Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

P01019 (ANGT_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 173. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (6) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Web links·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Angiotensinogen
Alternative name(s):
Serpin A8

Cleaved into the following 8 chains:

  1. Angiotensin-1
    Alternative name(s):
    Angiotensin 1-10
    Angiotensin I
    Short name=Ang I
  2. Angiotensin-2
    Alternative name(s):
    Angiotensin 1-8
    Angiotensin II
    Short name=Ang II
  3. Angiotensin-3
    Alternative name(s):
    Angiotensin 2-8
    Angiotensin III
    Short name=Ang III
    Des-Asp[1]-angiotensin II
  4. Angiotensin-4
    Alternative name(s):
    Angiotensin 3-8
    Angiotensin IV
    Short name=Ang IV
  5. Angiotensin 1-9
  6. Angiotensin 1-7
  7. Angiotensin 1-5
  8. Angiotensin 1-4
Gene names
Name:AGT
Synonyms:SERPINA8
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length485 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Essential component of the renin-angiotensin system (RAS), a potent regulator of blood pressure, body fluid and electrolyte homeostasis. Ref.11 Ref.12 Ref.17

Angiotensin-2: acts directly on vascular smooth muscle as a potent vasoconstrictor, affects cardiac contractility and heart rate through its action on the sympathetic nervous system, and alters renal sodium and water absorption through its ability to stimulate the zona glomerulosa cells of the adrenal cortex to synthesize and secrete aldosterone. Ref.11 Ref.12 Ref.17

Angiotensin-3: stimulates aldosterone release. Ref.11 Ref.12 Ref.17

Angiotensin 1-7: is a ligand for the G-protein coupled receptor MAS1 By similarity. Has vasodilator and antidiuretic effects By similarity. Has an antithrombotic effect that involves MAS1-mediated release of nitric oxide from platelets By similarity. Ref.11 Ref.12 Ref.17

Subunit structure

During pregnancy, exists as a disulfide-linked 2:2 heterotetramer with the proform of PRG2 and as a complex (probably a 2:2:2 heterohexamer) with pro-PRG2 and C3dg. Ref.8 Ref.23

Subcellular location

Secreted.

Tissue specificity

Expressed by the liver and secreted in plasma.

Post-translational modification

Beta-decarboxylation of Asp-34 in angiotensin-2, by mononuclear leukocytes produces alanine. The resulting peptide form, angiotensin-A, has the same affinity for the AT1 receptor as angiotensin-2, but a higher affinity for the AT2 receptor.

In response to low blood pressure, the enzyme renin/REN cleaves angiotensinogen to produce angiotensin-1. Angiotensin-1 is a substrate of ACE (angiotensin converting enzyme) that removes a dipeptide to yield the physiologically active peptide angiotensin-2. Angiotensin-1 and angiotensin-2 can be further processed to generate angiotensin-3, angiotensin-4. Angiotensin 1-9 is cleaved from angiotensin-1 by ACE2 and can be further processed by ACE to produce angiotensin 1-7, angiotensin 1-5 and angiotensin 1-4. Angiotensin 1-7 has also been proposed to be cleaved from angiotensin-2 by ACE2 or from angiotensin-1 by MME (neprilysin). Ref.13 Ref.14

The disulfide bond is labile. Angiotensinogen is present in the circulation in a near 40:60 ratio with the oxidized disulfide-bonded form, which preferentially interacts with receptor-bound renin.

Involvement in disease

Essential hypertension (EHT) [MIM:145500]: A condition in which blood pressure is consistently higher than normal with no identifiable cause.
Note: Disease susceptibility is associated with variations affecting the gene represented in this entry.

Renal tubular dysgenesis (RTD) [MIM:267430]: Autosomal recessive severe disorder of renal tubular development characterized by persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype).
Note: The disease is caused by mutations affecting the gene represented in this entry. Ref.29

Sequence similarities

Belongs to the serpin family.

Caution

It is uncertain whether Met-1 or Met-10 is the initiator.

