature form.

P03355-1 [UniParc]FASTAAdd to basket

« Hide

        10         20         30         40         50
MGQTVTTPLS LTLGHWKDVE RIAHNQSVDV KKRRWVTFCS AEWPTFNVGW
60 70 80 90 100
PRDGTFNRDL ITQVKIKVFS PGPHGHPDQV PYIVTWEALA FDPPPWVKPF
110 120 130 140 150
VHPKPPPPLP PSAPSLPLEP PRSTPPRSSL YPALTPSLGA KPKPQVLSDS
160 170 180 190 200
GGPLIDLLTE DPPPYRDPRP PPSDRDGNGG EATPAGEAPD PSPMASRLRG
210 220 230 240 250
RREPPVADST TSQAFPLRAG GNGQLQYWPF SSSDLYNWKN NNPSFSEDPG
260 270 280 290 300
KLTALIESVL ITHQPTWDDC QQLLGTLLTG EEKQRVLLEA RKAVRGDDGR
310 320 330 340 350
PTQLPNEVDA AFPLERPDWD YTTQAGRNHL VHYRQLLLAG LQNAGRSPTN
360 370 380 390 400
LAKVKGITQG PNESPSAFLE RLKEAYRRYT PYDPEDPGQE TNVSMSFIWQ
410 420 430 440 450
SAPDIGRKLE RLEDLKNKTL GDLVREAEKI FNKRETPEER EERIRRETEE
460 470 480 490 500
KEERRRTEDE QKEKERDRRR HREMSKLLAT VVSGQKQDRQ GGERRRSQLD
510 520 530 540 550
RDQCAYCKEK GHWAKDCPKK PRGPRGPRPQ TSLLTLDDGG GQGQEPPPEP
560 570 580 590 600
RITLKVGGQP VTFLVDTGAQ HSVLTQNPGP LSDKSAWVQG ATGGKRYRWT
610 620 630 640 650
TDRKVHLATG KVTHSFLHVP DCPYPLLGRD LLTKLKAQIH FEGSGAQVMG
660 670 680 690 700
PMGQPLQVLT LNIEDEHRLH ETSKEPDVSL GSTWLSDFPQ AWAETGGMGL
710 720 730 740 750
AVRQAPLIIP LKATSTPVSI KQYPMSQEAR LGIKPHIQRL LDQGILVPCQ
760 770 780 790 800
SPWNTPLLPV KKPGTNDYRP VQDLREVNKR VEDIHPTVPN PYNLLSGLPP
810 820 830 840 850
SHQWYTVLDL KDAFFCLRLH PTSQPLFAFE WRDPEMGISG QLTWTRLPQG
860 870 880 890 900
FKNSPTLFDE ALHRDLADFR IQHPDLILLQ YVDDLLLAAT SELDCQQGTR
910 920 930 940 950
ALLQTLGNLG YRASAKKAQI CQKQVKYLGY LLKEGQRWLT EARKETVMGQ
960 970 980 990 1000
PTPKTPRQLR EFLGTAGFCR LWIPGFAEMA APLYPLTKTG TLFNWGPDQQ
1010 1020 1030 1040 1050
KAYQEIKQAL LTAPALGLPD LTKPFELFVD EKQGYAKGVL TQKLGPWRRP
1060 1070 1080 1090 1100
VAYLSKKLDP VAAGWPPCLR MVAAIAVLTK DAGKLTMGQP LVILAPHAVE
1110 1120 1130 1140 1150
ALVKQPPDRW LSNARMTHYQ ALLLDTDRVQ FGPVVALNPA TLLPLPEEGL
1160 1170 1180 1190 1200
QHNCLDILAE AHGTRPDLTD QPLPDADHTW YTDGSSLLQE GQRKAGAAVT
1210 1220 1230 1240 1250
TETEVIWAKA LPAGTSAQRA ELIALTQALK MAEGKKLNVY TDSRYAFATA
1260 1270 1280 1290 1300
HIHGEIYRRR GLLTSEGKEI KNKDEILALL KALFLPKRLS IIHCPGHQKG
1310 1320 1330 1340 1350
HSAEARGNRM ADQAARKAAI TETPDTSTLL IENSSPYTSE HFHYTVTDIK
1360 1370 1380 1390 1400
DLTKLGAIYD KTKKYWVYQG KPVMPDQFTF ELLDFLHQLT HLSFSKMKAL
1410 1420 1430 1440 1450
LERSHSPYYM LNRDRTLKNI TETCKACAQV NASKSAVKQG TRVRGHRPGT
1460 1470 1480 1490 1500
HWEIDFTEIK PGLYGYKYLL VFIDTFSGWI EAFPTKKETA KVVTKKLLEE
1510 1520 1530 1540 1550
IFPRFGMPQV LGTDNGPAFV SKVSQTVADL LGIDWKLHCA YRPQSSGQVE
1560 1570 1580 1590 1600
RMNRTIKETL TKLTLATGSR DWVLLLPLAL YRARNTPGPH GLTPYEILYG
1610 1620 1630 1640 1650
APPPLVNFPD PDMTRVTNSP SLQAHLQALY LVQHEVWRPL AAAYQEQLDR
1660 1670 1680 1690 1700
PVVPHPYRVG DTVWVRRHQT KNLEPRWKGP YTVLLTTPTA LKVDGIAAWI
1710 1720 1730
HAAHVKAADP GGGPSSRLTW RVQRSQNPLK IRLTREAP
Length:1,738
Mass (Da):194,841
Last modified:July 13, 2010 - v4
Checksum:iEDE353E6B09F91C6
GO

