Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P03300 (POLG_POL1M) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 165. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (3) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Sequence annotation·Sequences·References·Web links·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Genome polyprotein

Cleaved into the following 17 chains:

  1. P1
  2. Capsid protein VP0
    Alternative name(s):
    VP4-VP2
  3. Capsid protein VP4
    Alternative name(s):
    P1A
    Virion protein 4
  4. Capsid protein VP2
    Alternative name(s):
    P1B
    Virion protein 2
  5. Capsid protein VP3
    Alternative name(s):
    P1C
    Virion protein 3
  6. Capsid protein VP1
    Alternative name(s):
    P1D
    Virion protein 1
  7. P2
  8. Protease 2A
    Short name=P2A
    EC=3.4.22.29
    Alternative name(s):
    Picornain 2A
    Protein 2A
  9. Protein 2B
    Short name=P2B
  10. Protein 2C
    Short name=P2C
    EC=3.6.1.15
  11. P3
  12. Protein 3AB
  13. Protein 3A
    Short name=P3A
  14. Viral protein genome-linked
    Short name=VPg
    Alternative name(s):
    Protein 3B
    Short name=P3B
  15. Protein 3CD
    EC=3.4.22.28
  16. Protease 3C
    Short name=P3C
    EC=3.4.22.28
  17. RNA-directed RNA polymerase
    Short name=RdRp
    EC=2.7.7.48
    Alternative name(s):
    3D polymerase
    Short name=3Dpol
    Protein 3D
    Short name=3D
OrganismPoliovirus type 1 (strain Mahoney) [Reference proteome]
Taxonomic identifier12081 [NCBI]
Taxonomic lineageVirusesssRNA positive-strand viruses, no DNA stagePicornaviralesPicornaviridaeEnterovirusEnterovirus C
Virus hostHomo sapiens (Human) [TaxID: 9606]

Protein attributes

Sequence length2209 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Capsid protein VP1: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Capsid protein VP1 mainly forms the vertices of the capsid. Capsid protein VP1 interacts with host cell receptor PVR to provide virion attachment to target host epithelial cells. This attachment induces virion internalization predominantly through clathrin- and caveolin-independent endocytosis in Hela cells and through caveolin-mediated endocytosis in brain microvascular endothelial cells. Tyrosine kinases are probably involved in the entry process. Virus binding to PVR induces increased junctional permeability and rearrangement of junctional proteins. Modulation of endothelial tight junctions, as well as cytolytic infection of endothelial cells themselves, may result in loss of endothelial integrity which may help the virus to reach the CNS. After binding to its receptor, the capsid undergoes conformational changes. Capsid protein VP1 N-terminus (that contains an amphipathic alpha-helix) and capsid protein VP4 are externalized. Together, they shape a pore in the host membrane through which viral genome is translocated to host cell cytoplasm. After genome has been released, the channel shrinks. Ref.9 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.21 Ref.24 Ref.25 Ref.27 Ref.28 Ref.29 Ref.31 Ref.33 Ref.36 Ref.38

Capsid protein VP2: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Ref.9 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.21 Ref.24 Ref.25 Ref.27 Ref.28 Ref.29 Ref.31 Ref.33 Ref.36 Ref.38

Capsid protein VP3: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Ref.9 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.21 Ref.24 Ref.25 Ref.27 Ref.28 Ref.29 Ref.31 Ref.33 Ref.36 Ref.38

Capsid protein VP4: Lies on the inner surface of the capsid shell. After binding to the host receptor, the capsid undergoes conformational changes. Capsid protein VP4 is released, Capsid protein VP1 N-terminus is externalized, and together, they shape a pore in the host membrane through which the viral genome is translocated into the host cell cytoplasm. After genome has been released, the channel shrinks By similarity. Ref.9 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.21 Ref.24 Ref.25 Ref.27 Ref.28 Ref.29 Ref.31 Ref.33 Ref.36 Ref.38

Capsid protein VP0: Component of immature procapsids, which is cleaved into capsid proteins VP4 and VP2 after maturation. Allows the capsid to remain inactive before the maturation step By similarity. Ref.9 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.21 Ref.24 Ref.25 Ref.27 Ref.28 Ref.29 Ref.31 Ref.33 Ref.36 Ref.38

Protein 2A: Cysteine protease that cleaves viral polyprotein and specific host proteins. It is responsible for the cleavage between the P1 and P2 regions, first cleavage occurring in the polyprotein. Cleaves also the host translation initiation factor EIF4G1, in order to shut down the capped cellular mRNA translation. Inhibits the host nucleus-cytoplasm protein and RNA trafficking by cleaving host members of the nuclear pores including NUP98, NUP62 and NUP153. Ref.9 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.21 Ref.24 Ref.25 Ref.27 Ref.28 Ref.29 Ref.31 Ref.33 Ref.36 Ref.38

Protein 2B: Plays an essential role in the virus replication cycle by acting as a viroporin. Creates a pore in the host reticulum endoplasmic and as a consequence releases Ca2+ in the cytoplasm of infected cell. In turn, high levels of cyctoplasmic calcium may trigger membrane trafficking and transport of viral ER-associated proteins to viroplasms, sites of viral genome replication. Ref.9 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.21 Ref.24 Ref.25 Ref.27 Ref.28 Ref.29 Ref.31 Ref.33 Ref.36 Ref.38

Protein 2C: Induces and associates with structural rearrangements of intracellular membranes. Triggers host autophagy by interacting with host BECN1 and thereby promotes viral replication. Participates in viral replication and interacts with host DHX9. Displays RNA-binding, nucleotide binding and NTPase activities. May play a role in virion morphogenesis and viral RNA encapsidation by interacting with the capsid protein VP3. Ref.9 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.21 Ref.24 Ref.25 Ref.27 Ref.28 Ref.29 Ref.31 Ref.33 Ref.36 Ref.38

Protein 3AB: Localizes the viral replication complex to the surface of membranous vesicles. Together with protein 3CD binds the Cis-Active RNA Element (CRE) which is involved in RNA synthesis initiation. Acts as a cofactor to stimulate the activity of 3D polymerase, maybe through a nucleid acid chaperone activity. Ref.9 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.21 Ref.24 Ref.25 Ref.27 Ref.28 Ref.29 Ref.31 Ref.33 Ref.36 Ref.38

Protein 3A: Localizes the viral replication complex to the surface of membranous vesicles. It inhibits host cell endoplasmic reticulum-to-Golgi apparatus transport and causes the dissassembly of the Golgi complex, possibly through GBF1 interaction. This would result in depletion of MHC, trail receptors and IFN receptors at the host cell surface. Ref.9 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.21 Ref.24 Ref.25 Ref.27 Ref.28 Ref.29 Ref.31 Ref.33 Ref.36 Ref.38

