Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

O75581 (LRP6_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 119. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (6) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Low-density lipoprotein receptor-related protein 6

Short name=LRP-6
Gene names
Name:LRP6
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length1613 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Component of the Wnt-Fzd-LRP5-LRP6 complex that triggers beta-catenin signaling through inducing aggregation of receptor-ligand complexes into ribosome-sized signalsomes. Cell-surface coreceptor of Wnt/beta-catenin signaling, which plays a pivotal role in bone formation. The Wnt-induced Fzd/LRP6 coreceptor complex recruits DVL1 polymers to the plasma membrane which, in turn, recruits the AXIN1/GSK3B-complex to the cell surface promoting the formation of signalsomes and inhibiting AXIN1/GSK3-mediated phosphorylation and destruction of beta-catenin. Required for posterior patterning of the epiblast during gastrulation By similarity. Ref.4 Ref.5 Ref.7 Ref.9 Ref.11 Ref.12 Ref.13 Ref.17 Ref.20 Ref.21

Subunit structure

Homodimer; disulfide-linked. Forms phosphorylated oligomer aggregates on Wnt-signaling. Forms a WNT-signaling complex formed of a WNT protein, a FZD protein and LRP5 or LRP6. Interacts (via the extracellular domain) with WNT1; the interaction is enhanced by prior formation of the Wnt/Fzd complex. Interacts (via the beta-propeller regions 3 and 4) with WNT3A. Interacts (via the beta-propeller regions 1 and 2) with WNT9B. Interacts with FZD5; the interaction forms a coreceptor complex for Wnt signaling and is inhibited by DKK1 and DRAXIN. Interacts (via beta propeller region) with DKK1; the interaction inhibits FZD5/LRP6 complex formation. Interacts with DKK2. Interacts with C1orf187/DRAXIN; the interaction inhibits Wnt signaling By similarity. Interacts (via the phosphorylated PPPSP motifs) with AXIN1; the interaction recruits the AXIN1/GSK3B complex to cell surface LRP6 signalsomes. Interacts with GRB10; the interaction prevents AXIN1 binding, thus negatively regulating the Wnt signaling pathway By similarity. Interacts (via the extracellular domain) with RSPO1; the interaction activates Wnt/beta-catenin signaling. Interacts (via the extracellular domain) with RSPO3 (via the cysteine rich domain); the interaction activates Wnt/beta-catenin signaling. Interacts (via the beta-propeller regions 1 and 2) with SOST; the interaction competes with DKK1 for binding for inhibiting beta-catenin signaling. Interacts with MESD; the interaction prevents the formation of LRP6 aggregates and targets LRP6 to the plasma membrane By similarity. Interacts (via the cytoplasmic domain) with CSNKIE; the interaction phosphorylates LRP6, binds AXIN1 and inhibits AXIN1/GSK3B-mediated phosphorylation of beta-catenin. Interacts with MACF1. Interacts with DAB2; the interaction involves LRP6 phosphorylation by CK2 and sequesters LRP6 towards clathrin-mediated endocytosis. Interacts with TMEM198. Ref.4 Ref.5 Ref.6 Ref.7 Ref.8 Ref.10 Ref.11 Ref.12 Ref.14 Ref.15 Ref.16 Ref.22 Ref.23 Ref.24 Ref.26

Subcellular location

Membrane; Single-pass type I membrane protein. Endoplasmic reticulum. Note: On Wnt signaling, undergoes a cycle of caveolin- or clathrin-mediated endocytosis and plasma membrane location. Released from the endoplasmic reticulum on palmitoylation. Mono-ubiquitination retains it in the endoplasmic reticulum in the absence of palmitoylation. On Wnt signaling, phosphorylated, aggregates and colocalizes with AXIN1 and GSK3B at the plasma membrane in LRP6-signalsomes. Chaperoned to the plasma membrane by MESD By similarity. Ref.14 Ref.15 Ref.18

Tissue specificity

Widely coexpressed with LRP5 during embryogenesis and in adult tissues.

Induction

Decreased levels on WNT3A stimulation. Ref.14

Domain

The YWTD-EGF-like domains 1 and 2 are required for the interaction with Wnt-frizzled complex. The YWTD-EGF-like domains 3 and 4 are required for the interaction with DKK1. Ref.19

The PPPSP motifs play a central role in signal transduction by being phosphorylated, leading to activate the Wnt signaling pathway. Ref.19

Post-translational modification

Dual phosphorylation of cytoplasmic PPPSP motifs sequentially by GSK3 and CK1 is required for AXIN1-binding, and subsequent stabilization and activation of beta-catenin via preventing GSK3-mediated phosphorylation of beta-catenin. Phosphorylated, in vitro, by GRK5/6 within and outside the PPPSP motifs. Phosphorylation at Ser-1490 by CDK14 during G2/M phase leads to regulation of the Wnt signaling pathway during the cell cycle. Phosphorylation by GSK3B is induced by RPSO1 binding and inhibited by DKK1. Phosphorylated, in vitro, by casein kinase I on Thr-1479. Ref.9 Ref.11 Ref.12 Ref.14 Ref.15 Ref.16 Ref.17 Ref.19 Ref.20 Ref.21

Undergoes gamma-secretase-dependent regulated intramembrane proteolysis (RIP). The extracellular domain is first released by shedding, and then, through the action of gamma-secretase, the intracellular domain (ICD) is released into the cytoplasm where it is free to bind to GSK3B and to activate canonical Wnt signaling.

Palmitoylation on the two sites near the transmembrane domain leads to release of LRP6 from the endoplasmic reticulum. Ref.18

Mono-ubiquitinated which retains LRP6 in the endoplasmic reticulum. Ubiquitinated by ZNRF3, leading to its degradation by the proteasome. Ref.18 Ref.25

N-glycosylation is required for cell surface location.

Involvement in disease

Coronary artery disease, autosomal dominant, 2 (ADCAD2) [MIM:610947]: A common heart disease characterized by reduced or absent blood flow in one or more of the arteries that encircle and supply the heart. Its most important complication is acute myocardial infarction.
Note: The disease is caused by mutations affecting the gene represented in this entry. Ref.27

Sequence similarities

Belongs to the LDLR family.

