Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P02786 (TFR1_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified March 19, 2014. Version 178. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (8) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Web links·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Transferrin receptor protein 1

Short name=TR
Short name=TfR
Short name=TfR1
Short name=Trfr
Alternative name(s):
T9
p90
CD_antigen=CD71

Cleaved into the following chain:

  1. Transferrin receptor protein 1, serum form
    Short name=sTfR
Gene names
Name:TFRC
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length760 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes. Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system By similarity. A second ligand, the heditary hemochromatosis protein HFE, competes for binding with transferrin for an overlapping C-terminal binding site. Ref.13

Subunit structure

Homodimer; disulfide-linked. Binds one transferrin or HFE molecule per subunit. Binds the HLA class II histocompatibility antigen, DR1. Interacts with SH3BP3. Interacts with Machupo arenavirus GPC. Ref.25 Ref.29

Subcellular location

Cell membrane; Single-pass type II membrane protein. Melanosome. Note: Identified by mass spectrometry in melanosome fractions from stage I to stage IV. Ref.28

Transferrin receptor protein 1, serum form: Secreted Ref.28.

Induction

Regulated by cellular iron levels through binding of the iron regulatory proteins, IRP1 and IRP2, to iron-responsive elements in the 3'-UTR. Up-regulated upon mitogenic stimulation.

Post-translational modification

N- and O-glycosylated, phosphorylated and palmitoylated. The serum form is only glycosylated.

Proteolytically cleaved on Arg-100 to produce the soluble serum form (sTfR).

Palmitoylated on both Cys-62 and Cys-67. Cys-62 seems to be the major site of palmitoylation. Ref.14

Miscellaneous

Serum transferrin receptor (sTfR) is used as a means of detecting erythropoietin (EPO) misuse by athletes and as a diagnostic test for anemia resulting from a number of conditions including rheumatoid arthritis, pregnancy, irritable bowel syndrome and in HIV patients.

Canine and feline parvoviruses bind human and feline transferrin receptors and use these receptors to enter and infect cells.

Sequence similarities

Belongs to the peptidase M28 family. M28B subfamily.

Contains 1 PA (protease associated) domain.

Sequence caution

The sequence BAD92491.1 differs from that shown. Reason: Erroneous initiation.

Ontologies

Keywords
   Biological processEndocytosis
Host-virus interaction
   Cellular componentCell membrane
Membrane
Secreted
   Coding sequence diversityPolymorphism
   DomainSignal-anchor
Transmembrane
Transmembrane helix
   Molecular functionReceptor
   PTMDisulfide bond
Glycoprotein
Lipoprotein
Palmitate
Phosphoprotein
   Technical term3D-structure
Complete proteome
Direct protein sequencing
Reference proteome
Gene Ontology (GO)
   Biological_processcellular iron ion homeostasis

Non-traceable author statement Ref.10. Source: UniProtKB

osteoclast differentiation

Inferred from electronic annotation. Source: Ensembl

positive regulation of bone resorption

Inferred from electronic annotation. Source: Ensembl

proteolysis

Inferred from electronic annotation. Source: InterPro

transferrin transport

Traceable author statement. Source: Reactome

transmembrane transport

Traceable author statement. Source: Reactome

viral process

Inferred from electronic annotation. Source: UniProtKB-KW

   Cellular_componentblood microparticle

Inferred from direct assay PubMed 22516433. Source: UniProt

coated pit

Inferred from direct assay PubMed 12857860. Source: UniProtKB

cytoplasmic membrane-bounded vesicle

Inferred from direct assay PubMed 15229288. Source: MGI

endosome

Inferred from direct assay PubMed 14612438. Source: MGI

external side of plasma membrane

Inferred from electronic annotation. Source: Ensembl

extracellular vesicular exosome

Inferred from direct assay PubMed 20458337. Source: UniProt

integral component of plasma membrane

Traceable author statement Ref.1. Source: ProtInc

melanosome

Inferred from electronic annotation. Source: UniProtKB-SubCell

perinuclear region of cytoplasm

Inferred from electronic annotation. Source: Ensembl

   Molecular_functiondouble-stranded RNA binding

Inferred from direct assay PubMed 21266579. Source: MGI

peptidase activity

Inferred from electronic annotation. Source: InterPro

transferrin receptor activity

Non-traceable author statement Ref.10. Source: UniProtKB

Complete GO annotation...