Ontologies

Keywords
   Cellular componentSecreted
   Coding sequence diversityPolymorphism
   DiseaseDisease mutation
   DomainSignal
   Molecular functionVasoactive
Vasoconstrictor
   PTMDisulfide bond
Glycoprotein
   Technical term3D-structure
Complete proteome
Direct protein sequencing
Reference proteome
Gene Ontology (GO)
   Biological_processERK1 and ERK2 cascade

Inferred from electronic annotation. Source: Ensembl

G-protein coupled receptor signaling pathway

Inferred from direct assay PubMed 10406457. Source: BHF-UCL

G-protein coupled receptor signaling pathway coupled to cGMP nucleotide second messenger

Traceable author statement PubMed 17159080. Source: BHF-UCL

activation of NF-kappaB-inducing kinase activity

Inferred from electronic annotation. Source: Ensembl

activation of phospholipase C activity

Inferred from electronic annotation. Source: Ensembl

aging

Inferred from electronic annotation. Source: Ensembl

angiotensin maturation

Traceable author statement. Source: Reactome

angiotensin mediated vasoconstriction involved in regulation of systemic arterial blood pressure

Inferred from electronic annotation. Source: Ensembl

angiotensin-mediated drinking behavior

Inferred from electronic annotation. Source: Ensembl

artery smooth muscle contraction

Inferred from electronic annotation. Source: Ensembl

astrocyte activation

Inferred from electronic annotation. Source: Ensembl

blood vessel development

Inferred from electronic annotation. Source: Ensembl

blood vessel remodeling

Traceable author statement PubMed 10406457. Source: BHF-UCL

branching involved in ureteric bud morphogenesis

Inferred from electronic annotation. Source: Ensembl

catenin import into nucleus

Inferred from electronic annotation. Source: Ensembl

cell growth involved in cardiac muscle cell development

Inferred from electronic annotation. Source: Ensembl

cell-cell signaling

Traceable author statement Ref.25. Source: ProtInc

cell-matrix adhesion

Inferred from electronic annotation. Source: Ensembl

cellular lipid metabolic process

Traceable author statement. Source: Reactome

cellular protein metabolic process

Traceable author statement. Source: Reactome

cellular response to mechanical stimulus

Inferred from electronic annotation. Source: Ensembl

cellular sodium ion homeostasis

Inferred from electronic annotation. Source: Ensembl

cytokine secretion

Inferred from electronic annotation. Source: Ensembl

establishment of blood-nerve barrier

Inferred from electronic annotation. Source: Ensembl

excretion

Inferred from electronic annotation. Source: Ensembl

extracellular matrix organization

Inferred from electronic annotation. Source: Ensembl

fibroblast proliferation

Inferred from electronic annotation. Source: Ensembl

kidney development

Inferred from mutant phenotype Ref.29. Source: BHF-UCL

low-density lipoprotein particle remodeling

Non-traceable author statement PubMed 17069818. Source: BHF-UCL

negative regulation of angiogenesis

Inferred from electronic annotation. Source: Ensembl

negative regulation of cell growth

Inferred from electronic annotation. Source: Ensembl

negative regulation of cell proliferation

Inferred from electronic annotation. Source: Ensembl

negative regulation of endopeptidase activity

Inferred from Biological aspect of Ancestor. Source: RefGenome

negative regulation of neuron apoptotic process

Inferred from electronic annotation. Source: Ensembl

negative regulation of neurotrophin TRK receptor signaling pathway

Inferred from direct assay PubMed 10406457. Source: BHF-UCL

negative regulation of tissue remodeling

Inferred from electronic annotation. Source: Ensembl

nitric oxide mediated signal transduction

Traceable author statement PubMed 17159080. Source: BHF-UCL

ovarian follicle rupture

Inferred from electronic annotation. Source: Ensembl

peristalsis

Inferred from electronic annotation. Source: Ensembl

phospholipase C-activating G-protein coupled receptor signaling pathway

Non-traceable author statement PubMed 17159080. Source: BHF-UCL

positive regulation of MAPK cascade

Inferred from electronic annotation. Source: Ensembl