Viral protein genome-linked: acts as a primer for viral RNA replication and remains covalently bound to viral genomic RNA. VPg is uridylylated prior to priming replication into VPg-pUpU. The oriI viral genomic sequence may act as a template for this. The VPg-pUpU is then used as primer on the genomic RNA poly(A) by the RNA-dependent RNA polymerase to replicate the viral genome. VPg may be removed in the cytoplasm by an unknown enzyme termed "unlinkase". VPg is not cleaved off virion genomes because replicated genomic RNA are encapsidated at the site of replication. Ref.9 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.21 Ref.24 Ref.25 Ref.27 Ref.28 Ref.29 Ref.31 Ref.33 Ref.36 Ref.38

Protein 3CD: Is involved in the viral replication complex and viral polypeptide maturation. It exhibits protease activity with a specificity and catalytic efficiency that is different from protease 3C. Protein 3CD lacks polymerase activity. The 3C domain in the context of protein 3CD may have an RNA binding activity. Ref.9 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.21 Ref.24 Ref.25 Ref.27 Ref.28 Ref.29 Ref.31 Ref.33 Ref.36 Ref.38

Protease 3C: May cleave host PABP and contribute to host translation shutoff. Ref.9 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.21 Ref.24 Ref.25 Ref.27 Ref.28 Ref.29 Ref.31 Ref.33 Ref.36 Ref.38

RNA-directed RNA polymerase: Replicates the viral genomic RNA on the surface of intracellular membranes. May form linear arrays of subunits that propagate along a strong head-to-tail interaction called interface-I. Covalently attaches UMP to a tyrosine of VPg, which is used to prime RNA synthesis. The positive stranded RNA genome is first replicated at virus induced membranous vesicles, creating a dsRNA genomic replication form. This dsRNA is then used as template to synthesize positive stranded RNA genomes. ss+RNA genomes are either translated, replicated or encapsidated. Ref.9 Ref.11 Ref.12 Ref.15 Ref.19 Ref.20 Ref.21 Ref.24 Ref.25 Ref.27 Ref.28 Ref.29 Ref.31 Ref.33 Ref.36 Ref.38

Catalytic activity

Nucleoside triphosphate + RNA(n) = diphosphate + RNA(n+1).

Selective cleavage of Tyr-|-Gly bond in the picornavirus polyprotein.

Selective cleavage of Gln-|-Gly bond in the poliovirus polyprotein. In other picornavirus reactions Glu may be substituted for Gln, and Ser or Thr for Gly.

NTP + H2O = NDP + phosphate.

Enzyme regulation

RNA-directed RNA polymerase: replication or transcription is subject to high level of random mutations by the nucleotide analog ribavirin.

Subunit structure

Capsid protein VP1: Interacts with capsid protein VP0, and capsid protein VP3 to form heterotrimeric protomers. Five protomers subsequently associate to form pentamers which serve as building blocks for the capsid. Interacts with human PVR. Interacts with capsid protein VP4 in the mature capsid. Capsid protein VP0: interacts with capsid protein VP1 and capsid protein VP3 to form heterotrimeric protomers. Five protomers subsequently associate to form pentamers which serve as building blocks for the capsid. Capsid protein VP2: Interacts with capsid protein VP1 and capsid protein VP3 in the mature capsid. Capsid protein VP3: interacts with capsid protein VP0 and capsid protein VP1 to form heterotrimeric protomers. Five protomers subsequently associate to form pentamers which serve as building blocks for the capsid. Interacts with capsid protein VP4 in the mature capsid. Capsid protein VP4: Interacts with capsid protein VP1 and capsid protein VP3. Protein 2C: interacts with cellular Vimentin/VIM and BECN1; these interactions play important roles in the viral replication By similarity. Protein 2C: interacts with capsid protein VP3; this interaction may be important for virion morphogenesis. Protein 2C: interacts with host BECN1 and DHX9 and possibly presents an hexameric ring structure with 6-fold symmetry characteristic of AAA+ ATPases. Protein 2C: N-terminus interacts with human RTN3. This interaction is important for viral replication By similarity. Protein 3AB: interacts with protein 3CD. Protein 3A: homodimerizes and interacts with host GBF1. Viral protein genome-linked: interacts with RNA-directed RNA polymerase. Protein 3CD: interacts with protein 3AB and with RNA-directed RNA polymerase. RNA-directed RNA polymerase: interacts with Viral protein genome-linked and with protein 3CD. Ref.10 Ref.13 Ref.14 Ref.17 Ref.18 Ref.22 Ref.31 Ref.35 Ref.39

Subcellular location

Capsid protein VP0: Virion. Host cytoplasm Probable.

Capsid protein VP4: Virion.

Capsid protein VP2: Virion. Host cytoplasm Probable.

Capsid protein VP3: Virion. Host cytoplasm Probable.

Capsid protein VP1: Virion. Host cytoplasm Probable.

Protein 2B: Host cytoplasmic vesicle membrane; Peripheral membrane protein; Cytoplasmic side Potential. Note: Probably localizes to the surface of intracellular membrane vesicles that are induced after virus infection as the site for viral RNA replication. These vesicles are derived from the endoplasmic reticulum.

Protein 2C: Host cytoplasmic vesicle membrane; Peripheral membrane protein; Cytoplasmic side Potential. Note: Probably localizes to the surface of intracellular membrane vesicles that are induced after virus infection as the site for viral RNA replication. These vesicles are derived from the endoplasmic reticulum.

Protein 3A: Host cytoplasmic vesicle membrane; Peripheral membrane protein; Cytoplasmic side Potential. Note: Probably localizes to the surface of intracellular membrane vesicles that are induced after virus infection as the site for viral RNA replication. These vesicles are derived from the endoplasmic reticulum.

Protein 3AB: Host cytoplasmic vesicle membrane; Peripheral membrane protein; Cytoplasmic side Potential. Note: Probably localizes to the surface of intracellular membrane vesicles that are induced after virus infection as the site for viral RNA replication. These vesicles are derived from the endoplasmic reticulum.

Viral protein genome-linked: Virion. Host cytoplasm.

Protease 3C: Host cytoplasm.

Protein 3CD: Host cytoplasmic vesicle membrane; Peripheral membrane protein; Cytoplasmic side Potential. Note: Probably localizes to the surface of intracellular membrane vesicles that are induced after virus infection as the site for viral RNA replication. These vesicles are derived from the endoplasmic reticulum.