Binary interactions

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 760760Transferrin receptor protein 1
PRO_0000174132
Chain101 – 760660Transferrin receptor protein 1, serum form
PRO_0000292265

Regions

Topological domain1 – 6767Cytoplasmic Potential
Transmembrane68 – 8821Helical; Signal-anchor for type II membrane protein; Potential
Topological domain89 – 760672Extracellular Potential
Domain223 – 31391PA
Region1 – 6767Mediates interaction with SH3BP4
Region569 – 760192Ligand-binding
Motif20 – 234Endocytosis signal
Motif58 – 614Stop-transfer sequence
Motif646 – 6483Cell attachment site; required for binding to transferrin

Sites

Site100 – 1012Cleavage; by trypsin; to produce soluble form

Amino acid modifications

Modified residue201Phosphotyrosine Ref.34
Modified residue211Phosphothreonine Ref.30
Modified residue241Phosphoserine
Lipidation621S-palmitoyl cysteine Ref.14
Lipidation671S-palmitoyl cysteine
Glycosylation1041O-linked (GalNAc...) Ref.18 Ref.19
CAR_000072
Glycosylation2511N-linked (GlcNAc...) Ref.26 Ref.31 Ref.32
Glycosylation3171N-linked (GlcNAc...)
Glycosylation7271N-linked (GlcNAc...) Ref.31
CAR_000173
Disulfide bond89Interchain
Disulfide bond98Interchain

Natural variations

Natural variant1421G → S Rare polymorphism. Ref.1 Ref.2 Ref.38
Corresponds to variant rs3817672 [ dbSNP | Ensembl ].
VAR_012737
Natural variant2121L → V.
Corresponds to variant rs41301381 [ dbSNP | Ensembl ].
VAR_051806
Natural variant4201G → S.
Corresponds to variant rs41295879 [ dbSNP | Ensembl ].
VAR_051807
Natural variant6771R → H.
Corresponds to variant rs41298067 [ dbSNP | Ensembl ].
VAR_051808

Experimental info

Mutagenesis9 – 124FSNL → YTRF: Only 80% as active as wild-type receptor. Ref.15
Mutagenesis20 – 3415YTRFS…DGDNS → PPGYSLARQVDYTRF: No influence on endocytic uptake of the receptor. Ref.15 Ref.16 Ref.17 Ref.20
Mutagenesis20 – 234YTRF → PPGY: Only 16% as active as wild-type receptor. Ref.15 Ref.16 Ref.17 Ref.20
Mutagenesis201Y → C: Only 35% as active as wild-type receptor. Ref.15 Ref.16 Ref.17 Ref.20
Mutagenesis201Y → G: Only 20% as active as wild-type receptor. Ref.15 Ref.16 Ref.17 Ref.20
Mutagenesis211T → F: Only 88% as active as wild-type receptor. Ref.15 Ref.20
Mutagenesis211T → TA: Only 14% as active as wild-type receptor. Ref.15 Ref.20
Mutagenesis211T → TAA: Only 19% as active as wild-type receptor. Ref.15 Ref.20
Mutagenesis231F → Y: Only 48% as active as wild-type receptor. Ref.15 Ref.20
Mutagenesis31 – 344GDNS → YTRF: 2-fold increase of the endocytic uptake of the receptor. Ref.15
Mutagenesis47 – 504NADN → YTRF: 1.27-fold increase of the endocytic uptake of the receptor. Ref.15
Mutagenesis6191L → A: 20-fold reduced affinity for transferrin receptor. No binding to HFE. Ref.15
Mutagenesis6221V → A: No significant effect on binding to transferrin nor HFE. Ref.15
Mutagenesis6231R → A: No significant effect on binding to transferrin nor HFE. Ref.15
Mutagenesis6291R → A: >5-fold reduced affinity for transferrin. >10-fold reduced affinity for HFE. Ref.15
Mutagenesis6401Q → A: No effect on binding to transferrin. >10-fold reduced affinity for HFE. Ref.15
Mutagenesis6411W → A: No significant effect on binding to transferrin nor HFE. Ref.15
Mutagenesis6431Y → A: 20-fold reduced affinity for transferrin. No binding to HFE. Ref.15
Mutagenesis6441S → A: No significant effect on binding to transferrin nor HFE. Ref.15
Mutagenesis6461R → A or H: No binding to transferrin. Ref.15 Ref.23
Mutagenesis6461R → K: 5% binding to transferrin. Ref.15 Ref.23
Mutagenesis6471G → A: Large effect on affinity for transferrin. 4-fold reduced affinity for HFE. Ref.15 Ref.23
Mutagenesis6481D → A: 16% binding to transferrin. Ref.15 Ref.23
Mutagenesis6481D → E: 57% binding to transferrin. Ref.15 Ref.23
Mutagenesis6501F → Q: >5-fold reduced affinity for transferrin. >10-fold reduced affinity for HFE. Ref.15
Sequence conflict1041T → K AA sequence Ref.10
Sequence conflict1091R → V AA sequence Ref.10
Sequence conflict1231Y → T AA sequence Ref.10