Contains 4 EGF-like domains.

Contains 3 LDL-receptor class A domains.

Contains 20 LDL-receptor class B repeats.

Ontologies

Keywords
   Biological processEndocytosis
Wnt signaling pathway
   Cellular componentEndoplasmic reticulum
Membrane
   Coding sequence diversityPolymorphism
   DiseaseDisease mutation
   DomainEGF-like domain
Repeat
Signal
Transmembrane
Transmembrane helix
   Molecular functionDevelopmental protein
Receptor
   PTMDisulfide bond
Glycoprotein
Isopeptide bond
Lipoprotein
Palmitate
Phosphoprotein
Ubl conjugation
   Technical term3D-structure
Complete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processWnt signaling pathway

Inferred from mutant phenotype PubMed 11029007. Source: BHF-UCL

Wnt signaling pathway involved in dorsal/ventral axis specification

Inferred from direct assay PubMed 11029007. Source: BHF-UCL

Wnt signaling pathway involved in forebrain neuroblast division

Inferred from electronic annotation. Source: Ensembl

Wnt signaling pathway involved in somitogenesis

Inferred from Biological aspect of Ancestor. Source: RefGenome

anterior/posterior pattern specification

Inferred from Biological aspect of Ancestor. Source: RefGenome

axis elongation involved in somitogenesis

Inferred from Biological aspect of Ancestor. Source: RefGenome

bone morphogenesis

Inferred from Biological aspect of Ancestor. Source: RefGenome

bone remodeling

Inferred from Biological aspect of Ancestor. Source: RefGenome

branching involved in mammary gland duct morphogenesis

Inferred from Biological aspect of Ancestor. Source: RefGenome

canonical Wnt signaling pathway

Inferred from direct assay Ref.19. Source: UniProtKB

canonical Wnt signaling pathway involved in cardiac neural crest cell differentiation involved in heart development

Inferred from electronic annotation. Source: Ensembl

canonical Wnt signaling pathway involved in neural crest cell differentiation

Inferred by curator PubMed 11029007. Source: BHF-UCL

canonical Wnt signaling pathway involved in positive regulation of cardiac outflow tract cell proliferation

Inferred from electronic annotation. Source: Ensembl

canonical Wnt signaling pathway involved in regulation of cell proliferation

Inferred by curator PubMed 15271658. Source: BHF-UCL

cell migration involved in gastrulation

Inferred from electronic annotation. Source: Ensembl

cell-cell adhesion

Inferred from electronic annotation. Source: Ensembl

cellular response to cholesterol

Inferred from mutant phenotype PubMed 16890161. Source: BHF-UCL

cerebellum morphogenesis

Inferred from Biological aspect of Ancestor. Source: RefGenome

cerebral cortex cell migration

Inferred from electronic annotation. Source: Ensembl

cerebral cortex development

Inferred from Biological aspect of Ancestor. Source: RefGenome

convergent extension

Inferred from Biological aspect of Ancestor. Source: RefGenome

dopaminergic neuron differentiation

Inferred from electronic annotation. Source: Ensembl

embryonic camera-type eye morphogenesis

Inferred from Biological aspect of Ancestor. Source: RefGenome

embryonic digit morphogenesis

Inferred from electronic annotation. Source: Ensembl

embryonic forelimb morphogenesis

Inferred from electronic annotation. Source: Ensembl

embryonic hindlimb morphogenesis

Inferred from electronic annotation. Source: Ensembl

embryonic limb morphogenesis

Inferred from Biological aspect of Ancestor. Source: RefGenome

embryonic pattern specification

Inferred from Biological aspect of Ancestor. Source: RefGenome

embryonic retina morphogenesis in camera-type eye

Inferred from Biological aspect of Ancestor. Source: RefGenome

external genitalia morphogenesis

Inferred from Biological aspect of Ancestor. Source: RefGenome

face morphogenesis

Inferred from Biological aspect of Ancestor. Source: RefGenome

forebrain radial glial cell differentiation

Inferred from electronic annotation. Source: Ensembl

formation of radial glial scaffolds

Inferred from electronic annotation. Source: Ensembl

gastrulation with mouth forming second

Inferred from Biological aspect of Ancestor. Source: RefGenome

heart looping

Inferred from electronic annotation. Source: Ensembl

mammary placode formation

Inferred from electronic annotation. Source: Ensembl

midbrain development

Inferred from Biological aspect of Ancestor. Source: RefGenome

midbrain-hindbrain boundary development

Inferred from Biological aspect of Ancestor. Source: RefGenome

negative regulation of epithelial cell proliferation

Inferred from electronic annotation. Source: Ensembl

negative regulation of fat cell differentiation

Inferred from electronic annotation. Source: Ensembl

negative regulation of planar cell polarity pathway involved in cardiac muscle tissue morphogenesis

Inferred from electronic annotation. Source: Ensembl

negative regulation of planar cell polarity pathway involved in cardiac right atrium morphogenesis

Inferred from electronic annotation. Source: Ensembl

negative regulation of planar cell polarity pathway involved in neural tube closure

Inferred from electronic annotation. Source: Ensembl

negative regulation of planar cell polarity pathway involved in outflow tract morphogenesis

Inferred from electronic annotation. Source: Ensembl

negative regulation of planar cell polarity pathway involved in pericardium morphogenesis

Inferred from electronic annotation. Source: Ensembl

negative regulation of planar cell polarity pathway involved in ventricular septum morphogenesis