RNA-directed RNA polymerase: Host cytoplasmic vesicle membrane; Peripheral membrane protein; Cytoplasmic side Potential. Note: Probably localizes to the surface of intracellular membrane vesicles that are induced after virus infection as the site for viral RNA replication. These vesicles are derived from the endoplasmic reticulum.

Post-translational modification

Capsid protein VP0: Myristoylation is required for the formation of pentamers during virus assembly. Further assembly of 12 pentamers and a molecule of genomic RNA generates the provirion By similarity.

Genome polyprotein: Specific enzymatic cleavages in vivo by the viral proteases yield processing intermediates and the mature proteins.

Capsid protein VP0: During virion maturation, immature virions are rendered infectious following cleavage of VP0 into VP4 and VP2. This maturation seems to be an autocatalytic event triggered by the presence of RNA in the capsid and it is followed by a conformational change infectious virion.

Viral protein genome-linked: VPg is uridylylated by the polymerase into VPg-pUpU. This acts as a nucleotide-peptide primer for the genomic RNA replication.

Sequence similarities

Belongs to the picornaviruses polyprotein family.

Contains 2 peptidase C3 domains.

Contains 1 RdRp catalytic domain.

Contains 1 SF3 helicase domain.

Caution

Protein 3A: Has been proposed to interact with host LIS1/NUF (Ref.14), but this has not been confirmed by other studies (Ref.35).

Ontologies

Keywords
   Biological processActivation of host autophagy by virus
Host gene expression shutoff by virus
Host mRNA suppression by virus
Host translation shutoff by virus
Host-virus interaction
Inhibition of host innate immune response by virus
Inhibition of host mRNA nuclear export by virus
Inhibition of host RIG-I by virus
Inhibition of host RLR pathway by virus
Ion transport
Pore-mediated penetration of viral genome into host cell
Transport
Viral attachment to host cell
Viral immunoevasion
Viral penetration into host cytoplasm
Viral RNA replication
Virus endocytosis by host
Virus entry into host cell
   Cellular componentCapsid protein
Host cytoplasm
Host cytoplasmic vesicle
Host membrane
Membrane
T=pseudo3 icosahedral capsid protein
Virion
   DomainRepeat
   LigandATP-binding
Nucleotide-binding
RNA-binding
   Molecular functionHelicase
Hydrolase
Ion channel
Nucleotidyltransferase
Protease
RNA-directed RNA polymerase
Thiol protease
Transferase
Viral ion channel
   PTMCovalent protein-RNA linkage
Lipoprotein
Myristate
Phosphoprotein
   Technical term3D-structure
Complete proteome
Direct protein sequencing
Reference proteome
Gene Ontology (GO)
   Biological_processRNA-protein covalent cross-linking

Inferred from electronic annotation. Source: UniProtKB-KW

endocytosis involved in viral entry into host cell

Inferred from electronic annotation. Source: UniProtKB-KW

induction by virus of host autophagy

Inferred from electronic annotation. Source: UniProtKB-KW

pore formation by virus in membrane of host cell

Inferred from electronic annotation. Source: UniProtKB-KW

pore-mediated entry of viral genome into host cell

Inferred from electronic annotation. Source: UniProtKB-KW

protein oligomerization

Inferred from electronic annotation. Source: UniProtKB-KW

proteolysis

Inferred from electronic annotation. Source: UniProtKB-KW

suppression by virus of host RIG-I activity

Inferred from electronic annotation. Source: UniProtKB-KW

suppression by virus of host mRNA export from nucleus

Inferred from electronic annotation. Source: UniProtKB-KW

suppression by virus of host translation

Inferred from electronic annotation. Source: UniProtKB-KW

transcription, DNA-templated

Inferred from electronic annotation. Source: InterPro

viral RNA genome replication

Inferred from electronic annotation. Source: InterPro

virion attachment to host cell

Inferred from electronic annotation. Source: UniProtKB-KW

   Cellular_componentT=pseudo3 icosahedral viral capsid

Inferred from electronic annotation. Source: UniProtKB-KW

host cell cytoplasmic vesicle membrane

Inferred from electronic annotation. Source: UniProtKB-SubCell

integral to membrane of host cell

Inferred from electronic annotation. Source: UniProtKB-KW

membrane

Inferred from electronic annotation. Source: UniProtKB-KW

   Molecular_functionATP binding

Inferred from electronic annotation. Source: UniProtKB-KW

RNA binding

Inferred from electronic annotation. Source: UniProtKB-KW

RNA helicase activity

Inferred from electronic annotation. Source: InterPro

RNA-directed RNA polymerase activity

Inferred from electronic annotation. Source: UniProtKB-KW

cysteine-type endopeptidase activity

Inferred from electronic annotation. Source: InterPro

ion channel activity

Inferred from electronic annotation. Source: UniProtKB-KW

structural molecule activity

Inferred from electronic annotation. Source: InterPro

Complete GO annotation...

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Initiator methionine11Removed; by host By similarity
Chain2 – 22092208Genome polyprotein
PRO_0000424686
Chain2 – 881880P1
PRO_0000424687
Chain2 – 341340Capsid protein VP0 Potential
PRO_0000424688
Chain2 – 6968Capsid protein VP4 Potential
PRO_0000040080
Chain70 – 341272Capsid protein VP2 Potential
PRO_0000040081
Chain342 – 579238Capsid protein VP3 Potential
PRO_0000040082
Chain580 – 881302Capsid protein VP1 Potential
PRO_0000040083
Chain882 – 1456575P2
PRO_0000424689
Chain882 – 1030149Protease 2A Potential
PRO_0000040084
Chain1031 – 112797Protein 2B Potential
PRO_0000040085
Chain1128 – 1456329Protein 2C Potential
PRO_0000040086
Chain1457 – 2209753P3
PRO_0000424690
Chain1457 – 1565109Protein 3AB Potential
PRO_0000424691
Chain1457 – 154387Protein 3A Potential
PRO_0000424692
Chain1544 – 156522Viral protein genome-linked Potential
PRO_0000040088
Chain1566 – 2209644Protein 3CD Potential
PRO_0000424693
Chain1566 – 1747182Protease 3C Potential
PRO_0000040089
Chain1748 – 2209462RNA-directed RNA polymerase
PRO_0000040090

Regions

Topological domain2 – 15201519Cytoplasmic Potential
Intramembrane1521 – 153616 Potential
Topological domain1537 – 2209673Cytoplasmic Potential
Domain882 – 1031150Peptidase C3 1
Domain1232 – 1388157SF3 helicase
Domain1566 – 1731166Peptidase C3 2
Domain1975 – 2090116RdRp catalytic
Nucleotide binding1256 – 12638ATP Potential
Region580 – 60021Amphipatic alpha-helix Potential
Region1457 – 147923Disordered