Secondary structure

...................................................................................................................... 760
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
P02786 [UniParc].

Last modified May 30, 2006. Version 2.
Checksum: C886F14000D90154

FASTA76084,871
        10         20         30         40         50         60 
MMDQARSAFS NLFGGEPLSY TRFSLARQVD GDNSHVEMKL AVDEEENADN NTKANVTKPK 

        70         80         90        100        110        120 
RCSGSICYGT IAVIVFFLIG FMIGYLGYCK GVEPKTECER LAGTESPVRE EPGEDFPAAR 

       130        140        150        160        170        180 
RLYWDDLKRK LSEKLDSTDF TGTIKLLNEN SYVPREAGSQ KDENLALYVE NQFREFKLSK 

       190        200        210        220        230        240 
VWRDQHFVKI QVKDSAQNSV IIVDKNGRLV YLVENPGGYV AYSKAATVTG KLVHANFGTK 

       250        260        270        280        290        300 
KDFEDLYTPV NGSIVIVRAG KITFAEKVAN AESLNAIGVL IYMDQTKFPI VNAELSFFGH 

       310        320        330        340        350        360 
AHLGTGDPYT PGFPSFNHTQ FPPSRSSGLP NIPVQTISRA AAEKLFGNME GDCPSDWKTD 

       370        380        390        400        410        420 
STCRMVTSES KNVKLTVSNV LKEIKILNIF GVIKGFVEPD HYVVVGAQRD AWGPGAAKSG 

       430        440        450        460        470        480 
VGTALLLKLA QMFSDMVLKD GFQPSRSIIF ASWSAGDFGS VGATEWLEGY LSSLHLKAFT 

       490        500        510        520        530        540 
YINLDKAVLG TSNFKVSASP LLYTLIEKTM QNVKHPVTGQ FLYQDSNWAS KVEKLTLDNA 

       550        560        570        580        590        600 
AFPFLAYSGI PAVSFCFCED TDYPYLGTTM DTYKELIERI PELNKVARAA AEVAGQFVIK 

       610        620        630        640        650        660 
LTHDVELNLD YERYNSQLLS FVRDLNQYRA DIKEMGLSLQ WLYSARGDFF RATSRLTTDF 

       670        680        690        700        710        720 
GNAEKTDRFV MKKLNDRVMR VEYHFLSPYV SPKESPFRHV FWGSGSHTLP ALLENLKLRK 