Inferred from electronic annotation. Source: Ensembl

negative regulation of protein kinase activity

Inferred from mutant phenotype PubMed 16365045. Source: BHF-UCL

negative regulation of protein phosphorylation

Inferred from mutant phenotype PubMed 16365045. Source: BHF-UCL

negative regulation of protein serine/threonine kinase activity

Inferred from direct assay Ref.17. Source: BHF-UCL

negative regulation of smooth muscle cell apoptotic process

Inferred from mutant phenotype PubMed 15271658. Source: BHF-UCL

neural crest cell differentiation

Inferred from direct assay PubMed 11029007. Source: BHF-UCL

neural crest formation

Inferred from direct assay PubMed 11029007. Source: BHF-UCL

neural tube closure

Inferred from Biological aspect of Ancestor. Source: RefGenome

odontogenesis of dentin-containing tooth

Inferred from Biological aspect of Ancestor. Source: RefGenome

palate development

Inferred from Biological aspect of Ancestor. Source: RefGenome

pericardium morphogenesis

Inferred from Biological aspect of Ancestor. Source: RefGenome

positive regulation of Wnt signaling pathway involved in dorsal/ventral axis specification

Inferred from direct assay Ref.8. Source: BHF-UCL

positive regulation of apoptotic process

Inferred from electronic annotation. Source: Ensembl

positive regulation of bone resorption

Inferred from electronic annotation. Source: Ensembl

positive regulation of canonical Wnt signaling pathway

Inferred from direct assay Ref.4PubMed 11742004PubMed 15271658Ref.17PubMed 20093106. Source: BHF-UCL

positive regulation of cell cycle

Inferred from mutant phenotype PubMed 15271658. Source: BHF-UCL

positive regulation of cytosolic calcium ion concentration

Inferred from electronic annotation. Source: Ensembl

positive regulation of mesenchymal cell proliferation

Inferred from electronic annotation. Source: Ensembl

positive regulation of ossification

Inferred from electronic annotation. Source: Ensembl

positive regulation of sequence-specific DNA binding transcription factor activity

Inferred from direct assay PubMed 14739301. Source: BHF-UCL

positive regulation of transcription from RNA polymerase II promoter

Inferred from direct assay Ref.6. Source: BHF-UCL

positive regulation of transcription, DNA-templated

Inferred from mutant phenotype PubMed 18215320. Source: BHF-UCL

post-anal tail morphogenesis

Inferred from electronic annotation. Source: Ensembl

primitive streak formation

Inferred from Biological aspect of Ancestor. Source: RefGenome

receptor-mediated endocytosis of low-density lipoprotein particle involved in cholesterol transport

Inferred from Biological aspect of Ancestor. Source: RefGenome

regulation of cell development

Inferred from electronic annotation. Source: Ensembl

regulation of fat cell differentiation

Inferred from Biological aspect of Ancestor. Source: RefGenome

regulation of ossification

Inferred from Biological aspect of Ancestor. Source: RefGenome

response to folic acid

Inferred from electronic annotation. Source: Ensembl

response to peptide hormone

Inferred from electronic annotation. Source: Ensembl

synaptic transmission

Inferred from Biological aspect of Ancestor. Source: RefGenome

thalamus development

Inferred from Biological aspect of Ancestor. Source: RefGenome

toxin transport

Inferred from mutant phenotype PubMed 16564009. Source: GOC

trachea cartilage morphogenesis

Inferred from Biological aspect of Ancestor. Source: RefGenome

   Cellular_componentcell surface

Inferred from direct assay PubMed 12897152. Source: BHF-UCL

cytoplasmic vesicle

Inferred from direct assay PubMed 16890161. Source: BHF-UCL

early endosome

Inferred from electronic annotation. Source: Ensembl

endoplasmic reticulum

Inferred from electronic annotation. Source: UniProtKB-SubCell

integral component of membrane

Inferred from electronic annotation. Source: UniProtKB-KW

neuronal cell body

Inferred from Biological aspect of Ancestor. Source: RefGenome

plasma membrane

Inferred from direct assay PubMed 16890161Ref.15. Source: BHF-UCL

receptor complex

Inferred from Biological aspect of Ancestor. Source: RefGenome

synapse

Inferred from Biological aspect of Ancestor. Source: RefGenome

   Molecular_functionWnt-activated receptor activity

Inferred from Biological aspect of Ancestor. Source: RefGenome

Wnt-protein binding

Inferred from physical interaction PubMed 11029007PubMed 12897152. Source: BHF-UCL

apolipoprotein binding

Inferred from Biological aspect of Ancestor. Source: RefGenome

coreceptor activity involved in Wnt signaling pathway

Inferred from direct assay PubMed 11029007. Source: BHF-UCL

frizzled binding

Inferred from physical interaction PubMed 11029007. Source: BHF-UCL

kinase inhibitor activity

Inferred from mutant phenotype PubMed 16365045. Source: BHF-UCL

low-density lipoprotein receptor activity

Inferred from direct assay PubMed 16263759. Source: MGI

protein homodimerization activity

Inferred from physical interaction PubMed 12897152. Source: BHF-UCL

receptor binding

Inferred from physical interaction PubMed 14739301. Source: BHF-UCL

toxin transporter activity

Inferred from mutant phenotype PubMed 16564009. Source: BHF-UCL

Complete GO annotation...

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Signal peptide1 – 1919 Potential
Chain20 – 16131594Low-density lipoprotein receptor-related protein 6
PRO_0000017330

Regions

Topological domain20 – 13701351Extracellular Potential
Transmembrane1371 – 139323Helical; Potential
Topological domain1394 – 1613220Cytoplasmic Potential
Repeat63 – 10644LDL-receptor class B 1
Repeat107 – 14943LDL-receptor class B 2
Repeat150 – 19344LDL-receptor class B 3
Repeat194 – 23643LDL-receptor class B 4
Repeat237 – 27640LDL-receptor class B 5
Domain282 – 32443EGF-like 1
Repeat372 – 41443LDL-receptor class B 6
Repeat415 – 45743LDL-receptor class B 7
Repeat458 – 50144LDL-receptor class B 8
Repeat502 – 54241LDL-receptor class B 9
Repeat543 – 58442LDL-receptor class B 10
Domain588 – 62841EGF-like 2
Repeat674 – 71643LDL-receptor class B 11
Repeat717 – 75943LDL-receptor class B 12
Repeat760 – 80243LDL-receptor class B 13
Repeat803 – 84240LDL-receptor class B 14
Repeat843 – 88543LDL-receptor class B 15
Domain889 – 93042EGF-like 3
Repeat977 – 102549LDL-receptor class B 16
Repeat1026 – 106843LDL-receptor class B 17
Repeat1069 – 111345LDL-receptor class B 18
Repeat1114 – 115643LDL-receptor class B 19
Repeat1157 – 119842LDL-receptor class B 20
Domain1203 – 124442EGF-like 4
Domain1248 – 128639LDL-receptor class A 1
Domain1287 – 132337LDL-receptor class A 2
Domain1325 – 136137LDL-receptor class A 3
Region20 – 275256Beta-propeller 1
Region328 – 589262Beta-propeller 2
Region631 – 890260Beta-propeller 3
Region933 – 1202270Beta-propeller 4
Motif1487 – 14937PPPSP motif A
Motif1527 – 15348PPPSP motif B
Motif1568 – 15758PPPSP motif C
Motif1588 – 15936PPPSP motif D
Motif1603 – 16108PPPSP motif E