Sites

Active site9011For Protease 2A activity By similarity
Active site9191For Protease 2A activity By similarity
Active site9901For Protease 2A activity By similarity
Active site16051For Protease 3C activity Potential
Active site16361For Protease 3C activity Potential
Active site17121For Protease 3C activity Potential
Active site20761For RdRp activity Ref.6
Site251Involved in the interaction with human RTN3 By similarity
Site69 – 702Cleavage; by autolysis Potential
Site341 – 3422Cleavage; by Protease 3C Potential
Site881 – 8822Cleavage; by Protease 2A Potential
Site1030 – 10312Cleavage; by Protease 3C Potential
Site1127 – 11282Cleavage; by Protease 3C Potential
Site1456 – 14572Cleavage; by Protease 3C Potential
Site1543 – 15442Cleavage; by Protease 3C Potential
Site1565 – 15662Cleavage; by Protease 3C Potential
Site1748 – 17492Cleavage; by Protease 3C Potential

Amino acid modifications

Modified residue15461O-(5'-phospho-RNA)-tyrosine
Lipidation21N-myristoyl glycine; by host Ref.7 Ref.8 Ref.44

Experimental info

Mutagenesis21G → A: 100% loss of myristoylation. Impaired viral assembly. Ref.8
Mutagenesis31A → D: 50% loss of myristoylation. Severe reduction in specific infectivity. Ref.7
Mutagenesis31A → G, L or V: No effect on myristoylation and virus growth. Ref.7
Mutagenesis31A → H: No effect on myristoylation. Severe reduction in specific infectivity. Ref.7
Sequence conflict242 – 26423RFCPV…FVFPH → SSARWITSLEMARCWGMPLC SA in CAA24446. Ref.2
Sequence conflict2871I → L in CAA24446. Ref.2
Sequence conflict3091A → V in CAA24446. Ref.2
Sequence conflict420 – 4223DDP → AAS in CAA24446. Ref.2
Sequence conflict4641F → S in CAA24446. Ref.2
Sequence conflict5151T → S in CAA24446. Ref.2
Sequence conflict855 – 8562AV → QL in CAA24446. Ref.2
Sequence conflict9721A → V in CAA24446. Ref.2
Sequence conflict9851A → E in CAA24446. Ref.2
Sequence conflict1140 – 11412NA → QR in CAA24446. Ref.2
Sequence conflict16191V → A in CAA24446. Ref.2
Sequence conflict1626 – 16272AL → VF in CAA24446. Ref.2
Sequence conflict16351L → F in CAA24446. Ref.2
Sequence conflict16821G → R in CAA24446. Ref.2
Sequence conflict1722 – 17309VIGMHVGGN → SSGCMLVD in CAA24446. Ref.2
Sequence conflict17431Y → L in CAA24446. Ref.2
Sequence conflict17521Q → P in CAA24446. Ref.2
Sequence conflict1759 – 17602EV → DA in CAA24446. Ref.2
Sequence conflict18401T → I in CAA24446. Ref.2

Secondary structure

................................................................................................................................................................................................................................................................................................................. 2209
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
P03300 [UniParc].

Last modified January 23, 2007. Version 3.
Checksum: DF1754F87F2E97D6

FASTA2,209246,540
        10         20         30         40         50         60 
MGAQVSSQKV GAHENSNRAY GGSTINYTTI NYYRDSASNA ASKQDFSQDP SKFTEPIKDV 

        70         80         90        100        110        120 
LIKTAPMLNS PNIEACGYSD RVLQLTLGNS TITTQEAANS VVAYGRWPEY LRDSEANPVD 

       130        140        150        160        170        180 
QPTEPDVAAC RFYTLDTVSW TKESRGWWWK LPDALRDMGL FGQNMYYHYL GRSGYTVHVQ 

       190        200        210        220        230        240 
CNASKFHQGA LGVFAVPEMC LAGDSNTTTM HTSYQNANPG EKGGTFTGTF TPDNNQTSPA 

       250        260        270        280        290        300 
RRFCPVDYLL GNGTLLGNAF VFPHQIINLR TNNCATLVLP YVNSLSIDSM VKHNNWGIAI 

       310        320        330        340        350        360 
LPLAPLNFAS ESSPEIPITL TIAPMCCEFN GLRNITLPRL QGLPVMNTPG SNQYLTADNF 

       370        380        390        400        410        420 
QSPCALPEFD VTPPIDIPGE VKNMMELAEI DTMIPFDLSA TKKNTMEMYR VRLSDKPHTD 

       430        440        450        460        470        480 
DPILCLSLSP ASDPRLSHTM LGEILNYYTH WAGSLKFTFL FCGFMMATGK LLVSYAPPGA 

       490        500        510        520        530        540 
DPPKKRKEAM LGTHVIWDIG LQSSCTMVVP WISNTTYRQT IDDSFTEGGY ISVFYQTRIV 

       550        560        570        580        590        600 
VPLSTPREMD ILGFVSACND FSVRLLRDTT HIEQKALAQG LGQMLESMID NTVRETVGAA 

       610        620        630        640        650        660 
TSRDALPNTE ASGPTHSKEI PALTAVETGA TNPLVPSDTV QTRHVVQHRS RSESSIESFF 

       670        680        690        700        710        720 
ARGACVTIMT VDNPASTTNK DKLFAVWKIT YKDTVQLRRK LEFFTYSRFD MELTFVVTAN 

       730        740        750        760        770        780 
FTETNNGHAL NQVYQIMYVP PGAPVPEKWD DYTWQTSSNP SIFYTYGTAP ARISVPYVGI 

       790        800        810        820        830        840 
SNAYSHFYDG FSKVPLKDQS AALGDSLYGA ASLNDFGILA VRVVNDHNPT KVTSKIRVYL 

       850        860        870        880        890        900 
KPKHIRVWCP RPPRAVAYYG PGVDYKDGTL TPLSTKDLTT YGFGHQNKAV YTAGYKICNY 

       910        920        930        940        950        960 
HLATQDDLQN AVNVMWSRDL LVTESRAQGT DSIARCNCNA GVYYCESRRK YYPVSFVGPT 

       970        980        990       1000       1010       1020 
FQYMEANNYY PARYQSHMLI GHGFASPGDC GGILRCHHGV IGIITAGGEG LVAFSDIRDL 

      1030       1040       1050       1060       1070       1080 
YAYEEEAMEQ GITNYIESLG AAFGSGFTQQ ISDKITELTN MVTSTITEKL LKNLIKIISS 