positive regulation of NAD(P)H oxidase activity

Traceable author statement PubMed 17159080. Source: BHF-UCL

positive regulation of NF-kappaB transcription factor activity

Traceable author statement PubMed 17906677. Source: BHF-UCL

positive regulation of activation of JAK2 kinase activity

Inferred from mutant phenotype PubMed 15153556. Source: UniProtKB

positive regulation of branching involved in ureteric bud morphogenesis

Inferred from direct assay PubMed 18607644. Source: UniProtKB

positive regulation of cardiac muscle hypertrophy

Inferred from sequence or structural similarity. Source: BHF-UCL

positive regulation of cellular protein metabolic process

Inferred from direct assay PubMed 18971559. Source: BHF-UCL

positive regulation of cholesterol esterification

Inferred from direct assay PubMed 18971559. Source: BHF-UCL

positive regulation of cytokine production

Traceable author statement PubMed 17906677. Source: BHF-UCL

positive regulation of endothelial cell migration

Inferred from direct assay PubMed 15652490. Source: BHF-UCL

positive regulation of epidermal growth factor receptor signaling pathway

Inferred from direct assay PubMed 15652490. Source: BHF-UCL

positive regulation of extracellular matrix constituent secretion

Inferred from electronic annotation. Source: Ensembl

positive regulation of extrinsic apoptotic signaling pathway

Inferred from direct assay PubMed 10406457. Source: BHF-UCL

positive regulation of fatty acid biosynthetic process

Inferred from electronic annotation. Source: Ensembl

positive regulation of fibroblast proliferation

Inferred from sequence or structural similarity. Source: BHF-UCL

positive regulation of inflammatory response

Traceable author statement PubMed 17159080PubMed 17906677. Source: BHF-UCL

positive regulation of macrophage derived foam cell differentiation

Inferred by curator PubMed 18971559. Source: BHF-UCL

positive regulation of multicellular organism growth

Inferred from electronic annotation. Source: Ensembl

positive regulation of organ growth

Inferred from electronic annotation. Source: Ensembl

positive regulation of peptidyl-tyrosine phosphorylation

Inferred from direct assay PubMed 15652490. Source: BHF-UCL

positive regulation of phosphatidylinositol 3-kinase signaling

Inferred from direct assay PubMed 15652490. Source: BHF-UCL

positive regulation of protein tyrosine kinase activity

Inferred from mutant phenotype PubMed 15153556. Source: UniProtKB

positive regulation of reactive oxygen species metabolic process

Traceable author statement PubMed 17906677. Source: BHF-UCL

positive regulation of renal sodium excretion

Inferred from electronic annotation. Source: Ensembl

positive regulation of superoxide anion generation

Inferred from electronic annotation. Source: Ensembl

positive regulation of transcription, DNA-templated

Inferred from direct assay PubMed 15153556PubMed 18607644. Source: UniProtKB

regulation of blood vessel size by renin-angiotensin

Traceable author statement PubMed 10406457. Source: BHF-UCL

regulation of blood volume by renin-angiotensin

Non-traceable author statement PubMed 17159080. Source: BHF-UCL

regulation of calcium ion transport

Inferred from electronic annotation. Source: Ensembl

regulation of cell growth

Non-traceable author statement PubMed 17159080. Source: BHF-UCL

regulation of cell proliferation

Non-traceable author statement PubMed 17159080. Source: BHF-UCL

regulation of long-term neuronal synaptic plasticity

Inferred from electronic annotation. Source: Ensembl

regulation of norepinephrine secretion

Inferred from electronic annotation. Source: Ensembl

regulation of proteolysis

Inferred from Biological aspect of Ancestor. Source: RefGenome

regulation of renal output by angiotensin

Non-traceable author statement PubMed 17159080. Source: BHF-UCL

regulation of renal sodium excretion

Non-traceable author statement PubMed 17159080. Source: BHF-UCL

regulation of vasoconstriction

Non-traceable author statement PubMed 17159080. Source: BHF-UCL

renal response to blood flow involved in circulatory renin-angiotensin regulation of systemic arterial blood pressure