Amino acid modifications

Modified residue14201Phosphoserine; by CK1 Ref.11
Modified residue14301Phosphoserine; by CK1 Ref.11
Modified residue14791Phosphothreonine Ref.15
Modified residue14901Phosphoserine; by CDK14, GRK5 and GRK6 Ref.9 Ref.14 Ref.19 Ref.20
Modified residue14931Phosphothreonine; by CK1 Ref.9
Lipidation13941S-palmitoyl cysteine Ref.18
Lipidation13991S-palmitoyl cysteine Ref.18
Glycosylation421N-linked (GlcNAc...) Potential
Glycosylation811N-linked (GlcNAc...) Potential
Glycosylation2811N-linked (GlcNAc...) Potential
Glycosylation4331N-linked (GlcNAc...) Potential
Glycosylation4861N-linked (GlcNAc...) Potential
Glycosylation6921N-linked (GlcNAc...) Ref.26
Glycosylation8591N-linked (GlcNAc...) Ref.26
Glycosylation8651N-linked (GlcNAc...) Ref.26
Glycosylation9261N-linked (GlcNAc...) Ref.26
Glycosylation10391N-linked (GlcNAc...) Ref.26
Disulfide bond286 ↔ 297 By similarity
Disulfide bond293 ↔ 308 By similarity
Disulfide bond310 ↔ 323 By similarity
Disulfide bond592 ↔ 603 By similarity
Disulfide bond599 ↔ 612 By similarity
Disulfide bond614 ↔ 627 By similarity
Disulfide bond893 ↔ 904 Ref.26
Disulfide bond900 ↔ 914 Ref.26
Disulfide bond916 ↔ 929 Ref.26
Disulfide bond1207 ↔ 1218 Ref.26
Disulfide bond1214 ↔ 1228 Ref.26
Disulfide bond1230 ↔ 1243 Ref.26
Disulfide bond1249 ↔ 1263 By similarity
Disulfide bond1256 ↔ 1276 By similarity
Disulfide bond1270 ↔ 1285 By similarity
Disulfide bond1288 ↔ 1300 By similarity
Disulfide bond1295 ↔ 1313 By similarity
Disulfide bond1307 ↔ 1322 By similarity
Disulfide bond1326 ↔ 1338 By similarity
Disulfide bond1333 ↔ 1351 By similarity
Disulfide bond1345 ↔ 1360 By similarity
Cross-link1403Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin) Ref.18

Natural variations

Natural variant4831V → I.
Corresponds to variant rs7975614 [ dbSNP | Ensembl ].
VAR_030349
Natural variant6111R → C in ADCAD2; impairs Wnt signaling in vitro. Ref.27
VAR_034701
Natural variant8171S → C.
Corresponds to variant rs2302686 [ dbSNP | Ensembl ].
VAR_030350
Natural variant10621V → I. Ref.1
Corresponds to variant rs2302685 [ dbSNP | Ensembl ].
VAR_024520
Natural variant14011R → H.
Corresponds to variant rs34815107 [ dbSNP | Ensembl ].
VAR_034702

Experimental info

Mutagenesis13941C → A: Some reduction of palmitoylation, little change in plasma membrane location in the presence of MESD nor in Wnt-signaling activity. Completely abolishes palmitoylation, no plasma membrane location, greatly reduced Wnt-signaling activity but no effect on ubiquitination; when associated with A-1399. Exhibits full Wnt-signaling activity and no change in plasma membrane location; when associated with A-1399 and R-1403. Ref.18
Mutagenesis13991C → A: Some reduction of palmitoylation, and little change in plasma membrane location in the presence of MESD nor in Wnt-signaling activity. Completely abolishes palmitoylation, no plasma membrane location, greatly reduced Wnt-signaling activity but no effect on ubiquitination; when associated with A-1394. Exhibits full Wnt-signaling activity and no change in plasma membrane location in the in presence of MESD; when associated with A-1394 and R-1403. Ref.18
Mutagenesis14031K → R: Abolishes ubiquitination, no change in plasma membrane location in the presence of MESD but greatly reduced Wnt-signaling activity. Exhibits full Wnt-signaling activity and no change in plasma membrane location; when associated with A-1394 and A-1399.
Mutagenesis14201S → A: Enhanced AXIN1 binding and increased beta-catenin activity by 2.2-fold. Further enhanced AXIN1 binding and increases beta-catenin activity by 3.3-fold; when associated with A-1430. Ref.11
Mutagenesis14301S → A: Enhanced AXIN1 binding. Further enhanced AXIN1 binding and increases beta-catenin activity by 3.3-fold; when associated with A-1420. Ref.11
Mutagenesis14851L → A: No change in the phosphorylation state of PPPSP motif. Some reduction in Wnt/beta-catenin signaling. Ref.16
Mutagenesis14861N → A: No change in the phosphorylation state of PPPSP motif. Increased Wnt/beta-catenin signaling. Ref.16
Mutagenesis14871P → A: No change in the phosphorylation state of PPPSP motif A. Greatly reduced Wnt/beta-catenin signaling. Ref.16
Mutagenesis14871P → C: No change in the phosphorylation state of PPPSP motif A. Greatly reduced Wnt/beta-catenin signaling. Ref.16
Mutagenesis14881P → A: No change in the phosphorylation state of PPPSP motif A. Greatly reduced Wnt/beta-catenin signaling. Ref.16
Mutagenesis14891P → A: No change in the phosphorylation state of PPPSP motif A. Greatly reduced Wnt/beta-catenin signaling. Ref.16
Mutagenesis14901S → A: Greatly reduced phosphorylation of PPPSP motif A. Greatly reduced Wnt/beta-catenin signaling. Ref.16
Mutagenesis14901S → T: Some loss of phosphorylation of PPPSP motif A. Little reduction in Wnt/beta-catenin signaling. Ref.16
Mutagenesis14911P → A: Greatly reduced phosphorylation of PPPSP motif A. Greatly reduced Wnt/beta-catenin signaling. Ref.16
Mutagenesis14921A → G: No change in the phosphorylation state of PPPSP motif A. Greatly reduced Wnt/beta-catenin signaling. Ref.16
Mutagenesis14931T → A: No change in the phosphorylation state of PPPSP motif A. Greatly reduced Wnt/beta-catenin signaling. Ref.16
Mutagenesis14941E → A: No change in the phosphorylation state of PPPSP motif A. Little reduction of Wnt/beta-catenin signaling. Ref.16
Mutagenesis14951R → A: No change in the phosphorylation state of PPPSP motif. No reduction of Wnt/beta-catenin signaling. Ref.16
Mutagenesis15291T → A: No effect on the phosphorylation state of PPPSP motif B. Ref.16
Mutagenesis15301T → A: Abolishes phosphorylation of PPPSP motif B. Reduced Wnt/beta-catenin signaling. Ref.16
Mutagenesis15311P → A: Abolishes phosphorylation of PPPSP motif B. Reduced Wnt/beta-catenin signaling. Ref.16
Mutagenesis15721T → A: Abolishes Wnt/beta-catenin signaling. Ref.16
Mutagenesis15901S → A: Abolishes Wnt/beta-catenin signaling. Ref.16
Mutagenesis16071S → A: Abolishes Wnt/beta-catenin signaling. Ref.16

