ID ERG6_SCHPO Reviewed; 378 AA. AC O14321; P78782; DT 15-JUL-1999, integrated into UniProtKB/Swiss-Prot. DT 01-JAN-1998, sequence version 1. DT 27-MAR-2024, entry version 152. DE RecName: Full=Sterol 24-C-methyltransferase erg6 {ECO:0000303|PubMed:18310029}; DE Short=SCMT {ECO:0000305}; DE Short=SMT {ECO:0000305}; DE EC=2.1.1.- {ECO:0000305|PubMed:18310029}; DE EC=2.1.1.41 {ECO:0000305|PubMed:8586261}; DE AltName: Full=Delta(24)-sterol C-methyltransferase erg6 {ECO:0000305}; DE AltName: Full=Ergosterol biosynthesis protein 6 {ECO:0000303|PubMed:18310029}; GN Name=erg6 {ECO:0000303|PubMed:18310029}; ORFNames=SPBC16E9.05; OS Schizosaccharomyces pombe (strain 972 / ATCC 24843) (Fission yeast). OC Eukaryota; Fungi; Dikarya; Ascomycota; Taphrinomycotina; OC Schizosaccharomycetes; Schizosaccharomycetales; Schizosaccharomycetaceae; OC Schizosaccharomyces. OX NCBI_TaxID=284812; RN [1] RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA]. RC STRAIN=972 / ATCC 24843; RX PubMed=11859360; DOI=10.1038/nature724; RA Wood V., Gwilliam R., Rajandream M.A., Lyne M.H., Lyne R., Stewart A., RA Sgouros J.G., Peat N., Hayles J., Baker S.G., Basham D., Bowman S., RA Brooks K., Brown D., Brown S., Chillingworth T., Churcher C.M., Collins M., RA Connor R., Cronin A., Davis P., Feltwell T., Fraser A., Gentles S., RA Goble A., Hamlin N., Harris D.E., Hidalgo J., Hodgson G., Holroyd S., RA Hornsby T., Howarth S., Huckle E.J., Hunt S., Jagels K., James K.D., RA Jones L., Jones M., Leather S., McDonald S., McLean J., Mooney P., RA Moule S., Mungall K.L., Murphy L.D., Niblett D., Odell C., Oliver K., RA O'Neil S., Pearson D., Quail M.A., Rabbinowitsch E., Rutherford K.M., RA Rutter S., Saunders D., Seeger K., Sharp S., Skelton J., Simmonds M.N., RA Squares R., Squares S., Stevens K., Taylor K., Taylor R.G., Tivey A., RA Walsh S.V., Warren T., Whitehead S., Woodward J.R., Volckaert G., Aert R., RA Robben J., Grymonprez B., Weltjens I., Vanstreels E., Rieger M., RA Schaefer M., Mueller-Auer S., Gabel C., Fuchs M., Duesterhoeft A., RA Fritzc C., Holzer E., Moestl D., Hilbert H., Borzym K., Langer I., Beck A., RA Lehrach H., Reinhardt R., Pohl T.M., Eger P., Zimmermann W., Wedler H., RA Wambutt R., Purnelle B., Goffeau A., Cadieu E., Dreano S., Gloux S., RA Lelaure V., Mottier S., Galibert F., Aves S.J., Xiang Z., Hunt C., RA Moore K., Hurst S.M., Lucas M., Rochet M., Gaillardin C., Tallada V.A., RA Garzon A., Thode G., Daga R.R., Cruzado L., Jimenez J., Sanchez M., RA del Rey F., Benito J., Dominguez A., Revuelta J.L., Moreno S., RA Armstrong J., Forsburg S.L., Cerutti L., Lowe T., McCombie W.R., RA Paulsen I., Potashkin J., Shpakovski G.V., Ussery D., Barrell B.G., RA Nurse P.; RT "The genome sequence of Schizosaccharomyces pombe."; RL Nature 415:871-880(2002). RN [2] RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 55-378. RC STRAIN=PR745; RX PubMed=9501991; DOI=10.1093/dnares/4.6.363; RA Yoshioka S., Kato K., Nakai K., Okayama H., Nojima H.; RT "Identification of open reading frames in Schizosaccharomyces pombe RT cDNAs."; RL DNA Res. 4:363-369(1997). RN [3] RP