Inferred from electronic annotation. Source: Ensembl

renal system process

Inferred from direct assay PubMed 21183621. Source: UniProt

renin-angiotensin regulation of aldosterone production

Non-traceable author statement PubMed 17159080. Source: BHF-UCL

response to cold

Inferred from electronic annotation. Source: Ensembl

response to muscle activity involved in regulation of muscle adaptation

Inferred from sequence or structural similarity. Source: BHF-UCL

response to salt stress

Inferred from electronic annotation. Source: Ensembl

small molecule metabolic process

Traceable author statement. Source: Reactome

smooth muscle cell differentiation

Inferred from electronic annotation. Source: Ensembl

smooth muscle cell proliferation

Inferred from electronic annotation. Source: Ensembl

stress-activated MAPK cascade

Inferred from electronic annotation. Source: Ensembl

uterine smooth muscle contraction

Inferred from electronic annotation. Source: Ensembl

vasodilation

Inferred from electronic annotation. Source: Ensembl

   Cellular_componentblood microparticle

Inferred from direct assay PubMed 22516433. Source: UniProt

extracellular region

Non-traceable author statement PubMed 14718574. Source: UniProtKB

extracellular space

Inferred from direct assay PubMed 18971559. Source: BHF-UCL

   Molecular_functiongrowth factor activity

Traceable author statement PubMed 10406457. Source: BHF-UCL

hormone activity

Inferred from sequence or structural similarity. Source: BHF-UCL

serine-type endopeptidase inhibitor activity

Inferred from Biological aspect of Ancestor. Source: RefGenome

type 1 angiotensin receptor binding

Inferred from physical interaction PubMed 1378723. Source: BHF-UCL

type 2 angiotensin receptor binding

Inferred from physical interaction PubMed 10406457. Source: BHF-UCL

Complete GO annotation...

Binary interactions

With

Entry

#Exp.

IntAct

Notes

AGTR1P305562EBI-6622938,EBI-6623016
Agtr1P2509510EBI-751728,EBI-764979From a different organism.
AGTR2P500522EBI-2927577,EBI-1748067
AnceQ107142EBI-751728,EBI-115736From a different organism.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Signal peptide1 – 3333 Ref.7 Ref.8 Ref.9
Chain34 – 485452Angiotensinogen
PRO_0000032456
Peptide34 – 4310Angiotensin-1 Ref.9
PRO_0000032457
Peptide34 – 429Angiotensin 1-9
PRO_0000420659
Peptide34 – 418Angiotensin-2
PRO_0000032458
Peptide34 – 407Angiotensin 1-7
PRO_0000420660
Peptide34 – 385Angiotensin 1-5
PRO_0000420661
Peptide34 – 374Angiotensin 1-4
PRO_0000420662
Peptide35 – 417Angiotensin-3
PRO_0000032459
Peptide36 – 416Angiotensin-4
PRO_0000420663

Amino acid modifications

Modified residue341Beta-decarboxylated aspartate; in form angiotensin-A
Glycosylation471N-linked (GlcNAc...) Ref.10 Ref.16 Ref.19
Glycosylation1701N-linked (GlcNAc...) Ref.10
Glycosylation3041N-linked (GlcNAc...) Ref.10
Glycosylation3281N-linked (GlcNAc...) Ref.10
Disulfide bond51 ↔ 171 Ref.23