Secondary structure

.................................................................................................................................................................................................................................................... 1613
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
O75581 [UniParc].

Last modified January 11, 2011. Version 2.
Checksum: 413D2CF70A5D8B5C

FASTA1,613180,429
        10         20         30         40         50         60 
MGAVLRSLLA CSFCVLLRAA PLLLYANRRD LRLVDATNGK ENATIVVGGL EDAAAVDFVF 

        70         80         90        100        110        120 
SHGLIYWSDV SEEAIKRTEF NKTESVQNVV VSGLLSPDGL ACDWLGEKLY WTDSETNRIE 

       130        140        150        160        170        180 
VSNLDGSLRK VLFWQELDQP RAIALDPSSG FMYWTDWGEV PKIERAGMDG SSRFIIINSE 

       190        200        210        220        230        240 
IYWPNGLTLD YEEQKLYWAD AKLNFIHKSN LDGTNRQAVV KGSLPHPFAL TLFEDILYWT 

       250        260        270        280        290        300 
DWSTHSILAC NKYTGEGLRE IHSDIFSPMD IHAFSQQRQP NATNPCGIDN GGCSHLCLMS 

       310        320        330        340        350        360 
PVKPFYQCAC PTGVKLLENG KTCKDGATEL LLLARRTDLR RISLDTPDFT DIVLQLEDIR 

       370        380        390        400        410        420 
HAIAIDYDPV EGYIYWTDDE VRAIRRSFID GSGSQFVVTA QIAHPDGIAV DWVARNLYWT 

       430        440        450        460        470        480 
DTGTDRIEVT RLNGTMRKIL ISEDLEEPRA IVLDPMVGYM YWTDWGEIPK IERAALDGSD 

       490        500        510        520        530        540 
RVVLVNTSLG WPNGLALDYD EGKIYWGDAK TDKIEVMNTD GTGRRVLVED KIPHIFGFTL 

       550        560        570        580        590        600 
LGDYVYWTDW QRRSIERVHK RSAEREVIID QLPDLMGLKA TNVHRVIGSN PCAEENGGCS 

       610        620        630        640        650        660 
HLCLYRPQGL RCACPIGFEL ISDMKTCIVP EAFLLFSRRA DIRRISLETN NNNVAIPLTG 

       670        680        690        700        710        720 
VKEASALDFD VTDNRIYWTD ISLKTISRAF MNGSALEHVV EFGLDYPEGM AVDWLGKNLY 

       730        740        750        760        770        780 
WADTGTNRIE VSKLDGQHRQ VLVWKDLDSP RALALDPAEG FMYWTEWGGK PKIDRAAMDG 

       790        800        810        820        830        840 
SERTTLVPNV GRANGLTIDY AKRRLYWTDL DTNLIESSNM LGLNREVIAD DLPHPFGLTQ 

       850        860        870        880        890        900 
YQDYIYWTDW SRRSIERANK TSGQNRTIIQ GHLDYVMDIL VFHSSRQSGW NECASSNGHC 

       910        920        930        940        950        960 
SHLCLAVPVG GFVCGCPAHY SLNADNRTCS APTTFLLFSQ KSAINRMVID EQQSPDIILP 

       970        980        990       1000       1010       1020 
IHSLRNVRAI DYDPLDKQLY WIDSRQNMIR KAQEDGSQGF TVVVSSVPSQ NLEIQPYDLS 

      1030       1040       1050       1060       1070       1080 
IDIYSRYIYW TCEATNVINV TRLDGRSVGV VLKGEQDRPR AVVVNPEKGY MYFTNLQERS 

      1090       1100       1110       1120       1130       1140 
PKIERAALDG TEREVLFFSG LSKPIALALD SRLGKLFWAD SDLRRIESSD LSGANRIVLE 

      1150       1160       1170       1180       1190       1200 
DSNILQPVGL TVFENWLYWI DKQQQMIEKI DMTGREGRTK VQARIAQLSD IHAVKELNLQ 