SEQUENCE REVISION TO 55-63. RA Yoshioka S., Kato K., Nakai K., Okayama H., Nojima H.; RL Submitted (FEB-2004) to the EMBL/GenBank/DDBJ databases. RN [4] RP FUNCTION. RX PubMed=8586261; DOI=10.1111/j.1574-6968.1995.tb07929.x; RA Harmouch N., Coulon J., Bonaly R.; RT "Identification of 24-methylene-24,25-dihydrolanosterol as a precursor of RT ergosterol in the yeasts Schizosaccharomyces pombe and Schizosaccharomyces RT octosporus."; RL FEMS Microbiol. Lett. 134:147-152(1995). RN [5] RP SUBCELLULAR LOCATION [LARGE SCALE ANALYSIS]. RX PubMed=16823372; DOI=10.1038/nbt1222; RA Matsuyama A., Arai R., Yashiroda Y., Shirai A., Kamata A., Sekido S., RA Kobayashi Y., Hashimoto A., Hamamoto M., Hiraoka Y., Horinouchi S., RA Yoshida M.; RT "ORFeome cloning and global analysis of protein localization in the fission RT yeast Schizosaccharomyces pombe."; RL Nat. Biotechnol. 24:841-847(2006). RN [6] RP INDUCTION. RX PubMed=16537923; DOI=10.1128/mcb.26.7.2817-2831.2006; RA Todd B.L., Stewart E.V., Burg J.S., Hughes A.L., Espenshade P.J.; RT "Sterol regulatory element binding protein is a principal regulator of RT anaerobic gene expression in fission yeast."; RL Mol. Cell. Biol. 26:2817-2831(2006). RN [7] RP FUNCTION, DISRUPTION PHENOTYPE, AND PATHWAY. RX PubMed=18310029; DOI=10.1099/mic.0.2007/011155-0; RA Iwaki T., Iefuji H., Hiraga Y., Hosomi A., Morita T., Giga-Hama Y., RA Takegawa K.; RT "Multiple functions of ergosterol in the fission yeast Schizosaccharomyces RT pombe."; RL Microbiology 154:830-841(2008). CC -!- FUNCTION: Sterol 24-C-methyltransferase; part of the third module of CC ergosterol biosynthesis pathway that includes by the late steps of the CC pathway (PubMed:18310029). Erg6 catalyzes the methyl transfer from S- CC adenosyl-methionine to the C-24 of zymosterol to form fecosterol CC (PubMed:18310029). The third module or late pathway involves the CC ergosterol synthesis itself through consecutive reactions that mainly CC occur in the endoplasmic reticulum (ER) membrane. Firstly, the squalene CC synthase erg9 catalyzes the condensation of 2 farnesyl pyrophosphate CC moieties to form squalene, which is the precursor of all steroids. CC Secondly, squalene is converted into lanosterol by the consecutive CC action of the squalene epoxidase erg1 and the lanosterol synthase erg7. CC The lanosterol 14-alpha-demethylase erg11/cyp1 catalyzes C14- CC demethylation of lanosterol to produce 4,4'-dimethyl cholesta-8,14,24- CC triene-3-beta-ol. In the next steps, a complex process involving CC various demethylation, reduction and desaturation reactions catalyzed CC by the C-14 reductase erg24 and the C-4 demethylation complex erg25- CC erg26-erg27 leads to the production of zymosterol. Erg28 likely CC functions in the C-4 demethylation complex reaction by tethering erg26 CC and Erg27 to the endoplasmic reticulum or to facilitate interaction CC between these proteins. Then, the sterol 24-C-methyltransferase erg6 CC catalyzes the methyl transfer from S-adenosyl-methionine to the C-24 of CC zymosterol to form fecosterol. The C-8 sterol isomerase erg2 catalyzes