       730        740        750        760 
QNNGAFNETL FRNQLALATW TIQGAANALS GDVWDIDNEF 

« Hide

References

« Hide 'large scale' references
[1]"Primary structure of human transferrin receptor deduced from the mRNA sequence."
Schneider C., Owen M.J., Banville D., Williams J.G.
Nature 311:675-678(1984) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], VARIANT SER-142.
[2]"The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence."
McClelland A., Kuhn L.C., Ruddle F.H.
Cell 39:267-274(1984) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], VARIANT SER-142.
[3]"Exon/intron structure of the human transferrin receptor gene."
Evans P., Kemp J.
Gene 199:123-131(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
Tissue: Placenta.
[4]"Molecular and evolutionary studies of the transferrin receptor."
Wheeler D.L.
Thesis (1999), University of Iowa, United States
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
Tissue: Placenta.
[5]Totoki Y., Toyoda A., Takeda T., Sakaki Y., Tanaka A., Yokoyama S., Ohara O., Nagase T., Kikuno R.F.
Submitted (MAR-2005) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Tissue: Brain.
[6]NIEHS SNPs program
Submitted (APR-2006) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
[7]Mural R.J., Istrail S., Sutton G.G., Florea L., Halpern A.L., Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R., Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V., Hannenhalli S., Turner R. expand/collapse author list , Yooseph S., Lu F., Nusskern D.R., Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H., Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G., Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W., Venter J.C.
Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[8]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Tissue: Eye.
[9]"Serum transferrin receptor is a truncated form of tissue receptor."
Shih Y.J., Baynes R.D., Hudson B.G., Flowers C.H., Skikne B.S., Cook J.D.
J. Biol. Chem. 265:19077-19081(1990) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 101-119 (STFR).
[10]"Characterization of transferrin receptor released by K562 erythroleukemia cells."
Baynes R.D., Shih Y.J., Hudson B.G., Cook J.D.
Proc. Soc. Exp. Biol. Med. 197:416-423(1991) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 101-123 (STFR), CHARACTERIZATION.
Tissue: Erythroleukemia.
[11]"Identification of a novel form of the alpha 3 integrin subunit: covalent association with transferrin receptor."
Coppolino M., Migliorini M., Argraves W.S., Dedhar S.
Biochem. J. 306:129-134(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 288-302; 694-708 AND 721-730.
Tissue: Prostatic carcinoma.
[12]"Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size."
Chicz R.M., Urban R.G., Lane W.S., Gorga J.C., Stern L.J., Vignali D.A.A., Strominger J.L.
Nature 358:764-768(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 680-696.
[13]"Endocytosis of the transferrin receptor requires the cytoplasmic domain but not its phosphorylation site."
Rothenberger S., Iacopetta B.J., Kuhn L.C.
Cell 49:423-431(1987) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[14]"Identification of the intermolecular disulfide bonds of the human transferrin receptor and its lipid-attachment site."
Jing S., Trowbridge I.S.
EMBO J. 6:327-331(1987) [PubMed] [Europe PMC] [Abstract]
Cited for: PALMITOYLATION AT CYS-62.
[15]"Intermolecular disulfide bonds are not required for the expression of the dimeric state and functional activity of the transferrin receptor."
Alvarez E., Girones N., Davis R.J.
EMBO J. 8:2231-2240(1989) [PubMed] [Europe PMC] [Abstract]
Cited for: MUTAGENESIS OF CYSTEINE RESIDUES INVOLVED IN INTERMOLECULAR BONDS.
[16]"A point mutation in the cytoplasmic domain of the transferrin receptor inhibits endocytosis."
Alvarez E., Girones N., Davis R.J.
Biochem. J. 267:31-35(1990) [PubMed] [Europe PMC] [Abstract]
Cited for: MUTAGENESIS OF TYR-20.
[17]"Role of the human transferrin receptor cytoplasmic domain in endocytosis: localization of a specific signal sequence for internalization."
Jing S., Spencer T., Miller K., Hopkins C., Trowbridge I.S.
J. Cell Biol. 110:283-294(1990) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERNALIZATION SEQUENCE, MUTAGENESIS OF TYR-20.
[18]"Presence of O-linked oligosaccharide on a threonine residue in the human transferrin receptor."
Do S.-I., Cummings R.D.
Glycobiology 2:345-353(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: GLYCOSYLATION AT THR-104.
[19]"Identification of the O-linked glycosylation site of the human transferrin receptor."
Hayes G.R., Enns C.A., Lucas J.J.
Glycobiology 2:355-359(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: GLYCOSYLATION AT THR-104.
[20]"YTRF is the conserved internalization signal of the transferrin receptor, and a second YTRF signal at position 31-34 enhances endocytosis."
Collawn J.F., Lai A., Domingo D.L., Fitch M., Hatton S., Trowbridge I.S.
J. Biol. Chem. 268:21686-21692(1993) [PubMed] [Europe PMC] [Abstract]
Cited for: MUTAGENESIS OF 20-TYR--PHE-23; TYR-20; THR-21 AND PHE-23.
[21]"The critical glycosylation site of human transferrin receptor contains a high-mannose oligosaccharide."
Hayes G.R., Williams A., Costello C.E., Enns C.A., Lucas J.J.
Glycobiology 5:227-232(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE OF CARBOHYDRATES ON ASN-727.
[22]"Functional analysis of human/chicken transferrin receptor chimeras indicates that the carboxy-terminal region is important for ligand binding."
Buchegger F., Trowbridge I.S., Liu L.F., White S., Collawn J.F.
Eur. J. Biochem. 235:9-17(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION OF LIGAND-BINDING DOMAIN.