      1090       1100       1110       1120       1130       1140 
LVIITRNYED TTTVLATLAL LGCDASPWQW LRKKACDVLE IPYVIKQGDS WLKKFTEACN 

      1150       1160       1170       1180       1190       1200 
AAKGLEWVSN KISKFIDWLK EKIIPQARDK LEFVTKLRQL EMLENQISTI HQSCPSQEHQ 

      1210       1220       1230       1240       1250       1260 
EILFNNVRWL SIQSKRFAPL YAVEAKRIQK LEHTINNYIQ FKSKHRIEPV CLLVHGSPGT 

      1270       1280       1290       1300       1310       1320 
GKSVATNLIA RAIAERENTS TYSLPPDPSH FDGYKQQGVV IMDDLNQNPD GADMKLFCQM 

      1330       1340       1350       1360       1370       1380 
VSTVEFIPPM ASLEEKGILF TSNYVLASTN SSRISPPTVA HSDALARRFA FDMDIQVMNE 

      1390       1400       1410       1420       1430       1440 
YSRDGKLNMA MATEMCKNCH QPANFKRCCP LVCGKAIQLM DKSSRVRYSI DQITTMIINE 

      1450       1460       1470       1480       1490       1500 
RNRRSNIGNC MEALFQGPLQ YKDLKIDIKT SPPPECINDL LQAVDSQEVR DYCEKKGWIV 

      1510       1520       1530       1540       1550       1560 
NITSQVQTER NINRAMTILQ AVTTFAAVAG VVYVMYKLFA GHQGAYTGLP NKKPNVPTIR 

      1570       1580       1590       1600       1610       1620 
TAKVQGPGFD YAVAMAKRNI VTATTSKGEF TMLGVHDNVA ILPTHASPGE SIVIDGKEVE 

      1630       1640       1650       1660       1670       1680 
ILDAKALEDQ AGTNLEITII TLKRNEKFRD IRPHIPTQIT ETNDGVLIVN TSKYPNMYVP 

      1690       1700       1710       1720       1730       1740 
VGAVTEQGYL NLGGRQTART LMYNFPTRAG QCGGVITCTG KVIGMHVGGN GSHGFAAALK 

      1750       1760       1770       1780       1790       1800 
RSYFTQSQGE IQWMRPSKEV GYPIINAPSK TKLEPSAFHY VFEGVKEPAV LTKNDPRLKT 

      1810       1820       1830       1840       1850       1860 
DFEEAIFSKY VGNKITEVDE YMKEAVDHYA GQLMSLDINT EQMCLEDAMY GTDGLEALDL 

      1870       1880       1890       1900       1910       1920 
STSAGYPYVA MGKKKRDILN KQTRDTKEMQ KLLDTYGINL PLVTYVKDEL RSKTKVEQGK 

      1930       1940       1950       1960       1970       1980 
SRLIEASSLN DSVAMRMAFG NLYAAFHKNP GVITGSAVGC DPDLFWSKIP VLMEEKLFAF 

      1990       2000       2010       2020       2030       2040 
DYTGYDASLS PAWFEALKMV LEKIGFGDRV DYIDYLNHSH HLYKNKTYCV KGGMPSGCSG 

      2050       2060       2070       2080       2090       2100 
TSIFNSMINN LIIRTLLLKT YKGIDLDHLK MIAYGDDVIA SYPHEVDASL LAQSGKDYGL 

      2110       2120       2130       2140       2150       2160 
TMTPADKSAT FETVTWENVT FLKRFFRADE KYPFLIHPVM PMKEIHESIR WTKDPRNTQD 