CC the reaction which results in unsaturation at C-7 in the B ring of CC sterols and thus converts fecosterol to episterol. The sterol-C5- CC desaturases erg31 and erg32 then catalyze the introduction of a C-5 CC double bond in the B ring to produce 5-dehydroepisterol. The C-22 CC sterol desaturase erg5 further converts 5-dehydroepisterol into CC ergosta-5,7,22,24(28)-tetraen-3beta-ol by forming the C-22(23) double CC bond in the sterol side chain. Finally, ergosta-5,7,22,24(28)-tetraen- CC 3beta-ol is substrate of the C-24(28) sterol reductase erg4 to produce CC ergosterol (PubMed:18310029) (Probable). In the genus CC Schizosaccharomyces, a second route exists between lanosterol and CC fecosterol, via the methylation of lanosterol to eburicol by erg6, CC followed by C14-demethylation by erg11/cyp1 and C4-demethylation by the CC demethylation complex erg25-erg26-erg27 (PubMed:8586261) (Probable). CC {ECO:0000269|PubMed:18310029, ECO:0000305|PubMed:18310029, CC ECO:0000305|PubMed:8586261}. CC -!- CATALYTIC ACTIVITY: CC Reaction=S-adenosyl-L-methionine + zymosterol = fecosterol + H(+) + S- CC adenosyl-L-homocysteine; Xref=Rhea:RHEA:21128, ChEBI:CHEBI:15378, CC ChEBI:CHEBI:17038, ChEBI:CHEBI:18252, ChEBI:CHEBI:57856, CC ChEBI:CHEBI:59789; EC=2.1.1.41; CC Evidence={ECO:0000305|PubMed:18310029}; CC PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:21129; CC Evidence={ECO:0000305|PubMed:18310029}; CC -!- CATALYTIC ACTIVITY: CC Reaction=lanosterol + S-adenosyl-L-methionine = eburicol + H(+) + S- CC adenosyl-L-homocysteine; Xref=Rhea:RHEA:52652, ChEBI:CHEBI:15378, CC ChEBI:CHEBI:16521, ChEBI:CHEBI:57856, ChEBI:CHEBI:59789, CC ChEBI:CHEBI:70315; Evidence={ECO:0000305|PubMed:8586261}; CC PhysiologicalDirection=left-to-right; Xref=Rhea:RHEA:52653; CC Evidence={ECO:0000305|PubMed:8586261}; CC -!- PATHWAY: Steroid metabolism; ergosterol biosynthesis. CC {ECO:0000269|PubMed:18310029}. CC -!- SUBCELLULAR LOCATION: Nucleus {ECO:0000269|PubMed:16823372}. CC Endoplasmic reticulum {ECO:0000305|PubMed:16823372}. CC -!- INDUCTION: Expression is anaerobically up-regulated via the sterol CC regulatory element binding protein sre1. {ECO:0000269|PubMed:16537923}. CC -!- DISRUPTION PHENOTYPE: Abolishes the production of ergosterol and leads CC to abnormal cellular morphology (PubMed:18310029). Leads to CC susceptibility to cycloheximide and to staurosporine, but does not CC affect tolerance to nystatin and to amphotericin B (PubMed:18310029). CC {ECO:0000269|PubMed:18310029}. CC -!- MISCELLANEOUS: In Aspergillus, the biosynthesis pathway of the sterol CC precursors leading to the prevalent sterol ergosterol differs from CC yeast. The ringsystem of lanosterol in S.cerevisiae is firstly CC demethylised in three enzymatic steps leading to the intermediate CC zymosterol and secondly a methyl group is added to zymosterol by the CC sterol 24-C-methyltransferase to form fecosterol. In Aspergillus, CC lanosterol is firstly transmethylated by the sterol 24-C- CC methyltransferase leading to the intermediate eburicol and secondly CC demethylated in three steps to form fecosterol. In the genus CC Schizosaccharomyces, 2 routes exist from lanosterol to erposterol: the CC classical one via zymosterol and the second one via the formation of CC eburicol followed by demethylation. {ECO:0000269|PubMed:8586261}. CC -!