Natural variations

Natural variant431L → F Associated with susceptibility to pre-eclampsia; alters the reactions with renin and angiotensin-converting enzyme. Ref.27
Corresponds to variant rs41271499 [ dbSNP | Ensembl ].
VAR_022933
Natural variant981E → K.
Corresponds to variant rs11568032 [ dbSNP | Ensembl ].
VAR_029166
Natural variant1141G → C.
Corresponds to variant rs2229389 [ dbSNP | Ensembl ].
VAR_051939
Natural variant1371T → M.
Corresponds to variant rs34829218 [ dbSNP | Ensembl ].
VAR_035431
Natural variant2071T → M Associated with hypertension. Ref.24
Corresponds to variant rs4762 [ dbSNP | Ensembl ].
VAR_007093
Natural variant2421T → I Associated with susceptibility to hypertension. Ref.26
VAR_007094
Natural variant2441L → R Associated with susceptibility to hypertension. Ref.26
Corresponds to variant rs5041 [ dbSNP | Ensembl ].
VAR_007095
Natural variant2681M → I.
Corresponds to variant rs11568053 [ dbSNP | Ensembl ].
VAR_029167
Natural variant2681M → T Associated with essential hypertension and pre-eclampsia. Ref.24 Ref.25
Corresponds to variant rs699 [ dbSNP | Ensembl ].
VAR_007096
Natural variant2811Y → C Associated with susceptibility to hypertension; alters the structure, glycosylation and secretion of angiotensinogen. Ref.24 Ref.26 Ref.28
Corresponds to variant rs56073403 [ dbSNP | Ensembl ].
VAR_007097
Natural variant3351P → S. Ref.4
Corresponds to variant rs17856352 [ dbSNP | Ensembl ].
VAR_035432
Natural variant3751R → Q in RTD. Ref.29
VAR_035433
Natural variant3921L → M.
Corresponds to variant rs1805090 [ dbSNP | Ensembl ].
VAR_014573

Experimental info

Sequence conflict511C → S AA sequence Ref.7
Sequence conflict581N → D AA sequence Ref.7
Sequence conflict3331Q → E in AAA51679. Ref.2

Secondary structure

..................................................................... 485
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
P01019 [UniParc].

Last modified July 21, 1986. Version 1.
Checksum: 5026C2DFB2DD236E

FASTA48553,154
        10         20         30         40         50         60 
MRKRAPQSEM APAGVSLRAT ILCLLAWAGL AAGDRVYIHP FHLVIHNEST CEQLAKANAG 

        70         80         90        100        110        120 
KPKDPTFIPA PIQAKTSPVD EKALQDQLVL VAAKLDTEDK LRAAMVGMLA NFLGFRIYGM 

       130        140        150        160        170        180 
HSELWGVVHG ATVLSPTAVF GTLASLYLGA LDHTADRLQA ILGVPWKDKN CTSRLDAHKV 

       190        200        210        220        230        240 
LSALQAVQGL LVAQGRADSQ AQLLLSTVVG VFTAPGLHLK QPFVQGLALY TPVVLPRSLD 

       250        260        270        280        290        300 
FTELDVAAEK IDRFMQAVTG WKTGCSLMGA SVDSTLAFNT YVHFQGKMKG FSLLAEPQEF 

       310        320        330        340        350        360 
WVDNSTSVSV PMLSGMGTFQ HWSDIQDNFS VTQVPFTESA CLLLIQPHYA SDLDKVEGLT 

       370        380        390        400        410        420 
FQQNSLNWMK KLSPRTIHLT MPQLVLQGSY DLQDLLAQAE LPAILHTELN LQKLSNDRIR 

       430        440        450        460        470        480 
VGEVLNSIFF ELEADEREPT ESTQQLNKPE VLEVTLNRPF LFAVYDQSAT ALHFLGRVAN 