[23]"A conserved RGD (Arg-Gly-Asp) motif in the transferrin receptor is required for binding to transferrin."
Dubljevic V., Sali A., Goding J.W.
Biochem. J. 341:11-14(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: MUTAGENESIS OF ARG-646; GLY-647 AND ASP-648.
[24]"Mutational analysis of the transferrin receptor reveals overlapping HFE and transferrin binding sites."
West A.P. Jr., Giannetti A.M., Herr A.B., Bennett M.J., Nangiana J.S., Pierce J.R., Weiner L.P., Snow P.M., Bjorkman P.J.
J. Mol. Biol. 313:385-397(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: MUTAGENESIS.
[25]"TTP specifically regulates the internalization of the transferrin receptor."
Tosoni D., Puri C., Confalonieri S., Salcini A.E., De Camilli P., Tacchetti C., Di Fiore P.P.
Cell 123:875-888(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SH3BP4.
[26]"Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry."
Liu T., Qian W.-J., Gritsenko M.A., Camp D.G. II, Monroe M.E., Moore R.J., Smith R.D.
J. Proteome Res. 4:2070-2080(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: GLYCOSYLATION [LARGE SCALE ANALYSIS] AT ASN-251.
Tissue: Plasma.
[27]"Immunoaffinity profiling of tyrosine phosphorylation in cancer cells."
Rush J., Moritz A., Lee K.A., Guo A., Goss V.L., Spek E.J., Zhang H., Zha X.-M., Polakiewicz R.D., Comb M.J.
Nat. Biotechnol. 23:94-101(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[28]"Proteomic and bioinformatic characterization of the biogenesis and function of melanosomes."
Chi A., Valencia J.C., Hu Z.-Z., Watabe H., Yamaguchi H., Mangini N.J., Huang H., Canfield V.A., Cheng K.C., Yang F., Abe R., Yamagishi S., Shabanowitz J., Hearing V.J., Wu C., Appella E., Hunt D.F.
J. Proteome Res. 5:3135-3144(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION [LARGE SCALE ANALYSIS].
Tissue: Melanoma.
[29]"Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses."
Radoshitzky S.R., Abraham J., Spiropoulou C.F., Kuhn J.H., Nguyen D., Li W., Nagel J., Schmidt P.J., Nunberg J.H., Andrews N.C., Farzan M., Choe H.
Nature 446:92-96(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH MACHUPO ARENAVIRUS PROTEIN GPC.
[30]"A quantitative atlas of mitotic phosphorylation."
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E., Elledge S.J., Gygi S.P.
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-21, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[31]"Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry."
Chen R., Jiang X., Sun D., Han G., Wang F., Ye M., Wang L., Zou H.
J. Proteome Res. 8:651-661(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: GLYCOSYLATION [LARGE SCALE ANALYSIS] AT ASN-251 AND ASN-727.
Tissue: Liver.
[32]"Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins."
Wollscheid B., Bausch-Fluck D., Henderson C., O'Brien R., Bibel M., Schiess R., Aebersold R., Watts J.D.
Nat. Biotechnol. 27:378-386(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: GLYCOSYLATION [LARGE SCALE ANALYSIS] AT ASN-251.
Tissue: Leukemic T-cell.
[33]"Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions."
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K., Rodionov V., Han D.K.
Sci. Signal. 2:RA46-RA46(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Leukemic T-cell.
[34]"Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis."
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L., Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.
Sci. Signal. 3:RA3-RA3(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-20, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[35]"Initial characterization of the human central proteome."
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17-17(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[36]"Structural model of phospholipid-reconstituted human transferrin receptor derived by electron microscopy."
Fuchs H., Luecken W., Tauber R., Engel A.
Structure 6:1235-1243(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: ELECTRON MICROSCOPY.
[37]"Crystal structure of the ectodomain of human transferrin receptor."
Lawrence C.M., Ray S., Babyonyshev M., Galluser R., Borhani D.W., Harrison S.C.
Science 286:779-782(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (3.2 ANGSTROMS) OF 121-760.
[38]"Identification of 96 single nucleotide polymorphisms in eight genes involved in iron metabolism: efficiency of bioinformatic extraction compared with a systematic sequencing approach."
Douabin-Gicquel V., Soriano N., Ferran H., Wojcik F., Palierne E., Tamim S., Jovelin T., McKie A.T., Le Gall J.-Y., David V., Mosser J.
Hum. Genet. 109:393-401(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT SER-142.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
X01060 mRNA. Translation: CAA25527.1.
M11507 mRNA. Translation: AAA61153.1.
AF187320 Genomic DNA. Translation: AAF04564.1.
AB209254 mRNA. Translation: BAD92491.1. Different initiation.
DQ496099 Genomic DNA. Translation: ABF47088.1.
CH471191 Genomic DNA. Translation: EAW53670.1.
CH471191 Genomic DNA. Translation: EAW53673.1.
BC001188 mRNA. Translation: AAH01188.1.
PIRJXHU. A93343.
RefSeqNP_001121620.1. NM_001128148.1.
NP_003225.2. NM_003234.2.
UniGeneHs.529618.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1CX8X-ray3.20A/B/C/D/E/F/G/H122-760[»]
1DE4X-ray2.80C/F/I121-760[»]
1SUVelectron microscopy7.50A/B122-760[»]
2NSUelectron microscopy27.00A/B122-760[»]
3KASX-ray2.40A121-760[»]
3S9LX-ray3.22A/B120-760[»]
3S9MX-ray3.32A/B120-760[»]
3S9NX-ray3.25A/B120-760[»]
ProteinModelPortalP02786.
SMRP02786. Positions 122-756.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid112895. 38 interactions.
DIPDIP-2736N.
IntActP02786. 23 interactions.
MINTMINT-4999032.
STRING9606.ENSP00000353224.