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AF033811 Genomic RNA. Translation: AAC82568.1. Sequence problems.
J02255 Genomic RNA. No translation available.
PIRiA03956. GNMV1M.
RefSeqiNP_057933.2. NC_001501.1.

Genome annotation databases

GeneIDi2193424.
KEGGivg:2193424.

Keywords - Coding sequence diversityi

RNA suppression of termination

Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AF033811 Genomic RNA. Translation: AAC82568.1. Sequence problems.
J02255 Genomic RNA. No translation available.
PIRiA03956. GNMV1M.
RefSeqiNP_057933.2. NC_001501.1.

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
PDB entryMethodResolution (Å)ChainPositionsPDBsum
1D0EX-ray3.00A/B683-937[»]
1D1UX-ray2.30A683-937[»]
1I6JX-ray2.00A683-937[»]
1MMLX-ray1.80A669-933[»]
1N4LX-ray2.00A683-937[»]
1NNDX-ray2.30A683-937[»]
1QAIX-ray2.30A/B669-933[»]
1QAJX-ray2.30A/B683-937[»]
1ZTTX-ray1.85A683-937[»]
1ZTWX-ray1.80A683-937[»]
2FJVX-ray2.05A683-937[»]
2FJWX-ray1.95A683-937[»]
2FJXX-ray1.80A683-937[»]
2FVPX-ray2.25A683-937[»]
2FVQX-ray2.30A683-937[»]
2FVRX-ray2.20A683-937[»]
2FVSX-ray2.35A683-937[»]
2HB5X-ray1.59A1157-1330[»]
2M9UNMR-A1659-1738[»]
2MQVNMR-A479-534[»]
2MS0NMR-A/C479-534[»]
2MS1NMR-A479-534[»]
2R2RX-ray2.10A683-937[»]
2R2SX-ray2.80A683-937[»]
2R2TX-ray2.00A683-937[»]
2R2UX-ray2.30A683-937[»]
3FSIX-ray1.75A683-937[»]
3NNQX-ray2.69A/B1331-1435[»]
4M94X-ray2.14A683-937[»]
4M95X-ray1.72A683-937[»]
4MH8X-ray3.00A683-1330[»]
4NZGX-ray2.15A/B/C/D1338-1435[»]
4XO0X-ray1.70A683-937[»]
4XPCX-ray1.68A683-937[»]
4XPEX-ray1.78A683-937[»]
5DMQX-ray4.00A683-1330[»]
5DMRX-ray2.80A1159-1330[»]
DisProtiDP00651.
ProteinModelPortaliP03355.
SMRiP03355.
ModBaseiSearch...
MobiDBiSearch...