PLSTA 

« Hide

References

« Hide 'large scale' references
[1]"Primary structure of human preangiotensinogen deduced from the cloned cDNA sequence."
Kageyama R., Ohkubo H., Nakanishi S.
Biochemistry 23:3603-3609(1984) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA].
[2]"Structure of human angiotensinogen gene."
Gaillard I., Clauser E., Corvol P.
DNA 8:87-99(1989) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
[3]"Structure and expression of the human angiotensinogen gene. Identification of a unique and highly active promoter."
Fukamizu A., Takahashi S., Seo M.S., Tada M., Tanimoto K., Uehara S., Murakami K.
J. Biol. Chem. 265:7576-7582(1990) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
[4]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA], VARIANT SER-335.
Tissue: Brain.
[5]"Molecular cloning of human angiotensinogen cDNA and evidence for the presence of its mRNA in rat heart."
Kunapuli S.P., Kumar A.
Circ. Res. 60:786-790(1987) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 1-338.
[6]"Tissue specific hormonal regulation of the rat angiotensinogen gene expression."
Kunapuli S.P., Benedict C.R., Kumar A.
Arch. Biochem. Biophys. 254:642-646(1987) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 32-184.
[7]"The amino terminal amino acid sequence of human angiotensinogen."
Tewksbury D.A., Dart R.A., Travis J.
Biochem. Biophys. Res. Commun. 99:1311-1315(1981) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 34-58.
[8]"Identification of angiotensinogen and complement C3dg as novel proteins binding the proform of eosinophil major basic protein in human pregnancy serum and plasma."
Oxvig C., Haaning J., Kristensen L., Wagner J.M., Rubin I., Stigbrand T., Gleich G.J., Sottrup-Jensen L.
J. Biol. Chem. 270:13645-13651(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 34-45, SUBUNIT.
Tissue: Serum.
[9]"Enzymatic degradation and electrophoresis of human angiotensin I."
Arakawa K., Minohara A., Yamada J., Nakamura M.
Biochim. Biophys. Acta 168:106-112(1968) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEIN SEQUENCE OF 34-43.
[10]"Processing of rat and human angiotensinogen precursors by microsomal membranes."
Campbell D.J., Bouhnik J., Coezy E., Menard J., Corvol P.
Mol. Cell. Endocrinol. 43:31-40(1985) [PubMed] [Europe PMC] [Abstract]
Cited for: GLYCOSYLATION AT ASN-47; ASN-170; ASN-304 AND ASN-328.
[11]"Angiotensin III: (DES-Aspartic Acid-1)-Angiotensin II. Evidence and speculation for its role as an important agonist in the renin - angiotensin system."
Goodfriend T.L., Peach M.J.
Circ. Res. 36:38-48(1975) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION OF ANGIOTENSIN-3.
[12]"The renin-angiotensin-aldosterone system: a specific target for hypertension management."
Weir M.R., Dzau V.J.
Am. J. Hypertens. 12:205S-213S(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION OF ANGIOTENSIN-2.
[13]"A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9."
Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N., Donovan M., Woolf B., Robison K., Jeyaseelan R., Breitbart R.E., Acton S.
Circ. Res. 87:E1-E9(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: CLEAVAGE BY ACE AND ACE2.
[14]"Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase."
Vickers C., Hales P., Kaushik V., Dick L., Gavin J., Tang J., Godbout K., Parsons T., Baronas E., Hsieh F., Acton S., Patane M.A., Nichols A., Tummino P.
J. Biol. Chem. 277:14838-14843(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: CLEAVAGE OF ANGIOTENSIN-1 AND ANGIOTENSIN-2 BY ACE2.
[15]"Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism."
Rice G.I., Thomas D.A., Grant P.J., Turner A.J., Hooper N.M.
Biochem. J. 383:45-51(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: ANGIOTENSIN PEPTIDES METABOLISM.
[16]"Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry."
Liu T., Qian W.-J., Gritsenko M.A., Camp D.G. II, Monroe M.E., Moore R.J., Smith R.D.
J. Proteome Res. 4:2070-2080(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: GLYCOSYLATION [LARGE SCALE ANALYSIS] AT ASN-47.
Tissue: Plasma.