      1210       1220       1230       1240       1250       1260 
EYRQHPCAQD NGGCSHICLV KGDGTTRCSC PMHLVLLQDE LSCGEPPTCS PQQFTCFTGE 

      1270       1280       1290       1300       1310       1320 
IDCIPVAWRC DGFTECEDHS DELNCPVCSE SQFQCASGQC IDGALRCNGD ANCQDKSDEK 

      1330       1340       1350       1360       1370       1380 
NCEVLCLIDQ FRCANGQCIG KHKKCDHNVD CSDKSDELDC YPTEEPAPQA TNTVGSVIGV 

      1390       1400       1410       1420       1430       1440 
IVTIFVSGTV YFICQRMLCP RMKGDGETMT NDYVVHGPAS VPLGYVPHPS SLSGSLPGMS 

      1450       1460       1470       1480       1490       1500 
RGKSMISSLS IMGGSSGPPY DRAHVTGASS SSSSSTKGTY FPAILNPPPS PATERSHYTM 

      1510       1520       1530       1540       1550       1560 
EFGYSSNSPS THRSYSYRPY SYRHFAPPTT PCSTDVCDSD YAPSRRMTSV ATAKGYTSDL 

      1570       1580       1590       1600       1610 
NYDSEPVPPP PTPRSQYLSA EENYESCPPS PYTERSYSHH LYPPPPSPCT DSS 

« Hide

References

« Hide 'large scale' references
[1]"Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family."
Brown S.D., Twells R.C., Hey P.J., Cox R.D., Levy E.R., Soderman A.R., Metzker M.L., Caskey C.T., Todd J.A., Hess J.F.
Biochem. Biophys. Res. Commun. 248:879-888(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], VARIANT ILE-1062.
Tissue: Kidney.
[2]"The finished DNA sequence of human chromosome 12."
Scherer S.E., Muzny D.M., Buhay C.J., Chen R., Cree A., Ding Y., Dugan-Rocha S., Gill R., Gunaratne P., Harris R.A., Hawes A.C., Hernandez J., Hodgson A.V., Hume J., Jackson A., Khan Z.M., Kovar-Smith C., Lewis L.R. expand/collapse author list , Lozado R.J., Metzker M.L., Milosavljevic A., Miner G.R., Montgomery K.T., Morgan M.B., Nazareth L.V., Scott G., Sodergren E., Song X.-Z., Steffen D., Lovering R.C., Wheeler D.A., Worley K.C., Yuan Y., Zhang Z., Adams C.Q., Ansari-Lari M.A., Ayele M., Brown M.J., Chen G., Chen Z., Clerc-Blankenburg K.P., Davis C., Delgado O., Dinh H.H., Draper H., Gonzalez-Garay M.L., Havlak P., Jackson L.R., Jacob L.S., Kelly S.H., Li L., Li Z., Liu J., Liu W., Lu J., Maheshwari M., Nguyen B.-V., Okwuonu G.O., Pasternak S., Perez L.M., Plopper F.J.H., Santibanez J., Shen H., Tabor P.E., Verduzco D., Waldron L., Wang Q., Williams G.A., Zhang J., Zhou J., Allen C.C., Amin A.G., Anyalebechi V., Bailey M., Barbaria J.A., Bimage K.E., Bryant N.P., Burch P.E., Burkett C.E., Burrell K.L., Calderon E., Cardenas V., Carter K., Casias K., Cavazos I., Cavazos S.R., Ceasar H., Chacko J., Chan S.N., Chavez D., Christopoulos C., Chu J., Cockrell R., Cox C.D., Dang M., Dathorne S.R., David R., Davis C.M., Davy-Carroll L., Deshazo D.R., Donlin J.E., D'Souza L., Eaves K.A., Egan A., Emery-Cohen A.J., Escotto M., Flagg N., Forbes L.D., Gabisi A.M., Garza M., Hamilton C., Henderson N., Hernandez O., Hines S., Hogues M.E., Huang M., Idlebird D.G., Johnson R., Jolivet A., Jones S., Kagan R., King L.M., Leal B., Lebow H., Lee S., LeVan J.M., Lewis L.C., London P., Lorensuhewa L.M., Loulseged H., Lovett D.A., Lucier A., Lucier R.L., Ma J., Madu R.C., Mapua P., Martindale A.D., Martinez E., Massey E., Mawhiney S., Meador M.G., Mendez S., Mercado C., Mercado I.C., Merritt C.E., Miner Z.L., Minja E., Mitchell T., Mohabbat F., Mohabbat K., Montgomery B., Moore N., Morris S., Munidasa M., Ngo R.N., Nguyen N.B., Nickerson E., Nwaokelemeh O.O., Nwokenkwo S., Obregon M., Oguh M., Oragunye N., Oviedo R.J., Parish B.J., Parker D.N., Parrish J., Parks K.L., Paul H.A., Payton B.A., Perez A., Perrin W., Pickens A., Primus E.L., Pu L.-L., Puazo M., Quiles M.M., Quiroz J.B., Rabata D., Reeves K., Ruiz S.J., Shao H., Sisson I., Sonaike T., Sorelle R.P., Sutton A.E., Svatek A.F., Svetz L.A., Tamerisa K.S., Taylor T.R., Teague B., Thomas N., Thorn R.D., Trejos Z.Y., Trevino B.K., Ukegbu O.N., Urban J.B., Vasquez L.I., Vera V.A., Villasana D.M., Wang L., Ward-Moore S., Warren J.T., Wei X., White F., Williamson A.L., Wleczyk R., Wooden H.S., Wooden S.H., Yen J., Yoon L., Yoon V., Zorrilla S.E., Nelson D., Kucherlapati R., Weinstock G., Gibbs R.A.
Nature 440:346-351(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[3]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Tissue: Cerebellum.
[4]"Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6."
Semenov M.V., Tamai K., Brott B.K., Kuhl M., Sokol S., He X.
Curr. Biol. 11:951-961(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DKK1, FUNCTION.
[5]"LDL-receptor-related protein 6 is a receptor for Dickkopf proteins."
Mao B., Wu W., Li Y., Hoppe D., Stannek P., Glinka A., Niehrs C.
Nature 411:321-325(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH WNT1, FUNCTION.
[6]"Functional characterization of WNT7A signaling in PC12 cells: interaction with A FZD5 x LRP6 receptor complex and modulation by Dickkopf proteins."
Caricasole A., Ferraro T., Iacovelli L., Barletta E., Caruso A., Melchiorri D., Terstappen G.C., Nicoletti F.
J. Biol. Chem. 278:37024-37031(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH FZD5; DKK1 AND DKK2.
[7]"Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling."
Li X., Zhang Y., Kang H., Liu W., Liu P., Zhang J., Harris S.E., Wu D.
J. Biol. Chem. 280:19883-19887(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SOST, FUNCTION.
[8]"SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor."
Semenov M., Tamai K., He X.
J. Biol. Chem. 280:26770-26775(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH WNT1 IN THE WNT-FZD-LRP5-LRP6 COMPLEX, INTERACTION WITH SOST.
[9]"A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation."
Zeng X., Tamai K., Doble B., Li S., Huang H., Habas R., Okamura H., Woodgett J., He X.
Nature 438:873-877(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION OF PPPSP MOTIFS, PHOSPHORYLATION AT SER-1490 AND THR-1493, FUNCTION.
[10]"The role of microtubule actin cross-linking factor 1 (MACF1) in the Wnt signaling pathway."
Chen H.J., Lin C.M., Lin C.S., Perez-Olle R., Leung C.L., Liem R.K.
Genes Dev. 20:1933-1945(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH MACF1.
[11]"Negative regulation of LRP6 function by casein kinase I epsilon phosphorylation."
Swiatek W., Kang H., Garcia B.A., Shabanowitz J., Coombs G.S., Hunt D.F., Virshup D.M.