      2170       2180       2190       2200 
HVRSLCLLAW HNGEEEYNKF LAKIRSVPIG RALLLPEYST LYRRWLDSF 

« Hide

References

[1]"Primary structure, gene organization and polypeptide expression of poliovirus RNA."
Kitamura N., Semler B.L., Rothberg P.G., Larsen G.R., Adler C.J., Dorner A.J., Emini E.A., Hanecak R., Lee J.J., van der Werf S., Anderson C.W., Wimmer E.
Nature 291:547-553(1981) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC RNA].
[2]"Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome."
Racaniello V.R., Baltimore D.
Proc. Natl. Acad. Sci. U.S.A. 78:4887-4891(1981) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC RNA].
[3]"Identification of the initiation site of poliovirus polyprotein synthesis."
Dorner A.J., Dorner L.F., Larsen G.R., Wimmer E., Anderson C.W.
J. Virol. 42:1017-1028(1982) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 2-69.
[4]"The genome-linked protein of picornaviruses. VII. Genetic mapping of poliovirus VPg by protein and RNA sequence studies."
Kitamura N., Adler C.J., Rothberg P.G., Martinko J., Nathenson S.G., Wimmer E.
Cell 21:295-302(1980) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC RNA] OF 1539-1574, FUNCTION (VIRAL PROTEIN GENOME-LINKED).
[5]"Protein is linked to the 5' end of poliovirus RNA by a phosphodiester linkage to tyrosine."
Ambros V., Baltimore D.
J. Biol. Chem. 253:5263-5266(1978) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (VIRAL PROTEIN GENOME-LINKED).
[6]"An attempt to unify the structure of polymerases."
Delarue M., Poch O., Tordo N., Moras D., Argos P.
Protein Eng. 3:461-467(1990) [PubMed] [Europe PMC] [Abstract]
Cited for: ACTIVE SITE (RNA-DIRECTED RNA POLYMERASE).
[7]"Myristoylation is important at multiple stages in poliovirus assembly."
Moscufo N., Simons J., Chow M.
J. Virol. 65:2372-2380(1991) [PubMed] [Europe PMC] [Abstract]
Cited for: MYRISTOYLATION AT GLY-2, MUTAGENESIS OF ALA-3.
[8]"A Gly1 to Ala substitution in poliovirus capsid protein VP0 blocks its myristoylation and prevents viral assembly."
Marc D., Girard M., van der Werf S.
J. Gen. Virol. 72:1151-1157(1991) [PubMed] [Europe PMC] [Abstract]
Cited for: MYRISTOYLATION AT GLY-2, MUTAGENESIS OF GLY-2.
[9]"Poliovirus protein 2C has ATPase and GTPase activities."
Rodriguez P.L., Carrasco L.
J. Biol. Chem. 268:8105-8110(1993) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (PROTEIN 2C).
[10]"Interaction of poliovirus polypeptide 3CDpro with the 5' and 3' termini of the poliovirus genome. Identification of viral and cellular cofactors needed for efficient binding."
Harris K.S., Xiang W., Alexander L., Lane W.S., Paul A.V., Wimmer E.
J. Biol. Chem. 269:27004-27014(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION OF PROTEIN 3AB WITH PROTEIN 3CD.
[11]"Poliovirus 2A proteinase cleaves directly the eIF-4G subunit of eIF-4F complex."
Ventoso I., MacMillan S.E., Hershey J.W., Carrasco L.
FEBS Lett. 435:79-83(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (PROTEASE 2A).
[12]"Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus."
Paul A.V., Peters J., Mugavero J., Yin J., van Boom J.H., Wimmer E.
J. Virol. 77:891-904(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (PROTEIN 3B), URIDYLYLATION AT TYR-1546.
[13]"Towards an understanding of the poliovirus replication complex: the solution structure of the soluble domain of the poliovirus 3A protein."
Strauss D.M., Glustrom L.W., Wuttke D.S.
J. Mol. Biol. 330:225-234(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: HOMODIMERIZATION (PROTEIN 3A).
[14]"Poliovirus protein 3A binds and inactivates LIS1, causing block of membrane protein trafficking and deregulation of cell division."
Kondratova A.A., Neznanov N., Kondratov R.V., Gudkov A.V.
Cell Cycle 4:1403-1410(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBUNIT (PROTEIN 3A), CAUTION.
[15]"Inhibition of cellular protein secretion by picornaviral 3A proteins."
Choe S.S., Dodd D.A., Kirkegaard K.
Virology 337:18-29(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (PROTEIN 3A).
[16]"Intramolecular and intermolecular uridylylation by poliovirus RNA-dependent RNA polymerase."
Richards O.C., Spagnolo J.F., Lyle J.M., Vleck S.E., Kuchta R.D., Kirkegaard K.
J. Virol. 80:7405-7415(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (VIRAL PROTEIN GENOME-LINKED), URIDYLYLATION AT TYR-1546.
[17]"Effects of picornavirus 3A Proteins on Protein Transport and GBF1-dependent COP-I recruitment."
Wessels E., Duijsings D., Lanke K.H., van Dooren S.H., Jackson C.L., Melchers W.J., van Kuppeveld F.J.
J. Virol. 80:11852-11860(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION OF PROTEIN 3A WITH HOST GBF1.
[18]"Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication."
Tang W.-F., Yang S.-Y., Wu B.-W., Jheng J.-R., Chen Y.-L., Shih C.-H., Lin K.-H., Lai H.-C., Tang P., Horng J.-T.
J. Biol. Chem. 282:5888-5898(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION OF PROTEIN 2C WITH HUMAN RTN3.
[19]"Hijacking components of the cellular secretory pathway for replication of poliovirus RNA."
Belov G.A., Altan-Bonnet N., Kovtunovych G., Jackson C.L., Lippincott-Schwartz J., Ehrenfeld E.
J. Virol. 81:558-567(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (PROTEIN 3A).
[20]"Imaging poliovirus entry in live cells."
Brandenburg B., Lee L.Y., Lakadamyali M., Rust M.J., Zhuang X., Hogle J.M.
PLoS Biol. 5:E183-E183(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (CAPSID PROTEIN VP1), FUNCTION (CAPSID PROTEIN VP2), FUNCTION (CAPSID PROTEIN VP3).
[21]"Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2."
Coyne C.B., Kim K.S., Bergelson J.M.
EMBO J. 26:4016-4028(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (CAPSID PROTEIN VP1), FUNCTION (CAPSID PROTEIN VP2), FUNCTION (CAPSID PROTEIN VP3).
Strain: Sabin 2.
[22]"Characterization of protein-protein interactions critical for poliovirus replication: analysis of 3AB and VPg binding to the RNA-dependent RNA polymerase."
Strauss D.M., Wuttke D.S.
J. Virol. 81:6369-6378(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION OF PROTEIN 3B WITH PROTEIN 3D.
[23]"Membrane topography of the hydrophobic anchor sequence of poliovirus 3A and 3AB proteins and the functional effect of 3A/3AB membrane association upon RNA replication."
Fujita K., Krishnakumar S.S., Franco D., Paul A.V., London E., Wimmer E.
Biochemistry 46:5185-5199(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: TOPOLOGY (PROTEIN 3A AND PROTEIN 3AB).
[24]"Cleavage of poly(A)-binding protein by poliovirus 3C proteinase inhibits viral internal ribosome entry site-mediated translation."
Bonderoff J.M., Larey J.L., Lloyd R.E.
J. Virol. 82:9389-9399(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (PROTEASE 3C).
[25]"New (fluorescent) light on poliovirus entry."
Bergelson J.M.