[17]"Mass-spectrometric identification of a novel angiotensin peptide in human plasma."
Jankowski V., Vanholder R., van der Giet M., Tolle M., Karadogan S., Gobom J., Furkert J., Oksche A., Krause E., Tran T.N., Tepel M., Schuchardt M., Schluter H., Wiedon A., Beyermann M., Bader M., Todiras M., Zidek W., Jankowski J.
Arterioscler. Thromb. Vasc. Biol. 27:297-302(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: DECARBOXYLATION AT ASP-34, FUNCTION, IDENTIFICATION BY MASS SPECTROMETRY.
[18]"Renin-angiotensin system revisited."
Fyhrquist F., Saijonmaa O.
J. Intern. Med. 264:224-236(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: REVIEW ON THE RENIN-ANGIOTENSIN SYSTEM.
[19]"Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry."
Chen R., Jiang X., Sun D., Han G., Wang F., Ye M., Wang L., Zou H.
J. Proteome Res. 8:651-661(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: GLYCOSYLATION [LARGE SCALE ANALYSIS] AT ASN-47.
Tissue: Liver.
[20]"Initial characterization of the human central proteome."
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17-17(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[21]"The octapeptide angiotensin II adopts a well-defined structure in a phospholipid environment."
Carpenter K.A., Wilkes B.C., Schiller P.W.
Eur. J. Biochem. 251:448-453(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY NMR OF ANGIOTENSIN-2.
[22]"Comparison of the solution structures of angiotensin I & II. Implication for structure-function relationship."
Spyroulias G.A., Nikolakopoulou P., Tzakos A., Gerothanassis I.P., Magafa V., Manessi-Zoupa E., Cordopatis P.
Eur. J. Biochem. 270:2163-2173(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: STRUCTURE BY NMR OF 34-43, STRUCTURE BY NMR OF 34-41.
[23]"A redox switch in angiotensinogen modulates angiotensin release."
Zhou A., Carrell R.W., Murphy M.P., Wei Z., Yan Y., Stanley P.L., Stein P.E., Broughton Pipkin F., Read R.J.
Nature 468:108-111(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (4.33 ANGSTROMS) OF 34-485 IN COMPLEX WITH RENIN, DISULFIDE BOND.
[24]"Molecular basis of human hypertension: role of angiotensinogen."
Jeunemaitre X., Soubrier F., Kotelevtsev Y.V., Lifton R.P., Williams C.S., Charru A., Hunt S.C., Hopkins P.N., Williams R.R., Lalouel J.-M., Corvol P.
Cell 71:169-180(1992) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANTS MET-207; THR-268 AND CYS-281.
[25]"A molecular variant of angiotensinogen associated with preeclampsia."
Ward K., Hata A., Jeunemaitre X., Helin C., Nelson L., Namikawa C., Farrington P.F., Ogasawara M., Suzumori K., Tomoda S., Berrebi S., Sasaki M., Corvol P., Lifton R.P., Lalouel J.-M.
Nat. Genet. 4:59-61(1993) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT THR-268.
[26]"Detection and characterization of new mutations in the human angiotensinogen gene (AGT)."
Hixson J.E., Powers P.K.
Hum. Genet. 96:110-112(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANTS ILE-242; ARG-244 AND CYS-281.
[27]"A mutation of angiotensinogen in a patient with preeclampsia leads to altered kinetics of the renin-angiotensin system."
Inoue I., Rohrwasser A., Helin C., Jeunemaitre X., Crain P., Bohlender J., Lifton R.P., Corvol P., Ward K., Lalouel J.-M.
J. Biol. Chem. 270:11430-11436(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT PHE-43.
[28]"The natural mutation Y248C of human angiotensinogen leads to abnormal glycosylation and altered immunological recognition of the protein."
Gimenez-Roqueplo A.P., Leconte I., Cohen P., Simon D., Guyene T.T., Celerier J., Pau B., Corvol P., Clauser E., Jeunemaitre X.
J. Biol. Chem. 271:9838-9844(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: CHARACTERIZATION OF VARIANT CYS-281.
[29]"Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis."
Gribouval O., Gonzales M., Neuhaus T., Aziza J., Bieth E., Laurent N., Bouton J.M., Feuillet F., Makni S., Ben Amar H., Laube G., Delezoide A.-L., Bouvier R., Dijoud F., Ollagnon-Roman E., Roume J., Joubert M., Antignac C., Gubler M.-C.
Nat. Genet. 37:964-968(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT RTD GLN-375.
+Additional computationally mapped references.