- SIMILARITY: Belongs to the class I-like SAM-binding methyltransferase CC superfamily. Erg6/SMT family. {ECO:0000255|PROSITE-ProRule:PRU01022}. CC --------------------------------------------------------------------------- CC Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms CC Distributed under the Creative Commons Attribution (CC BY 4.0) License CC --------------------------------------------------------------------------- DR EMBL; CU329671; CAB16897.1; -; Genomic_DNA. DR EMBL; D89131; BAA13793.2; -; mRNA. DR PIR; T39579; T39579. DR PIR; T42375; T42375. DR RefSeq; NP_595787.1; NM_001021688.2. DR AlphaFoldDB; O14321; -. DR SMR; O14321; -. DR STRING; 284812.O14321; -. DR iPTMnet; O14321; -. DR MaxQB; O14321; -. DR PaxDb; 4896-SPBC16E9-05-1; -. DR EnsemblFungi; SPBC16E9.05.1; SPBC16E9.05.1:pep; SPBC16E9.05. DR GeneID; 2539602; -. DR KEGG; spo:SPBC16E9.05; -. DR PomBase; SPBC16E9.05; erg6. DR VEuPathDB; FungiDB:SPBC16E9.05; -. DR eggNOG; KOG1269; Eukaryota. DR HOGENOM; CLU_039068_5_3_1; -. DR InParanoid; O14321; -. DR OMA; AFNKAMH; -. DR PhylomeDB; O14321; -. DR UniPathway; UPA00768; -. DR PRO; PR:O14321; -. DR Proteomes; UP000002485; Chromosome II. DR GO; GO:0005783; C:endoplasmic reticulum; IBA:GO_Central. DR GO; GO:0005634; C:nucleus; HDA:PomBase. DR GO; GO:0003838; F:sterol 24-C-methyltransferase activity; IBA:GO_Central. DR GO; GO:0006696; P:ergosterol biosynthetic process; IMP:PomBase. DR GO; GO:0032259; P:methylation; IEA:UniProtKB-KW. DR CDD; cd02440; AdoMet_MTases; 1. DR Gene3D; 3.40.50.150; Vaccinia Virus protein VP39; 1. DR InterPro; IPR013216; Methyltransf_11. DR InterPro; IPR030384; MeTrfase_SMT. DR InterPro; IPR029063; SAM-dependent_MTases_sf. DR InterPro; IPR013705; Sterol_MeTrfase_C. DR PANTHER; PTHR44068:SF1; HYPOTHETICAL LOC100005854; 1. DR PANTHER; PTHR44068; ZGC:194242; 1. DR Pfam; PF08241; Methyltransf_11; 1. DR Pfam; PF08498; Sterol_MT_C; 1. DR SUPFAM; SSF53335; S-adenosyl-L-methionine-dependent methyltransferases; 1. DR PROSITE; PS51685; SAM_MT_ERG6_SMT; 1. PE 2: Evidence at transcript level; KW Endoplasmic reticulum; Lipid biosynthesis; Lipid metabolism; KW Methyltransferase; Nucleus; Reference proteome; S-adenosyl-L-methionine; KW Steroid biosynthesis; Steroid metabolism; Sterol biosynthesis; KW Sterol metabolism; Transferase. FT CHAIN 1..378 FT /note="Sterol 24-C-methyltransferase erg6" FT /id="PRO_0000124797" SQ SEQUENCE 378 AA; 42867 MW; FA4D3D82A1CE03D6 CRC64; MSSTALLPPN TDQVLSRRLH GKAAEKKTGL AAIASKDVDE QSRKLQEYFE FWDRNHENES EEDRARRIDG YKSVVNSYYD LATDLYEYGW SQSFHFSRFY KGEAFAQSIA RHEHYLAYRM GIKPGSRVLD VGCGVGGPAR EITEFTGCNL VGLNNNDYQI SRCNNYAVKR NLDKKQVFVK GDFMHMPFED NTFDYVYAIE ATVHAPSLEG VYGEIFRVLK PGGVFGVYEW VMSDDYDSSI PKHREIAYNI EVGDGIPQMV RKCDAVEAIK KVGFNLLEED DLTDHDNPDL PWYYPLTGDI TKCQNIWDVF TVFRTSRLGK LVTRYSVQFL EKIGVAAKGT SKVGDTLAIA QKGLIEGGET HLFTPMFLMI AKKPETDA //