Protein family/group databases

MEROPSM28.972.

PTM databases

PhosphoSiteP02786.
UniCarbKBP02786.

Polymorphism databases

DMDM108935939.

Proteomic databases

PaxDbP02786.
PeptideAtlasP02786.
PRIDEP02786.

Protocols and materials databases

DNASU7037.
StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000360110; ENSP00000353224; ENSG00000072274.
ENST00000392396; ENSP00000376197; ENSG00000072274.
GeneID7037.
KEGGhsa:7037.
UCSCuc003fvz.4. human.

Organism-specific databases

CTD7037.
GeneCardsGC03M195754.
HGNCHGNC:11763. TFRC.
HPACAB000153.
HPA028598.
MIM190010. gene.
neXtProtNX_P02786.
PharmGKBPA36478.
GenAtlasSearch...

Phylogenomic databases

eggNOGCOG2234.
HOVERGENHBG023177.
InParanoidP02786.
KOK06503.
OMADNSHVEM.
PhylomeDBP02786.
TreeFamTF312981.

Enzyme and pathway databases

ReactomeREACT_11123. Membrane Trafficking.
REACT_15518. Transmembrane transport of small molecules.

Gene expression databases

ArrayExpressP02786.
BgeeP02786.
CleanExHS_TFRC.
GenevestigatorP02786.

Family and domain databases

Gene3D1.20.930.40. 1 hit.
InterProIPR007484. Peptidase_M28.
IPR003137. Protease-assoc_domain.
IPR007365. TFR-like_dimer_dom.
[Graphical view]
PfamPF02225. PA. 1 hit.
PF04389. Peptidase_M28. 1 hit.
PF04253. TFR_dimer. 1 hit.
[Graphical view]
SUPFAMSSF47672. SSF47672. 1 hit.
ProtoNetSearch...

Other

ChiTaRSTFRC. human.
EvolutionaryTraceP02786.
GeneWikiTFRC.
GenomeRNAi7037.
NextBio27493.
PROP02786.
SOURCESearch...

Entry information

Entry nameTFR1_HUMAN
AccessionPrimary (citable) accession number: P02786
Secondary accession number(s): D3DXB0 expand/collapse secondary AC list , Q1HE24, Q59G55, Q9UCN0, Q9UCU5, Q9UDF9, Q9UK21
Entry history
Integrated into UniProtKB/Swiss-Prot: July 21, 1986
Last sequence update: May 30, 2006
Last modified: March 19, 2014
This is version 178 of the entry and version 2 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

Peptidase families

Classification of peptidase families and list of entries

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 3

Human chromosome 3: entries, gene names and cross-references to MIM

Human cell differentiation molecules

CD nomenclature of surface proteins of human leucocytes and list of entries