Trends Microbiol. 16:44-47(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (CAPSID PROTEIN VP1), FUNCTION (CAPSID PROTEIN VP2), FUNCTION (CAPSID PROTEIN VP3).
[26]"Functional analysis of picornavirus 2B proteins: effects on calcium homeostasis and intracellular protein trafficking."
de Jong A.S., de Mattia F., Van Dommelen M.M., Lanke K., Melchers W.J., Willems P.H., van Kuppeveld F.J.
J. Virol. 82:3782-3790(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW (PROTEIN 2B).
[27]"Picornavirus genome replication. Identification of the surface of the poliovirus (PV) 3C dimer that interacts with PV 3Dpol during VPg uridylylation and construction of a structural model for the PV 3C2-3Dpol complex."
Shen M., Reitman Z.J., Zhao Y., Moustafa I., Wang Q., Arnold J.J., Pathak H.B., Cameron C.E.
J. Biol. Chem. 283:875-888(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (PROTEASE 3C).
[28]"RNA nuclear export is blocked by poliovirus 2A protease and is concomitant with nucleoporin cleavage."
Castello A., Izquierdo J.M., Welnowska E., Carrasco L.
J. Cell Sci. 122:3799-3809(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (PROTEIN 2A).
[29]"Poliovirus 2C protein forms homo-oligomeric structures required for ATPase activity."
Adams P., Kandiah E., Effantin G., Steven A.C., Ehrenfeld E.
J. Biol. Chem. 284:22012-22021(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (PROTEIN 2C).
[30]"Picornavirus RNA-dependent RNA polymerase."
Kok C.C., McMinn P.C.
Int. J. Biochem. Cell Biol. 41:498-502(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW (RNA-DIRECTED RNA POLYMERASE).
[31]"Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis."
Liu Y., Wang C., Mueller S., Paul A.V., Wimmer E., Jiang P.
PLoS Pathog. 6:E1001066-E1001066(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION OF CAPSID PROTEIN VP3 WITH PROTEIN 2C, FUNCTION OF CAPSID PROTEIN VP3.
[32]"NMR solution structure of poliovirus uridylyated peptide linked to the genome (VPgpU)."
Schein C.H., Oezguen N., van der Heden van Noort G.J., Filippov D.V., Paul A., Kumar E., Braun W.
Peptides 31:1441-1448(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (VIRAL PROTEIN GENOME-LINKED).
[33]"The twenty-nine amino acid C-terminal cytoplasmic domain of poliovirus 3AB is critical for nucleic acid chaperone activity."
Gangaramani D.R., Eden E.L., Shah M., Destefano J.J.
RNA Biol. 7:820-829(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (PROTEIN 3AB).
[34]"Membrane integration of poliovirus 2B viroporin."
Martinez-Gil L., Bano-Polo M., Redondo N., Sanchez-Martinez S., Nieva J.L., Carrasco L., Mingarro I.
J. Virol. 85:11315-11324(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: TOPOLOGY (PROTEIN 2B).
[35]"Analysis of poliovirus protein 3A interactions with viral and cellular proteins in infected cells."
Teterina N.L., Pinto Y., Weaver J.D., Jensen K.S., Ehrenfeld E.
J. Virol. 85:4284-4296(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBUNIT OF PROTEIN 3A AND PROTEIN 3AB.
[36]"Alanine scanning of poliovirus 2CATPase reveals new genetic evidence that capsid protein/2CATPase interactions are essential for morphogenesis."
Wang C., Jiang P., Sand C., Paul A.V., Wimmer E.
J. Virol. 86:9964-9975(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (PROTEIN 2C).
[37]"Investigation of a predicted N-terminal amphipathic alpha-helix using atomistic molecular dynamics simulation of a complete prototype poliovirus virion."
Roberts J.A., Kuiper M.J., Thorley B.R., Smooker P.M., Hung A.
J. Mol. Graph. Model. 38:165-173(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: CHARACTERIZATION OF N-TERMINUS (CAPSID PROTEIN VP1).
[38]"RNA transfer from poliovirus 135S particles across membranes is mediated by long umbilical connectors."
Strauss M., Levy H.C., Bostina M., Filman D.J., Hogle J.M.
J. Virol. 87:3903-3914(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (CAPSID PROTEIN VP1 AND CAPSID PROTEIN VP4).
[39]"Surface for catalysis by poliovirus RNA-dependent RNA polymerase."
Wang J., Lyle J.M., Bullitt E.
J. Mol. Biol. 425:2529-2540(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: MULTIMERIZATION (RNA-DIRECTED RNA POLYMERASE).
[40]"Three-dimensional structure of poliovirus at 2.9-A resolution."
Hogle J.M., Chow M., Filman D.J.
Science 229:1358-1365(1985) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.9 ANGSTROMS) OF 1-881.
[41]"Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus."
Filman D.J., Syed R., Chow M., Macadam A.J., Minor P.D., Hogle J.M.
EMBO J. 8:1567-1579(1989) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.88 ANGSTROMS) OF 2-880.
[42]"Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 A resolution."
Basavappa R., Syed R., Flore O., Icenogle J.P., Filman D.J., Hogle J.M.
Protein Sci. 3:1651-1669(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 2-880.
[43]"Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design."
Grant R.A., Hiremath C.N., Filman D.J., Syed R., Andries K., Hogle J.M.
Curr. Biol. 4:784-797(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.9 ANGSTROMS) OF 1-881.
[44]"Interaction of the poliovirus receptor with poliovirus."
He Y., Bowman V.D., Mueller S., Bator C.M., Bella J., Peng X., Baker T.S., Wimmer E., Kuhn R.J., Rossmann M.G.
Proc. Natl. Acad. Sci. U.S.A. 97:79-84(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY ELECTRON MICROSCOPY (2.0 ANGSTROMS) OF 1-881, MYRISTOYLATION AT GLY-2.
[45]"Complexes of poliovirus serotypes with their common cellular receptor, CD155."
He Y., Mueller S., Chipman P.R., Bator C.M., Peng X., Bowman V.D., Mukhopadhyay S., Wimmer E., Kuhn R.J., Rossmann M.G.
J. Virol. 77:4827-4835(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY ELECTRON MICROSCOPY (15.0 ANGSTROMS) OF 2-881.
[46]"The structure of the poliovirus 135S cell entry intermediate at 10-angstrom resolution reveals the location of an externalized polypeptide that binds to membranes."
Bubeck D., Filman D.J., Cheng N., Steven A.C., Hogle J.M., Belnap D.M.
J. Virol. 79:7745-7755(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY ELECTRON MICROSCOPY (11.0 ANGSTROMS) OF 97-880.
[47]"Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses."
Zhang P., Mueller S., Morais M.C., Bator C.M., Bowman V.D., Hafenstein S., Wimmer E., Rossmann M.G.
Proc. Natl. Acad. Sci. U.S.A. 105:18284-18289(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY ELECTRON MICROSCOPY (8.0 ANGSTROMS) OF 2-881.
[48]"Catching a virus in the act of RNA release: a novel poliovirus uncoating intermediate characterized by cryo-electron microscopy."
Levy H.C., Bostina M., Filman D.J., Hogle J.M.
J. Virol. 84:4426-4441(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY ELECTRON MICROSCOPY OF 97-341 AND 647-881.
+Additional computationally mapped references.