Chemistry databases

ChEMBLiCHEMBL3562.

Protein family/group databases

MEROPSiA02.008.

PTM databases

iPTMnetiP03355.
PhosphoSitePlusiP03355.

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

GeneIDi2193424.
KEGGivg:2193424.

Enzyme and pathway databases

BRENDAi2.7.7.49. 3393.
3.1.13.2. 3393.
3.4.23.B5. 3393.

Miscellaneous databases

EvolutionaryTraceiP03355.
PMAP-CutDBO92808.
PROiP03355.

Family and domain databases

Gene3Di1.10.150.180. 1 hit.
1.10.375.10. 1 hit.
2.40.70.10. 1 hit.
3.30.420.10. 2 hits.
4.10.60.10. 1 hit.
InterProiIPR001969. Aspartic_peptidase_AS.
IPR000840. G_retro_matrix.
IPR002079. Gag_p12.
IPR003036. Gag_P30.
IPR001584. Integrase_cat-core.
IPR001995. Peptidase_A2_cat.
IPR021109. Peptidase_aspartic_dom.
IPR018061. Retropepsins.
IPR008919. Retrov_capsid_N.
IPR010999. Retrovr_matrix.
IPR012337. RNaseH-like_dom.
IPR002156. RNaseH_domain.
IPR000477. RT_dom.
IPR001878. Znf_CCHC.
[Graphical view]
PfamiPF01140. Gag_MA. 1 hit.
PF01141. Gag_p12. 1 hit.
PF02093. Gag_p30. 1 hit.
PF00075. RNase_H. 1 hit.
PF00665. rve. 1 hit.
PF00077. RVP. 1 hit.
PF00078. RVT_1. 1 hit.
PF00098. zf-CCHC. 1 hit.
[Graphical view]
SMARTiSM00343. ZnF_C2HC. 1 hit.
[Graphical view]
SUPFAMiSSF47836. SSF47836. 1 hit.
SSF47943. SSF47943. 1 hit.
SSF50630. SSF50630. 1 hit.
SSF53098. SSF53098. 2 hits.
SSF57756. SSF57756. 1 hit.
PROSITEiPS50175. ASP_PROT_RETROV. 1 hit.
PS00141. ASP_PROTEASE. 1 hit.
PS50994. INTEGRASE. 1 hit.
PS50879. RNASE_H. 1 hit.
PS50878. RT_POL. 1 hit.
PS50158. ZF_CCHC. 1 hit.
[Graphical view]
ProtoNetiSearch...

Entry informationi

Entry nameiPOL_MLVMS
AccessioniPrimary (citable) accession number: P03355
Secondary accession number(s): O92808
Entry historyi
Integrated into UniProtKB/Swiss-Prot: July 21, 1986
Last sequence update: July 13, 2010
Last modified: November 2, 2016
This is version 155 of the entry and version 4 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programViral Protein Annotation Program

Miscellaneousi

Miscellaneous

This protein is translated as a gag-pol fusion protein by episodic readthrough of the gag protein termination codon. Readthrough of the terminator codon TAG occurs between the codons for 538-Asp and 540-Gly.
The nucleocapsid protein p10 released from Pol polyprotein (NC-pol) is a few amino acids shorter than the nucleocapsid protein p10 released from Gag polyprotein (NC-gag).
The reverse transcriptase is an error-prone enzyme that lacks a proof-reading function. High mutations rate is a direct consequence of this characteristic. RT also displays frequent template swiching leading to high recombination rate. Recombination mostly occurs between homologous regions of the two copackaged RNA genomes. If these two RNA molecules derive from different viral strains, reverse transcription will give rise to highly recombinated proviral DNAs.PROSITE-ProRule annotation

Keywords - Technical termi

3D-structure, Complete proteome, Direct protein sequencing, Multifunctional enzyme, Reference proteome

Documents

  1. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  2. Peptidase families
    Classification of peptidase families and list of entries
  3. SIMILARITY comments
    Index of protein domains and families

Similar proteinsi

Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into one UniRef entry.
90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.