J. Biol. Chem. 281:12233-12241(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT SER-1420 AND SER-1430, FUNCTION, INTERACTION WITH CSNKIE AND AXIN1, IDENTIFICATION BY MASS SPECTROMETRY, MUTAGENESIS OF SER-1420 AND SER-1430.
[12]"R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and beta-catenin signaling."
Wei Q., Yokota C., Semenov M.V., Doble B., Woodgett J., He X.
J. Biol. Chem. 282:15903-15911(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RSPO1, FUNCTION, PHOSPHORYLATION.
[13]"Regulated proteolytic processing of LRP6 results in release of its intracellular domain."
Mi K., Johnson G.V.
J. Neurochem. 101:517-529(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: PROTEOLYTIC PROCESSING, FUNCTION.
[14]"Analysis of endogenous LRP6 function reveals a novel feedback mechanism by which Wnt negatively regulates its receptor."
Khan Z., Vijayakumar S., de la Torre T.V., Rotolo S., Bafico A.
Mol. Cell. Biol. 27:7291-7301(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: GLYCOSYLATION, PHOSPHORYLATION AT SER-1490, INTERACTION WITH AXIN1, HOMODIMERIZATION, INDUCTION, SUBCELLULAR LOCATION.
[15]"Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation."
Bilic J., Huang Y.L., Davidson G., Zimmermann T., Cruciat C.M., Bienz M., Niehrs C.
Science 316:1619-1622(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION AT THR-1479, INTERACTION WITH AXIN1, SUBUNIT, SUBCELLULAR LOCATION.
[16]"Wnt signal amplification via activity, cooperativity, and regulation of multiple intracellular PPPSP motifs in the Wnt co-receptor LRP6."
MacDonald B.T., Yokota C., Tamai K., Zeng X., He X.
J. Biol. Chem. 283:16115-16123(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH AXIN1, PHOSPHORYLATION, MUTAGENESIS OF LEU-1485; ASN-1486; PRO-1487; PRO-1488; PRO-1489; SER-1490; PRO-1491; ALA-1492; THR-1493; GLU-1494; ARG-1495; THR-1529; THR-1530; PRO-1531; THR-1572; SER-1590 AND SER-1607.
[17]"Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRP6 in Wnt/beta-catenin signaling."
Piao S., Lee S.H., Kim H., Yum S., Stamos J.L., Xu Y., Lee S.J., Lee J., Oh S., Han J.K., Park B.J., Weis W.I., Ha N.C.
PLoS ONE 3:E4046-E4046(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION ON PPPSP MOTIFS, FUNCTION.
[18]"Palmitoylation and ubiquitination regulate exit of the Wnt signaling protein LRP6 from the endoplasmic reticulum."
Abrami L., Kunz B., Iacovache I., van der Goot F.G.
Proc. Natl. Acad. Sci. U.S.A. 105:5384-5389(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PALMITOYLATION AT CYS-1394 AND CYS-1399, UBIQUITINATION AT LYS-1403, SUBCELLULAR LOCATION, MUTAGENESIS OF CYS-1394 AND CYS-1399.
[19]"Cell cycle control of wnt receptor activation."
Davidson G., Shen J., Huang Y.L., Su Y., Karaulanov E., Bartscherer K., Hassler C., Stannek P., Boutros M., Niehrs C.
Dev. Cell 17:788-799(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: DOMAIN PPPSP MOTIF, PHOSPHORYLATION AT SER-1490.
[20]"G Protein-coupled receptor kinases phosphorylate LRP6 in the Wnt pathway."
Chen M., Philipp M., Wang J., Premont R.T., Garrison T.R., Caron M.G., Lefkowitz R.J., Chen W.
J. Biol. Chem. 284:35040-35048(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION OF PPPSP MOTIFS, PHOSPHORYLATION AT SER-1490, FUNCTION.
[21]"Inhibition of GSK3 phosphorylation of beta-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6."
Wu G., Huang H., Garcia Abreu J., He X.
PLoS ONE 4:E4926-E4926(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION OF PPPSP MOTIFS, FUNCTION.
[22]"Reconstitution of a frizzled8.Wnt3a.LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6."
Bourhis E., Tam C., Franke Y., Bazan J.F., Ernst J., Hwang J., Costa M., Cochran A.G., Hannoush R.N.
J. Biol. Chem. 285:9172-9179(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH WNT3A; WNT9B AND FZD8 IN THE WNT/FZD/LRP6 COMPLEX, INTERACTION WITH DKK1.
[23]"Transmembrane protein 198 promotes LRP6 phosphorylation and Wnt signaling activation."
Liang J., Fu Y., Cruciat C.M., Jia S., Wang Y., Tong Z., Tao Q., Ingelfinger D., Boutros M., Meng A., Niehrs C., Wu W.
Mol. Cell. Biol. 31:2577-2590(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TMEM198.
[24]"Disabled-2 (Dab2) inhibits Wnt/beta-catenin signalling by binding LRP6 and promoting its internalization through clathrin."
Jiang Y., He X., Howe P.H.
EMBO J. 31:2336-2349(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DAB2.
[25]"ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner."
Hao H.X., Xie Y., Zhang Y., Charlat O., Oster E., Avello M., Lei H., Mickanin C., Liu D., Ruffner H., Mao X., Ma Q., Zamponi R., Bouwmeester T., Finan P.M., Kirschner M.W., Porter J.A., Serluca F.C., Cong F.
Nature 485:195-200(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: UBIQUITINATION BY ZNRF3.
[26]"Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6."
Ahn V.E., Chu M.L., Choi H.J., Tran D., Abo A., Weis W.I.
Dev. Cell 21:862-873(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS) OF 630-1246 IN COMPLEX WITH DKK1, SUBUNIT, DISULFIDE BONDS, GLYCOSYLATION AT ASN-692; ASN-859; ASN-865; ASN-926 AND ASN-1039.
[27]"LRP6 mutation in a family with early coronary disease and metabolic risk factors."
Mani A., Radhakrishnan J., Wang H., Mani A., Mani M.-A., Nelson-Williams C., Carew K.S., Mane S., Najmabadi H., Wu D., Lifton R.P.
Science 315:1278-1282(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT ADCAD2 CYS-611, CHARACTERIZATION OF VARIANT ADCAD2 CYS-611.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
AF074264 mRNA. Translation: AAC33006.1.
AC007537 Genomic DNA. No translation available.
AC007621 Genomic DNA. No translation available.
BC117136 mRNA. Translation: AAI17137.1.
BC126405 mRNA. Translation: AAI26406.1.
PIRJE0272.
RefSeqNP_002327.2. NM_002336.2.
UniGeneHs.584775.
Hs.658913.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
3S2KX-ray2.80A/B630-1246[»]
3S8VX-ray3.10A/B629-1243[»]
3S8ZX-ray2.80A629-1243[»]
3S94X-ray2.80A/B20-630[»]
3SOBX-ray1.90B20-335[»]
3SOQX-ray1.90A20-326[»]
3SOVX-ray1.27A20-326[»]
4A0PX-ray1.90A629-1244[»]
4DG6X-ray2.90A20-635[»]
ProteinModelPortalO75581.
SMRO75581. Positions 20-1246.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid110219. 19 interactions.
DIPDIP-29884N.
IntActO75581. 22 interactions.
MINTMINT-3369849.
STRING9606.ENSP00000261349.