Web resources

Virus Particle ExploreR db

Icosahedral capsid structure associated with cellular receptor

Virus Particle ExploreR db

Icosahedral capsid structure associated with cellular receptor

Virus Particle ExploreR db

Icosahedral capsid structure in complex with R80633, an inhibitor of viral replication

Virus Particle ExploreR db

Icosahedral capsid structure in complex with R77975, an inhibitor of viral replication

Virus Particle ExploreR db

Icosahedral empty capsid structure

Virus Particle ExploreR db

Icosahedral capsid structure complexed with R78206

Virus Particle ExploreR db

Icosahedral capsid structure

Virus Particle ExploreR db

Icosahedral capsid structure of 135S cell entry intermediate

Virus Particle ExploreR db

Icosahedral capsid structure

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
V01149 Genomic RNA. Translation: CAA24461.1.
V01148 Genomic RNA. Translation: CAA24446.1.
PIRGNNY2P. A03898.
GNNY1P. A93258.
RefSeqNP_041277.1. NC_002058.3.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1AL2X-ray2.901580-880[»]
270-340[»]
3342-578[»]
42-69[»]
1AR6X-ray2.901580-880[»]
270-340[»]
3342-578[»]
42-69[»]
1AR7X-ray2.901580-880[»]
270-340[»]
3342-578[»]
42-69[»]
1AR8X-ray2.901580-880[»]
270-340[»]
3342-578[»]
42-69[»]
1AR9X-ray2.901580-880[»]
270-340[»]
3342-578[»]
42-69[»]
1ASJX-ray2.901580-880[»]
270-340[»]
3342-578[»]
42-69[»]
1DGIelectron microscopy22.00274-341[»]
3342-576[»]
1FPTX-ray3.00P665-682[»]
1HXSX-ray2.201580-880[»]
270-340[»]
3342-577[»]
42-68[»]
1L1NX-ray2.10A/B1566-1747[»]
1NG7NMR-A/B1457-1514[»]
1NN8electron microscopy15.001580-881[»]
270-341[»]
3342-576[»]
42-69[»]
1PO1X-ray2.901580-880[»]
270-340[»]
3342-578[»]
42-69[»]
1PO2X-ray2.901580-880[»]
270-340[»]
3342-578[»]
42-69[»]
1POVX-ray2.8002-340[»]
1580-880[»]
3342-578[»]
1RA6X-ray2.00A1749-2208[»]
1RA7X-ray2.35A1749-2208[»]
1RAJX-ray2.50A1817-2208[»]
1RDRX-ray2.40A1749-2208[»]
1TQLX-ray2.30A1750-2208[»]
1VBDX-ray2.901580-881[»]
270-341[»]
3342-579[»]
42-69[»]
1XYRelectron microscopy11.001650-880[»]
297-332[»]
3391-571[»]
5342-353[»]
6355-389[»]
782-95[»]
8621-631[»]
2BBLNMR-A1544-1565[»]
2BBPNMR-A1544-1565[»]
2IJDX-ray3.401/21566-2208[»]
2IJFX-ray3.00A1749-2208[»]
2ILYX-ray2.60A1749-2208[»]
2ILZX-ray2.50A1749-2208[»]
2IM0X-ray2.25A1749-2208[»]
2IM1X-ray2.50A1749-2208[»]
2IM2X-ray2.35A1749-2208[»]
2IM3X-ray2.60A1749-2208[»]
2PLVX-ray2.881580-880[»]
270-340[»]
3342-578[»]
42-68[»]
3EPCelectron microscopy8.001599-881[»]
274-341[»]
3342-576[»]
42-69[»]
3IYBelectron microscopy-1647-881[»]
497-341[»]
3IYCelectron microscopy-1647-881[»]
497-341[»]
3J3Oelectron microscopy11.101580-881[»]
270-341[»]
3342-579[»]
42-69[»]
3J3Pelectron microscopy9.101580-881[»]
270-341[»]
3342-579[»]
3J48electron microscopy5.501580-881[»]
270-341[»]
3342-579[»]
3J69electron microscopy4.801580-881[»]
270-341[»]
3342-579[»]
42-69[»]
3J6Aelectron microscopy6.501580-881[»]
270-341[»]
3342-579[»]
42-69[»]
3OL7X-ray2.70A/E/I/M1749-2209[»]
4DCDX-ray1.69A1566-1748[»]
4K4SX-ray2.40A/E1749-2209[»]
4K4TX-ray2.75A/E1749-2209[»]
4K4UX-ray2.85A/E1749-2209[»]
4K4VX-ray2.63A/E1749-2209[»]
4K4WX-ray2.69A/E1749-2209[»]
4NLOX-ray2.20A1749-2209[»]
4NLPX-ray2.20A1749-2209[»]
4NLQX-ray2.30A1749-2209[»]
4NLRX-ray2.00A1749-2209[»]
4NLSX-ray2.00A1749-2209[»]
4NLTX-ray2.50A1749-2209[»]
4NLUX-ray2.10A1749-2209[»]
4NLVX-ray2.30A1749-2209[»]
4NLWX-ray2.10A1749-2209[»]
4NLXX-ray2.60A1749-2209[»]
4NLYX-ray2.30A1749-2209[»]
ProteinModelPortalP03300.
SMRP03300. Positions 2-579, 599-1030, 1457-1515, 1566-2209.
ModBaseSearch...
MobiDBSearch...

Chemistry

BindingDBP03300.
ChEMBLCHEMBL5127.

Protein family/group databases

MEROPSC03.001.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

GeneID919920.

Family and domain databases

Gene3D4.10.80.10. 2 hits.
InterProIPR003593. AAA+_ATPase.
IPR000605. Helicase_SF3_ssDNA/RNA_vir.
IPR014759. Helicase_SF3_ssRNA_vir.
IPR027417. P-loop_NTPase.
IPR014838. P3A.
IPR000081. Peptidase_C3.
IPR000199. Peptidase_C3A/C3B_picornavir.
IPR003138. Pico_P1A.
IPR002527. Pico_P2B.
IPR001676. Picornavirus_capsid.
IPR001205. RNA-dir_pol_C.
IPR007094. RNA-dir_pol_PSvirus.
IPR009003. Trypsin-like_Pept_dom.
[Graphical view]
PfamPF08727. P3A. 1 hit.
PF00548. Peptidase_C3. 1 hit.
PF02226. Pico_P1A. 1 hit.
PF00947. Pico_P2A. 1 hit.
PF01552. Pico_P2B. 1 hit.
PF00680. RdRP_1. 1 hit.
PF00073. Rhv. 3 hits.
PF00910. RNA_helicase. 1 hit.
[Graphical view]
ProDomPD001306. Peptidase_C3. 1 hit.
PD649346. Pico_P2B. 1 hit.
[Graphical view] [Entries sharing at least one domain]
SMARTSM00382. AAA. 1 hit.
[Graphical view]
SUPFAMSSF50494. SSF50494. 2 hits.
SSF52540. SSF52540. 1 hit.
SSF89043. SSF89043. 1 hit.
PROSITEPS50507. RDRP_SSRNA_POS. 1 hit.
PS51218. SF3_HELICASE_2. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

EvolutionaryTraceP03300.
PMAP-CutDBP03299.

Entry information

Entry namePOLG_POL1M
AccessionPrimary (citable) accession number: P03300
Secondary accession number(s): P03299 expand/collapse secondary AC list , Q84879, Q84880, Q89679
Entry history
Integrated into UniProtKB/Swiss-Prot: July 21, 1986
Last sequence update: January 23, 2007
Last modified: April 16, 2014
This is version 165 of the entry and version 3 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programViral Protein Annotation Program

Relevant documents

SIMILARITY comments

Index of protein domains and families

Peptidase families

Classification of peptidase families and list of entries

PDB cross-references

Index of Protein Data Bank (PDB) cross-references