Web resources

GeneReviews
SHMPD

The Singapore human mutation and polymorphism database

Wikipedia

Angiotensin entry

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
K02215 mRNA. Translation: AAA51731.1.
M24689 expand/collapse EMBL AC list , M24686, M24687, M24688 Genomic DNA. Translation: AAA51679.1.
X15324 expand/collapse EMBL AC list , X15325, X15326, X15327 Genomic DNA. Translation: CAA33385.1.
BC011519 mRNA. Translation: AAH11519.1.
M69110 mRNA. Translation: AAA52282.1.
S78529 Genomic DNA. Translation: AAD14287.1.
S78530 Genomic DNA. Translation: AAD14288.1.
PIRANHU. A35203.
RefSeqNP_000020.1. NM_000029.3.
UniGeneHs.19383.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1N9UNMR-A34-43[»]
1N9VNMR-A34-41[»]
2JP8NMR-P34-40[»]
2WXWX-ray3.30A34-485[»]
2X0BX-ray4.33B/D/F/H34-485[»]
4AA1X-ray1.99P34-41[»]
4APHX-ray1.99P34-41[»]
4FYSX-ray2.01C36-41[»]
ProteinModelPortalP01019.
SMRP01019. Positions 34-482.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid106690. 11 interactions.
DIPDIP-309N.
IntActP01019. 8 interactions.
MINTMINT-1472115.
STRING9606.ENSP00000355627.

Chemistry

DrugBankDB01258. Aliskiren.
DB01076. Atorvastatin.
DB01340. Cilazapril.
DB01029. Irbesartan.
DB00722. Lisinopril.
DB01092. Ouabain.
DB00641. Simvastatin.

Protein family/group databases

MEROPSI04.953.

PTM databases

PhosphoSiteP01019.

Polymorphism databases

DMDM113880.

2D gel databases

SWISS-2DPAGEP01019.

Proteomic databases

PaxDbP01019.
PeptideAtlasP01019.
PRIDEP01019.

Protocols and materials databases

DNASU183.
StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000366667; ENSP00000355627; ENSG00000135744.
GeneID183.
KEGGhsa:183.
UCSCuc001hty.4. human.

Organism-specific databases

CTD183.
GeneCardsGC01M230838.
HGNCHGNC:333. AGT.
HPAHPA001557.
MIM106150. gene.
145500. phenotype.
267430. phenotype.
neXtProtNX_P01019.
Orphanet243761. Essential hypertension.
97369. Renal tubular dysgenesis of genetic origin.
PharmGKBPA42.
GenAtlasSearch...

Phylogenomic databases

eggNOGNOG314543.
HOVERGENHBG004233.
InParanoidP01019.
KOK09821.
OMARFMQAVT.
OrthoDBEOG7QK0BN.
PhylomeDBP01019.
TreeFamTF343201.

Enzyme and pathway databases

ReactomeREACT_111102. Signal Transduction.
REACT_111217. Metabolism.
REACT_17015. Metabolism of proteins.

Gene expression databases

ArrayExpressP01019.
BgeeP01019.
CleanExHS_AGT.
GenevestigatorP01019.

Family and domain databases

InterProIPR000227. Angiotensinogen.
IPR023795. Serpin_CS.
IPR023796. Serpin_dom.
IPR000215. Serpin_fam.
[Graphical view]
PANTHERPTHR11461. PTHR11461. 1 hit.
PfamPF00079. Serpin. 1 hit.
[Graphical view]
PRINTSPR00654. ANGIOTENSNGN.
SMARTSM00093. SERPIN. 1 hit.
[Graphical view]
SUPFAMSSF56574. SSF56574. 1 hit.
PROSITEPS00284. SERPIN. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

ChiTaRSAGT. human.
EvolutionaryTraceP01019.
GeneWikiAngiotensin.
GenomeRNAi183.
NextBio748.
PMAP-CutDBP01019.
PROP01019.
SOURCESearch...

Entry information

Entry nameANGT_HUMAN
AccessionPrimary (citable) accession number: P01019
Secondary accession number(s): Q16358, Q16359, Q96F91
Entry history
Integrated into UniProtKB/Swiss-Prot: July 21, 1986
Last sequence update: July 21, 1986
Last modified: April 16, 2014
This is version 173 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 1

Human chromosome 1: entries, gene names and cross-references to MIM