PTM databases

PhosphoSiteO75581.

Proteomic databases

PaxDbO75581.
PRIDEO75581.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000261349; ENSP00000261349; ENSG00000070018.
GeneID4040.
KEGGhsa:4040.
UCSCuc001rah.4. human.

Organism-specific databases

CTD4040.
GeneCardsGC12M012173.
H-InvDBHIX0036693.
HGNCHGNC:6698. LRP6.
HPACAB004490.
HPA029925.
MIM603507. gene.
610947. phenotype.
neXtProtNX_O75581.
Orphanet94062. Coronary artery disease - hyperlipidemia - hypertension - diabetes - osteoporosis.
PharmGKBPA30456.
GenAtlasSearch...

Phylogenomic databases

eggNOGNOG121718.
HOGENOMHOG000230697.
HOVERGENHBG049167.
InParanoidO75581.
KOK03068.
OMALENGKTC.
OrthoDBEOG75XGK3.
PhylomeDBO75581.
TreeFamTF315253.

Enzyme and pathway databases

SignaLinkO75581.

Gene expression databases

ArrayExpressO75581.
BgeeO75581.
CleanExHS_LRP6.
GenevestigatorO75581.

Family and domain databases

Gene3D2.120.10.30. 4 hits.
4.10.400.10. 3 hits.
InterProIPR011042. 6-blade_b-propeller_TolB-like.
IPR000742. EG-like_dom.
IPR023415. LDLR_class-A_CS.
IPR000033. LDLR_classB_rpt.
IPR002172. LDrepeatLR_classA_rpt.
IPR017049. Low_density_Lipo_rcpt-rel_p5/6.
[Graphical view]
PfamPF00057. Ldl_recept_a. 3 hits.
PF00058. Ldl_recept_b. 12 hits.
[Graphical view]
PIRSFPIRSF036314. LDL_recpt-rel_p5/6. 1 hit.
PRINTSPR00261. LDLRECEPTOR.
SMARTSM00181. EGF. 4 hits.
SM00192. LDLa. 3 hits.
SM00135. LY. 20 hits.
[Graphical view]
SUPFAMSSF57424. SSF57424. 3 hits.
PROSITEPS01186. EGF_2. 1 hit.
PS01209. LDLRA_1. 3 hits.
PS50068. LDLRA_2. 3 hits.
PS51120. LDLRB. 19 hits.
[Graphical view]
ProtoNetSearch...

Other

EvolutionaryTraceO75581.
GeneWikiLRP6.
GenomeRNAi4040.
NextBio15822.
PROO75581.
SOURCESearch...

Entry information

Entry nameLRP6_HUMAN
AccessionPrimary (citable) accession number: O75581
Secondary accession number(s): Q17RZ2
Entry history
Integrated into UniProtKB/Swiss-Prot: May 10, 2004
Last sequence update: January 11, 2011
Last modified: April 16, 2014
This is version 119 of the entry and version 2 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 12

Human chromosome 12: entries, gene names and cross-references to MIM